HAL

archives-ouvertes

Automatic Deployment of Software Components in the
Cloud with the Aeolus Blender
Roberto Di Cosmo, Antoine Eiche, Jacopo Mauro, Gianluigi Zavattaro,

Stefano Zacchiroli, Jakub Zwolakowski

» To cite this version:

Roberto Di Cosmo, Antoine Eiche, Jacopo Mauro, Gianluigi Zavattaro, Stefano Zacchiroli, et
al.. Automatic Deployment of Software Components in the Cloud with the Aeolus Blender.
[Technical Report] Inria Sophia Antipolis. 2015. <hal-01103806>

HAL Id: hal-01103806
https://hal.inria.fr /hal-01103806
Submitted on 15 Jan 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01103806

Automatic Deployment of Software Components
in the Cloud with the Aeolus Blender

Roberto Di Cosmo
Univ Paris Diderot, Sorbonne
Paris Cité, PPS, UMR 7126,

CNRS and INRIA F-75205
Paris, France
roberto@dicosmo.org

Gianluigi Zavattaro
Department of Computer
Science and Engineering,
University of Bologna, Italy

gianluigi.zavattaro@unibo.it

ABSTRACT

Cloud computing allows to build sophisticated software sys-
tems on virtualized infrastructures at a fraction of the cost
that was necessary just a few years ago. The deployment
of such complex systems, though, is still a serious issue due
to the need of deploying a large number of packages and
services, their elaborated interdependencies, and the need
to define the (ideally optimal) allocation of software compo-
nents onto available computing resources.

In this paper we present the Aeolus Blender (Blender in
the following), a toolchain that automates the assembly and
deployment of complex component-based software systems
in the “cloud”. By relying on a configuration optimizer and
a deployment planner, Blender fully automates the deploy-
ment of real-life cloud applications on OpenStack infrastruc-
tures, by exploiting a knowledge base of software compo-
nents defined in the Mandriva Armonic tool-suite. The final
deployment is guaranteed to satisfy not only user require-
ments and software dependencies, but also to be optimal
with respect to the number of used virtual machines.

1. INTRODUCTION

Automating the deployment of component-based, distri-
buted software applications is a critical task for modern IT
companies. With the advent of cloud computing, which of-
fers the possibility to easily acquire and release computing
resources, sophisticated software systems can be deployed

*This work was supported by the French ANR project ANR-
2010-SEGI-013-01 Aeolus and partially performed at IRILL,
center for Free Software Research and Innovation in Paris,
France, http://www.irill.org.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Antoine Eiche
. Mandriva, FR
aeiche@mandriva.com

Jacopo Mauro
Department of Computer
Science and Engineering,
University of Bologna, Iltaly

jmauro@cs.unibo.it

Stefano Zacchiroli
Univ Paris Diderot, Sorbonne
Paris Cité, PPS, UMR 7126,
CNRS, F-75205 Paris, France

zack@pps.univ-paris-
diderot.fr

Jakub Zwolakowski
Univ Paris Diderot, Sorbonne
Paris Cité, PPS, UMR 7126,
CNRS, F-75205 Paris, France
jakub.zwolakowski@inria.fr

at a fraction of the cost and time that were necessary just a
few years ago. Nevertheless, the management of such appli-
cations is still a daunting task.

Several tools are used routinely to help system architects
and administrators to automate at least some of the de-
ployment and configuration phases of such complex systems.
For instance, configuration managers like Puppet [24] and
Chef [23] are largely used by the “DevOps” community [9]
to automate the configuration of package-based applications.
Domain specific languages like ConfSolve [16] or Zephyrus [7]
can be used to compute—starting from a high-level partial
description of the application to be realized—an (optimal)
allocation of the needed software components to comput-
ing resources. Tools like Engage [11] or Metis [19] synthe-
sizes the precise order in which low-level deployment actions
should be executed to realize the desired application.

Despite the availability of such tools, the mainstream ap-
proach for deploying cloud applications is still to exploit pre-
configured virtual machines images, which contain all the
needed software packages and services, and that just need to
be run on the target cloud system. Some examples are Bento
Boxes [12], Cloud Blueprints [6], and AWS CloudForma-
tion [1]. This approach is not entirely satisfactory though,
because it does not leave room for user customization. The
choices of the components to use (e.g., WordPress installed
with Apache or Nginx, with NFS or GlusterF'S support) lead
to an explosion of configurations that can hardly be matched
by the offered set of pre-configured images. Moreover, pre-
configured images often force the user to run her application
on specific cloud providers, inducing an undesirable vendor
lock-in effect.

Arguably, the adoption of pre-configured images is still
the most popular approach due to the lack of integrated so-
lutions that support system designers and administrators
throughout the entire process, ranging from the high-level
declarative description of the application to the low-level
deployment and configuration actions. In this paper we de-
scribe Blender, which is based on the approach taken in the
Aeolus project [5] and strives to overcome this limitation.

High-Level Architecture.
Blender realizes a software pipeline that integrates three
independent tools:

Zephyrus a tool that automatically generates, starting from
a partial and abstract description of the target appli-
cation, a fully detailed architecture indicating which
components are needed to realize such application, how
to distributed them on virtual machines, and how to
bind them together [7]. Zephyrus is also capable of pro-
ducing optimal architectures, minimizing the amount
of needed virtual machines while still guaranteeing that
each software component has its needed share of com-
puting resources (CPU power, memory, bandwidth,
etc.) on the machine where it gets deployed.

Metis a planner that generates a fully detailed deployment
plan that will have to be executed to bring the cur-
rent state of a deployed application to the new, desired
one (e.g., as produced by Zephyrus) [19]. Plans are
made of individual deployment actions like installing
a software component, changing its state according to
its component life-cycle, provisioning virtual machines,
etc. Metis relies on an ad hoc planning algorithm that
exploits component dependencies to prune the search
space and produce the needed deployment steps very
efficiently (i.e., provably in polynomial time). Metis
could produce plans involving hundreds of components
in less than one minute.

Armonic a collection of tools that, starting from a knowl-
edge base of information about available software com-
ponents, allows for the deployment of software applica-
tions and services on several Linux distributions [20].
Each component has a list of states, and each state
performs actions to deploy and configure the associ-
ated component on the target distribution.

Blender integrates the above tools, realizing a toolchain that
supports system architects and administrators all the way
from the design phase down to the deployment.

A declarative approach is adopted throughout Blender,
according to which only a minimal amount of information
needs to be initially given by the user. For instance, it is suf-
ficient to indicate the main services the application should
expose to application users, plus some deployment criteria
like the level of replication to be used for critical components
requiring duplication to guarantee better performances and
support fault tolerance. Starting from these initial infor-
mation, Blender computes the complete architecture of the
application and supports the administrator in the deploy-
ment phases, during which only some configuration variables
needs to be manually instantiated.

Paper structure.

In the next section we present Blender from the point of
view of the users, by using it to realize a real-life, moder-
ately complex cloud application: a replicated, load-balanced
deployment of the WordPress blogging platform. Section 3
enters into more details, by showing what happens behind
the scenes, at the toolchain level, when Blender is used to
realize the case study of Section 2. Section 4 points to the
open source implementation of Blender. Before concluding,
section 5 review related literature.

Table 1: Software components used to deploy a
WordPress farm

WordPress a blogging tool based on PHP;

Galera Cluster for MySQL: a multi-master cluster of
MySQL databases synchronously replicated;

HAProxy a load balancer for TCP and HTTP-based ap-
plications spreading requests across multiple servers;

Varnish an HTTP accelerator designed for content-heavy
dynamic web sites supporting dynamic load balancing;

HTTP Server a software component serving web server
requests;

NFS client/server an application implementing a dis-
tributed file system.

2. CASE STUDY

We consider the deployment of a so-called “WordPress
farm”, i.e., a load balanced, replicated blogging service based
on WordPress.! A typical approach to deploy this kind
of applications on cloud infrastructures is to rely on pre-
configured virtual machine images, on which someone has
pre-installed various components drawn from the list shown
in Figure 1, and ad hoc deployment scripts or recipes to
realize the full architecture of the final application.

Instead, our component-based approach starts from reusa-
ble, abstract descriptions of these components, collected in
the Armonic knowledge base, plus a limited amount of case-
by-case information that the user will have to provide. From
these elements, Blender synthesizes and then deploys a fully
detailed architecture.

When executing Blender, the first piece of information the
user will need to provide is an indication of the desired front-
end service to be deployed, in this case the Varnish compo-
nent.

Based on this initial piece of information, Blender will
guide the user through an interactive question/answer phase,
during which the types of component needed to complete the
application design are chosen, and component-dependent
additional information are asked to the user. The kind of
information requested to the user in this second phase typ-
ically deals with desired installation policies, which usually
vary on a case by case basis. For instance, as shown in
Figure 1, once Varnish and WordPress with NFS is chosen,
two different solutions for the database are proposed (i.e.,
single shared installation or multi-master replication based
on Galera). The user can also specify that specific com-
ponent pairs can not be co-installed on the same virtual
machine (e.g., WordPress can not be installed with Galera
for performance reasons) or that two components have to be
co-installed (e.g., WordPress and HAProxy are installed on
the same machine for fault tolerance reasons). This infor-
mation cannot be automatically inferred, as it depends on
the expected workload, so user guidance is required.

Once these pieces of information are entered, Blender trans-
lates the description of the Armonic components into the
Aeolus model representations used by Zephyrus and Metis.

"https://wordpress.com/

https://wordpress.com/

| Warmonic

<« C M [} localhost:B080/app/#/build?provide=Varnish%2FActive%2Fstart

Wwarmonic ~ Workspaces Provides Build Specificaion Graph Fill Deployment

Varnish/Active/start

¥ Start Varnish service
W Create a Wordpress using an NFS share

¥ Choose

Create a MySQL database Create a MySQL database though HaProxy

Figure 1: User inputs for WordPress installation

In particular, Zephyrus synthesizes the full architecture of
the installation, indicates how many and which kind of vir-
tual machines are needed, and distributes software compo-
nents to such machines. Subsequently, Metis computes the
sequence of deployment actions needed to reach the final
configuration produced by Zephyrus.

The computed plan is not ready to be executed yet, be-
cause some system-level configuration parameters are still
missing (e.g., administrative passwords, credentials, etc) and
should be provided by the user. Blender asks the user for
these information and, once all the configuration data is
available, it proceeds to create the virtual machines com-
puted by Zephyrus on the target OpenStack infrastructure.
Then, Blender uses Armonic to deploy and configure com-
ponents by executing state changes, according to Metis de-
ployment plan.

In our example, during the interactive Q/A phase we have
chosen Varnish to balance the traffic between 2 WordPress
servers, NF'S support, and 3 Galera instances. Moreover, we
chose to inhibit co-installation of WordPress with Galera or
the NFS Server, and to install HAProxy on every machine
where WordPress is installed. The only additional piece of
information asked by Blender as configuration data were the
admin passwords for the DBs and HAProxy.

The final architecture produced by Blender is depicted in
Figure 2. The installation requires 6 machines, 3 running
Debian and 3 MBS (Mandriva Business Server).? Tt took
~7 minutes to deploy such architecture on a simple Open-
Stack infrastructure deployed on an Intel Xeon server with
4 cores. The computation of the final configuration and the
deployment plan was almost instantaneous: 90% of the time
was spent waiting for the virtual machines to boot and for
package installation.

3. AEOLUS BLENDER INTERNALS

As depicted in Figure 3, Blender is intended to be used
in combination with an XMPP server and an OpenStack
cloud installation. Blender is realized as an XMPP client
that wraps and combines the tools Zephyrus, Metis, and Ar-
monic and exposes its functionalities via ad hoc commands.®
Basically, such commands are used to launch Zephyrus, view
the graph representing the computed final configuration, fill
the configuration variables, and perform the deployment ac-
tions according to the plan produced by Metis. Blender can
be interacted with via a Web user interface or the command

2http://www.mandriva.com/en/products-services/mbs/
3http://xmpp.org/extensions/xep-0050.html

|| Dashboard < iop — W A B Instances - OpenStac xYB cauld

/S MBS N/ MBS

NFS client Httpd Httpd NFS client

= b
(<]

NFS Server
MBS
Galera Galera Galera
Debian Debian Debian

Figure 2: Computed WordPress farm architecture

line. An advantage of this architecture is that new elements
can be added by wrapping them as simple XMPP clients.
For instance, other IaaS offers can easily be added in addi-
tion to the currently supported OpenStack.

Blender relies on scripts that integrate Zephyrus, Metis,
and Armonic following the execution flow depicted in Fig-
ure 4. Such work-flow requires two distinct inputs: an Ar-
monic component repository, and a high-level description of
the desired application to be deployed.

In Armonic a software component has an associated life-
cycle that can be conceptually viewed as a state machine
representing the different steps that need to be performed in
order to deploy the component. For example, a component
could have an associated state machine with 4 states: not in-
stalled, installed, configured, and active. Each state usually
is associated to a collection of actions that need to be per-
formed to enter into or exit each state, and actions that can
be invoked on the component when a state has been entered.
Technically states are implemented as Python classes, and
actions are class methods. Each state has at least enter and
leave hooks that are invoked when a state is entered and
exited. Actions to be performed require the instantiation
of a group of variables capturing information such as the
required services, or the needed configuration values (with
their default or optional values). In some cases, the required
services should be local when the functionality must be pro-
vided in the same host where the component is deployed.
For instance, in our running example, the NF'S client is a lo-
cal dependency of WordPress because an active WordPress

http://www.mandriva.com/en/products-services/mbs/
http://xmpp.org/extensions/xep-0050.html

=
Aeol
@ﬁ oo Il
@ XMPP Server

User

Figure 3: Blender environment

needs an NFS client to be installed on the same machine.*

The first step of the Blender execution flow is querying the
user to gather her desiderata. This task is performed by the
Builder that asks the user for the components she wants to
install, their desired replication constraints, and information
about the need or impossibility to co-install onto the same
host specific pairs of components.

When the user has entered all this information, the Builder
queries the Armonic component repository and generates:

specification file containing the encoding of the constraints
that should be satisfied in the final configuration ex-
pressed in the specification language used by Zephyrus;

universe file containing the Aeolus component representa-
tions [8] of available components, in the JSON format
used by both Zephyrus and Metis;

configuration data file containing indications about the
system-level configured data needed to configure Ar-
monic components. Some of them, if not already pro-
vided, will have to be entered by the user later on (e.g.,
credentials). Other data may be inferred from the
configuration parameters of other components (e.g.,
WordPress can suggests a database name to its database
dependency).

An excerpt of the specification file generated from user input
for the running example is as follows:

Varnish:Active >= 1
and #(_){_ : #Galera:Active > 0O and
#Wordpress:ActiveWithNfs > 0 } = 0

The first line requests a final configuration to have at least
one Varnish component in the Active state. The second and
third lines forbid the co-installation of Galera with Word-
Press. In addition to user defined constraints, Blender also
requires that every component can not be installed more
than once on the same virtual machine; this is currently due
to an Armonic limitation that does not allow to install the
same component twice on the same machine.

The universe file is generated by encoding Armonic com-
ponents into Aeolus components, which faithfully capture

“for more information related to Armonic components we
refer the interested reader to [21]

; . (o)
p Armonic <
components “

Builder

erse +

ification Config file

Optimization:
Merge

. 101100,
Config|data |ig

Zephyrus

Final conf D

Plan Config file

Filler

Launcher

Figure 4: Blender execution flow

states and transitions. In Aeolus terminology, methods ex-
posed by states become provide ports. These methods and
special state methods (e.g., enter and leave) can expose
dependencies which become require ports. As an exam-
ple, a graphical representation of the Aeolus model for the
WordPress component of our example is given in Figure 5.
WordPress is depicted as a 5 state automaton, requiring the
add_database functionality from the HAProxy to be config-
ured, the start and get_document_root functionalities to be
active, and the mount functionality from the NFS client to
support the NFS. When active with NFS support, Word-
Press will provide the get_website functionality to other com-
ponents.

Since the Aeolus model abstracts away from configuration
data, these are stored in the configuration data file, which
will be later used to perform deployment.

The universe file generated by the Builder is subsequently
post-processed in order to merge together components that
must be installed on the same machine. For instance, in our
example, the WordPress components needs an NFS client to
be installed on the same machine. These two components
are therefore merged together obtaining a new component
that consumes the sum of the resources. This simplifies the
input of Zephyrus, reducing the number of components to
be managed, thus speeding up the computation of the final
optimal configuration, i.e., the one that uses the smallest
number of virtual machines.

The solution computed by Zephyrus is then processed to
decouple the components that were previously merged to-
gether. Indeed, while Zephyrus abstracts away from the
internal life-cycles of the component, Metis needs to con-
sider individual automata to compute the needed deploy-
ment actions. Metis then takes the post-processed output

—@ @Wordpress/ActiveWithNfs/get_website
i _(@Nfs_client/Active/mount

N _(@Hittpd/Active/start
3 ‘-_(@Httpd/Configured/get_document_root

)y —(@Haproxy/Active/add_database

Legend

D Component
O State

Q Initial State

_c Require Port
@— Provide Port

worapress

Figure 5: Aeolus representation of the WordPress
component

of Zephyrus and the original Universe file to compute a de-
ployment plan to reach the final configuration.

At this point the user is asked to provide the missing con-
figuration data for the final deployment. The configuration
data file generated by the Builder is processed together with
the output of Zephyrus to detect which components should
be installed and then fill the missing data querying the user
if needed. This task is performed by a component dubbed
Filler that uses several Armonic libraries to deduce config-
uration variables from default values where possible.

Once all the configuration information are filled, the plan
produced by Metis and the configuration data file are passed
to the Launcher, a Python tool that acquires and bootstraps
the virtual machines indicated in the output of Zephyrus us-
ing the OpenStack API, and transforms the abstract deploy-
ment actions generated by Metis into concrete actions that
are sent to Armonic agents running on individual virtual
machines.

4. IMPLEMENTATION

The complete toolchain presented in this paper is pub-
licly available and released as free software, under the GPL
license. Blender consists of ~5k lines of Python and is avail-
able from
git://git.mandriva.com/users/aeiche/aeolus-toolchain.
As Blender is an integrator, it has as software dependencies
the tools it integrates:

e Zephyrus that amounts to about 10k lines of OCaml
and is available from
https://github.com/aeolus-project/zephyrus/;

e Metis that amounts to about 3.5k lines of OCaml and
is available from https://github. com/aeolus-project/
metis;

e Armonic that amounts to about 5k lines of Python,
plus glue code for component life-cycles written in shell
script or Augeas and is available from https://github.
com/armonic/armonic.

Screencasts showing how Blender can be used to deploy dif-
ferent WordPress installations are available at http://blog.
aeolus-project.org/aeolus-blender/.

S. RELATED WORK

The Blender toolchain integrates various tools, some of
which have been discussed elsewhere. Zephyrus has been
presented in [7]; the deployment experimentation done in
that paper already took into account Armonic. The present
paper extends [7] in several ways: it integrates Metis to
drive deployment on the basis of an actual deployment plan;
it adds an actual user interface turning Blender into a real,
production-ready tool; and it offers tighter integration among
the three tools. Thanks to Metis, which supports the synthe-
sis of infrastructure-independent plans, Blender could also be
used with other deployment engines, while deployment as
described in [7] relied on hard-coded internal mechanisms of
Armonic. The new user interface supports the user in lively
monitor the state of the ongoing deployment, with step-by-
step visualization of the effect of each deployment action.
This functionality is clearly more effective if actions are ex-
ecuted in sequence. For this reason the current version of
Blender serializes the actions synthesized by Metis (which,
a priori, are maximally parallel); this limitation is arbitrary
though, it could be lifted by further improving the UL

Metis has been presented in [18]. The tool validation
in that paper was done by using automatically generated
descriptions of components. The integration of Metis in
Blender described in this paper, on the other hand, repre-
sents the validation of Metis on real use-cases.

Different languages with their deployment engines have
been proposed [10, 13, 22], but have seen limited practical
adoption thus far. For this reason, as previously mentioned,
the most common solution for the deployment of a cloud ap-
plication is still to rely on pre-configured virtual machines [1,
6,12]. A common, but more knowledge-intensive solution, is
to use on configuration management tools, such as CFEngine
[4], Puppet [24], and Chef [23]. Using those tools it is pos-
sible to declare the components that should be installed on
each machine and their configuration. However, the burden
of specifying where components should be deployed, and how
to interconnect them is left to the system administrator.

Juju [17], supported by Canonical, includes a GUI that
allows the application manager to design a final configura-
tion and indicates the steps needed to obtain it. It cannot
however compute the final and optimal configuration start-
ing from a partial specification, nor devise an optimal or-
der in which the deployment actions need to be performed.
ConfSolve [16], like Zephyrus, relies on a constraint solver to
propose an optimal allocation of virtual machines to servers,
and of application components to virtual machines. How-
ever, it is unaware of system-level package incompatibilities
on individual machines and does not allow to compute the
actions needed to reach the computed configuration.

Similarly to Metis, Engage [11] automatically generates
the right order in which deployment actions should be gen-
erated. In order to do this, Engage avoids circular compo-
nent dependencies and simply perform a topological sort on
the graph representing the component dependencies. Metis,
on the contrary, is able to also deal with circular depen-
dencies that can arise in practice when, for instance, con-
figuration information flow between components in both di-
rections (consider, e.g., a master database that first requires
the slave authentication and subsequently provides the slave
with a dump of the database).

Saloon [25] computes a final configuration by describing a
cloud application using a feature model extended with fea-

git://git.mandriva.com/users/aeiche/aeolus-toolchain
https://github.com/aeolus-project/zephyrus/
https://github.com/aeolus-project/metis
https://github.com/aeolus-project/metis
https://github.com/armonic/armonic
https://github.com/armonic/armonic
http://blog.aeolus-project.org/aeolus-blender/
http://blog.aeolus-project.org/aeolus-blender/

ture cardinalities. It automatically detects inconsistencies
but, differently from Zephyrus, it does not offer the ability
to minimize the number of resources and virtual machines
to be used.

Another relevant research direction is to leverage tradi-
tional planning techniques and tools coming from artificial
intelligence. In [3,14,15] off-the-shelf planning solvers are ex-
ploited to automatically generate (re-)configuration actions.
To use these tools, however, all the deployment actions with
theirs preconditions and effects need to be properly speci-
fied in a formalism similar to the Planning Domain Defini-
tion Language (the de facto standard language for planners).
The Metis approach, on the other hand, relies on simpler
and natural descriptions (i.e., state machines describing the
temporal order of the component configuration actions).

6. CONCLUSIONS

We have presented Blender, a tool exploiting a configura-
tor optimizer, an ad hoc planner, and a deployment engine
to automate installation and deployment of complex cloud
applications. Blender does not rely on predefined recipes,
but on reusable component descriptions that are used as
building blocks to synthesize a fully functional configura-
tion satisfying the user desiderata. Blender is easy to use,
comes with a web graphical interface, and requires as in-
put just those specific configuration parameters that cannot
be deduced from the component descriptions. Blender has
been validated on common deployment task, such as the in-
stallation of a WordPress farm. It is an open source project
maintained by Mandriva that does also provide business ser-
vices on top of it.

As future work we plan to test Blender on larger use cases,
creating a first benchmark to be used to evaluate both the
improvements of future Blender versions and for comparison
with possible future competitors. In particular, new versions
of Blender will reduce the deployment time by following the
maximal parallelizable plan suggested by Metis. Further-
more, noticing that replicated servers (e.g., the Debian ma-
chines containing the replicated database in our WordPress
example) share part of their deployment plan, we would like
to use live virtual machine cloning instead of re-creating in-
stances that will end up being similar from scratch.

We also plan to integrate other IaaS solutions (such as
Amazon EC2, RackSpace, or Google Compute Engine) as
well as other component libraries (like, e.g., those present in
Juju [17] or Apache Brooklyn [2]).

7. REFERENCES

[1] Amazon. AWS CloudFormation.
http://aws.amazon.com/cloudformation/.

[2] Apache Software Foundation. Apache Brooklyn.
https://brooklyn.incubator.apache.org/.

[3] N. Arshad, D. Heimbigner, and A. L. Wolf.
Deployment and dynamic reconfiguration planning for
distributed software systems. Software Quality
Journal, 15(3), 2007.

[4] M. Burgess. A Site Configuration Engine. Computing
Systems, 8(2), 1995.

[5] M. Catan, R. D. Cosmo, A. Eiche, T. A. Lascu,

M. Lienhardt, J. Mauro, R. Treinen, S. Zacchiroli,
G. Zavattaro, and J. Zwolakowski. Aeolus: Mastering

[6]

7]

8]

[9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]
(18]

(19]

20]

(21]

(22]

23]
[24]
[25]

the Complexity of Cloud Application Deployment. In
ESOCC, 2013.

CenturyLink. Cloud Blueprints.
http://www.centurylinkcloud.com/products/
management/blueprints.

R. D. Cosmo, M. Lienhardt, R. Treinen, S. Zacchiroli,
J. Zwolakowski, A. Eiche, and A. Agahi. Automated
synthesis and deployment of cloud applications. In
ASE, 2014.

R. D. Cosmo, J. Mauro, S. Zacchiroli, and

G. Zavattaro. Aeolus: A component model for the
cloud. Inf. Comput., 239, 2014.

DevOps. http://devops.com/.

X. Etchevers, T. Coupaye, F. Boyer, and N. D. Palma.
Self-Configuration of Distributed Applications in the
Cloud. In CLOUD, 2011.

J. Fischer, R. Majumdar, and S. Esmaeilsabzali.
Engage: a deployment management system. In PLDI,
2012.

Flexiant. Bento Boxes. http://www.flexiant.com/
2012/12/03/application-provisioning/.

G. E. Gongalves, P. T. Endo, M. A. Santos, D. Sadok,
J. Kelner, B. Melander, and J. Mangs. CloudML: An
Integrated Language for Resource, Service and
Request Description for D-Clouds. In CloudCom, 2011.
H. Herry and P. Anderson. Planning with Global
Constraints for Computing Infrastructure
Reconfiguration. In CP4PS, 2012.

H. Herry, P. Anderson, and G. Wickler. Automated
Planning for Configuration Changes. In LISA, 2011.
J. A. Hewson, P. Anderson, and A. D. Gordon. A
Declarative Approach to Automated Configuration. In
LISA, 2012.

Juju, devops distilled. https://juju.ubuntu.com/.

T. A. Lascu, J. Mauro, and G. Zavattaro. A Planning
Tool Supporting the Deployment of Cloud
Applications. In ICTAI 2013.

T. A. Lascu, J. Mauro, and G. Zavattaro. Automatic
Component Deployment in the Presence of Circular
Dependencies. In FACS, 2013.

Mandriva. Armonic. http:
//armonic.readthedocs.org/en/latest/index.html.
Mandriva. Armonic, Lifecycle anatomy.
http://armonic.readthedocs.org/en/latest/
lifecycle.html.

OASIS. Topology and Orchestration Specification for
Cloud Applications (TOSCA) Version 1.0.
http://docs.oasis-open.org/tosca/TOSCA/v1.0/
¢s01/TOSCA-v1.0-cs01.html.

Opscode. Chef. http://wuw.opscode.com/chef/.
Puppetlabs. Puppet. http://puppetlabs.com/.

C. Quinton, A. Pleuss, D. L. Berre, L. Duchien, and
G. Botterweck. Consistency checking for the evolution
of cardinality-based feature models. In SPLC, 2014.

http://aws.amazon.com/cloudformation/
https://brooklyn.incubator.apache.org/
http://www.centurylinkcloud.com/products/management/blueprints
http://www.centurylinkcloud.com/products/management/blueprints
http://devops.com/
http://www.flexiant.com/2012/12/03/application-provisioning/
http://www.flexiant.com/2012/12/03/application-provisioning/
https://juju.ubuntu.com/
http://armonic.readthedocs.org/en/latest/index.html
http://armonic.readthedocs.org/en/latest/index.html
http://armonic.readthedocs.org/en/latest/lifecycle.html
http://armonic.readthedocs.org/en/latest/lifecycle.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://www.opscode.com/chef/
http://puppetlabs.com/

