
Hindawi Publishing Corporation
Advances in Human-Computer Interaction
Volume 2012, Article ID 893575, 19 pages
doi:10.1155/2012/893575

Research Article

Constrained Wiki: The WikiWay to Validating Content

Angelo Di Iorio,1 Francesco Draicchio,1 Fabio Vitali,1 and Stefano Zacchiroli2

1 Department of Computer Science, University of Bologna, Mura Anteo Zamboni 7, 40127 Bologna, Italy
2 Université Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, F-75205 Paris, France

Correspondence should be addressed to Angelo Di Iorio, diiorio@cs.unibo.it

Received 9 June 2011; Revised 20 December 2011; Accepted 3 January 2012

Academic Editor: Kerstin S. Eklundh

Copyright © 2012 Angelo Di Iorio et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The “WikiWay” is the open editing philosophy of wikis meant to foster open collaboration and continuous improvement of their
content. Just like other online communities, wikis often introduce and enforce conventions, constraints, and rules for their content,
but do so in a considerably softer way, expecting authors to deliver content that satisfies the conventions and the constraints,
or, failing that, having volunteers of the community, the WikiGnomes, fix others’ content accordingly. Constrained wikis is
our generic framework for wikis to implement validators of community-specific constraints and conventions that preserve the
WikiWay and their open collaboration features. To this end, specific requirements need to be observed by validators and a specific
software architecture can be used for their implementation, that is, as independent functions (implemented as internal modules
or external services) used in a nonintrusive way. Two separate proof-of-concept validators have been implemented for MediaWiki
and MoinMoin, respectively, providing an annotated view functions, that is, presenting content authors with violation warnings,
rather than preventing them from saving a noncompliant text.

1. Introduction

Since their first apparition more than 15 years ago, wikis
have gained wide acceptance and now convey a nonnegligible
share of the whole content delivered via the web. Wikipedia
alone suffices to showcase what we would be missing without
wikis: Wikipedia is among the top 10 most visited websites,
(Alexa ranking, http://www.alexa.com/topsites/, retrieved
07/02/2010) is the most popular general reference work on
the web [1] and delivers about 12 millions of articles. All this
would probably not have been possible with “traditional”,
prewiki webauthoring.

The peculiar innovation brought by wikis is what has
been termed “the WikiWay”: an open editing philosophy that
allows users to easily collaborate on web content, imposing
as few restrictions as possible on content authors [2]. That
in turn fosters the creation of possibly immensely large, as in
the case of Wikipedia, communities which author contents
collaboratively. In a sense, a wiki can be considered a state-
of-mind, an inclination shared by the users, rather than a
collection of scripts and pages. Technically, the WikiWay
is incarnated by careful technological choices which reduce

content contribution barriers. Let us briefly review such
choices.

Direct Editing within Browsers. To relax the software and in-
frastructure requirements which are needed to contribute
content on the web, for example, owning a web server or
asking for hosting.

Versioning. To favor a posteriori rollback of, intentional or
not, undesired contributions over a priori access restrictions.

Plain-Text Markup, Mostly Unstructured. To rely on “learn
as you go” and “learn by comparison” instead of requiring
specific author training in markup languages.

Wiki authors are free to change and produce from scratch
content at will, with no particular restrictions on their
contributions (modulo sporadic or temporary access restric-
tions, mainly used to counter abuses [3]). In spite of all this
freedom, it can be observed that in practice the wiki editing
process is often bounded by implicit rules descending from
the communities themselves, taking the form of customs

2 Advances in Human-Computer Interaction

or community guidelines: pages can be required to have
no spell checking errors, to be not longer than a given
character or word count, to (not) contain specific sections, to
match specific page templates, and so forth. These suggested
guidelines, discussed in more detail in Section 3, are just
some examples of a more general trend that we observed:
wiki communities tend to agree on sets of conventions that
one or more pages should preferably adhere to. Such conven-
tions can evolve over time and sometimes (usually for large
communities) they get written down as explicit authoring
guidelines, it is for instance the case of wikipedia, where page
banners are used at the same time to highlight the lack of
adherence to specific editorial guidelines and point to them,
otherwise they stay as nonwritten conventions.

The communities hence need ways to ensure, and at the
very minimum check, that those de facto constraints are
respected. Looking from the outside, the freedom offered by
the WikiWay seems to help in building communities which
initially learn to cooperate by reaching consensus. Then con-
sensus is often used to decide upon authoring constraints,
which are self-imposed and self-enforced within communi-
ties. Those constraints preserve however the characteristic of
not being “strict”: thanks to the wiki technical characteristics,
they can be violated, temporarily or not, without rendering
the wiki unusable, as opposed to what would happen
in more controlled environments such as Data Base Manage-
ment Systems, where violations of properties such as referen-
tial integrity are not acceptable even for short-time frames.
For this reason, we call them light constraints and we define
them as follows.

Definition 1 (light constraint). A light constraint is a decid-
able constraint, that is, a boolean predicate denoting the ful-
fillment of some requirement, applicable to the content of a
wiki, or part of it, which its community wants to be adhered
to as much as possible.

The existence of the WikiGnomes [4] (users who work
behind the scenes to fix minor nuisances) phenomenon con-
firms the community desires entailed by the definition, since
much of the work of WikiGnomes is based on monitoring
and converging towards community best practices. At the
same time the existence of (human) WikiGnomes testifies
the lack of technical support for light constraints, whose
presence could help in maximizing adherence to them. Hav-
ing such support, the efforts of WikiGnomes can be better
directed elsewhere, for examples where nondecidable (and
hence nonlight, by definition) constraints are challenged. For
instance, specific decisions over the style of natural language
text are mostly nonmechanizable and hence need human
review.

In this work we design and implement a generic frame-
work, called constrained wiki, that supports wiki communi-
ties in establishing their light constraints so that they can
be mechanically checked by the wiki engine, helping in
adhering to them. The framework is generic in the sense that
it does not mandate a specific implementation, but rather
shows how it can be easily implemented on top of existing
wiki software. The challenging part of the design is to

preserve compatibility with the open wiki-editing philos-
ophy, resisting the temptation of creating an excessively
constrained authoring environment that would defeat the
essential wiki principles, which in turn foster community
creation.

The research question within this topic is to design
constraint validators that preserve compatibility with the
open wiki-editing philosophy, resisting the temptation of
creating an excessively constrained authoring environment
that would defeat the essential wiki principles, which in turn
foster community creation.

We believe in particular that this is obtained by changing
as little as possible the usual wiki work-flow, for instance by
providing mechanisms that

(1) enrich the plain page viewing used by all users with a
validation report that fully discloses (non-)adheren-
ces to community best practices;

(2) turn page saving into a conditional, yet overridable,
step controlled by an intermediate validation process
that encourages the submission of “community-
correct” content but does not prevent variations nor
violations to best practices.

If a wiki was able to provide such features, it would
implement checks while respecting the lightness of con-
straints, as users may still read and write pages in violation of
some constraints. Validation is meant to be helpful for both
readers and authors, helps in targeting community efforts in
fulfilling constraints, and does not sacrifice “the WikiWay”.

Document Structure. The structure of this paper is as follows.
Section 3 gives the problem statement showcasing and clas-
sifying light constraint scenarios. Section 4 then investigates
the requirements of a satisfactory solution. Then we present
in Section 5 our own solution: the constrained wiki frame-
work. Before presenting its implementation in Section 8,
we discuss how to deploy the framework (Section 6) and
how to implement validators (Section 7). Related work and
conclusions are discussed in Sections 2 and 9, respectively.

2. Related Work

The study of the synergies between wikis and structured,
potentially constrained, content can be framed in the more
general area of Computer Supported Cooperative Work [5]
which dates back to the 1980s. In this respect, the goals of
constrained wikis have interesting analogies with Object Lens
[6] and its predecessor system Information Lens [7].

The objective of both Information Lens and Object Lens
was to provide users an environment for building their own
collaborative applications. The approach proposed by the
authors consists of letting users customize and combine
atomic building blocks, where an atomic block could be a
message, a data record, a form field, a table, and so on. A sim-
ple template-based interface supports users in creating new
customizable folders from those atomic pieces of information.

Advances in Human-Computer Interaction 3

Two aspects of Object Lens are very relevant for this
research: the semistructured organization of content and the
semiconstrained editing model. Object Lens was classified as
a semiformal system, a system “processing some information
in formally specified ways and other information in ways
that are not formally specified”. There is no predefined and
rigorous content structure but users are free to organize
their content (and applications) according to their needs and
preferences. That is very similar to the goal of this work:
supporting users in creating structured content without
imposing them restrictions on the authoring process. In fact,
Object Lens provides users template-based interfaces that (i)
use forms to add and select applications components, (ii)
suggest information about each object and existing relations
between them and (iii) allow users to leave unset some fields
and even create inconsistent information.

On the other hand, two main differences can be outlined
between this work and Objects Lens: the first, as expected,
is the fact that massive collaboration was not foreseeable in
the 80s and Objects Lens was not designed to work in a
complete open environment such as the World Wide Web;
the second is the fact that Object Lens documents, although
not prestructured, could not be fully modified and twisted as
suggested by the WikiWay.

The idea of letting users to customize their content
and applications is rooted in the early days of computer-
supported collaborative research. Several researchers stressed
the importance of tailorability, that is, the possibility for
each user, regardless of her skills, to customize “systems”
by combining general-purpose and modular assets. Some
researchers were in favour of allowing customization to
only few skilled authors [8], others were inclined to full
customization available for all users [9]. In both cases, the
semiconstrained combination of modular data was recog-
nized as a key aspect in the content production process.

In the world of wikis a very similar approach has been
adopted by the WikiTemplates system [10], authors intro-
duced the concept of WikiTemplates, which are pairs of
edit/display templates. When a page is viewed it is formatted
according to its view template; when it is edited a set of
editable text area will be supplied, one for each “hole” in the
edit template. Users cannot modify the whole content and
structure of a page, rather only the areas identified by the
“holes”. Editing freedom is guaranteed though the tailoring
process: users can freely modify the templates, so that no
limitation is imposed over the editing.

The community of wiki developers gave multiple answers
to the dilemma between unstructured and structured wiki
content. Traditional wikis rely on a complete open approach:
users access the full source code of a page and they are
entitled to change any bit of that content, through a sim-
plified syntax. Other systems include facilities for organizing
content in lists and tables without mastering directly the
wiki syntax. Dynatable [11] is a MediaWiki extension that
helps users in creating sophfisticated tables, treated as high-
level objects that can be included in multiple pages and
automatically fed by dynamic data.

The need of creating more controlled wiki content
lets developers introduce the idea of structured wikis. A

structured wiki is an enhanced wiki providing users tradi-
tional functionalities plus applications for managing struc-
tural content, database tuples, calendars, access permissions,
and so on. TWiki [12] is the most representative platform,
classified as an enterprise content management system built
on the top of a core wiki engine. Similarly, TikiWiki [13]
integrates groupware applications focusing on collaborative
editing of content.

Structured wikis have also been studied by Trattner et al.
[14]. They propose an alternative approach to create struc-
tured content without sacrificing the wiki openness: the idea
is to enable wikis with a specific publishing procedure. Users
are left to freely edit any page, while some of them are entitled
to mark well-structured content and to make it available for
safe citing. The process, in fact, includes a revision/approval
workflow by a board of about 60 editors that collaborate
to build a layer of annotations on (the trustworthiness of)
fragments.

While this work is mainly focused on the process of
authoring content, DBWiki [15] achieves similar results
without adding any constraint on the editing workflow.
The system, in fact, allows users to intermix unstructured
content with database queries. These queries are fetched and
converted into wiki fragments shown into the final pages.
The editing process is still open and free, and sophisticated
features are available on those inline fragments. As expected,
users are required to add valid queries and are supported by
ad-hoc validator tools.

The idea of exploiting wikis for the creation and man-
agement of structured information has been pushed forward
by the Semantic wikis. A semantic wiki is a wiki that allows
users to decorate plain content with semantic data, to be
used for sophisticated analysis, reasoning, and searching. The
creation of such a semantic knowledge base opens interesting
perspectives with respect to the (more or less constrained)
editing process. Semantic Media Wiki [16] allows users to
add semantic properties by using an extended in-line syntax.
RDF statements can be embedded within the plain source
content of a page with a quite little effort. The editing
area is completely unconstrained and users can also create
incorrect or inconsistent statements. In order to facilitate the
insertion of semantic data, Semantic Media Wiki has been
extended to provide users with forms [17]. The editing space
is now constrained by these forms, but users are helped in
the creation of content. Semantic forms are optional and
remain a relatively-intrusive interface for semantic editing.
Other wikis integrates the traditional editing textarea with
interfaces which help users to produce semantic data.
AceWiki [18] exploits a controlled natural language to let
users write unambiguous statements in English. Although
users can write inconsistent statements, the system also
integrates a predictive authoring tool which suggests options
and values to the users.

Pushing this trend to its extreme, some wikis provide
users rich interfaces for the creation of semantic data based
on widgets, WYSIWYG modules and graphical environ-
ments. Sweetwiki [19] exploits Ajax technologies to provide
users a very dynamic and usable editing environment. Such
solutions are very far from the basic and free-editing

4 Advances in Human-Computer Interaction

paradigm of traditional wikis, although they might be helpful
for producing structured wiki content.

An alternative and very promising approach is imple-
mented by VisualWikiCurator [20]. The tool is a MediaWiki
extension, supported by a powerful backend and a semantic
engine, that helps users in creating and refining content
throughout the editing process. Instead of validating content
before or after editing, the system interacts with authors
while they are modifying pages. Some data are automatically
extracted, from other pages or external resources, and sug-
gested to the users that can preview and correct these sugges-
tions before committing the changes. Sophisticated interfaces
allow users to reorganize structured content, to synchronize
fragments with other pages, and to refine content inter-
actively. The system will also implement machine-learning
techniques to polish such automatic extraction, by exploiting
intermediate users’ feedback.

3. Light Constraints Scenarios

The problem attacked by the present work can be defined as
follows:

Design and implement a framework that sup-
ports wiki communities in respecting self-
imposed light constraints (as per Definition 1),
without sacrificing the WikiWay authoring par-
adigm.

To further understand the boundaries of the problem we
briefly skim through scenarios that can be found in current
wiki deployments on the web, which exhibit light constraint
checking needs.

(1) All or specific pages of a wiki can be required to match
simple quality criteria that can be mechanically checked,
such as minimum or maximum length requirements on pa-
ges or sections.

Real-life instances of this need can be found in Wikipedia
itself, where specific banners exist to suggest merge or split
of under-/oversized articles. On the same lines, wikis used
for conference organizations (a fairly common use case)
can have requirements of maximum word lengths over pre-
sentation proposal abstracts or other parts of the proposals.

Some ad hoc features found in mainstream wiki engines
are just instances of simple quality requirement checks. For
instance, spell checking is offered by various wiki engines as
a specific action that can be invoked during editing, while it
fits within the above more general scenario.

A very similar approach could be used to also check if
some forbidden words are used in wiki pages. Going further,
we could even think of sophisticated analysis based on NLP
or speech recognition techniques [21].

(2) More generally, various sorts of structural markup
validation can be needed to verify that specific pages match a
given “document structure”, as in: the section “introduction”
must be present or the section “in popular culture” must not be
present. (The latter being a (simplification of a) real example
coming from a recent Wikipedia trend of splitting away
or removing oversized “in popular culture” sections) The
presence of specific page elements can be verified against

usability criteria too. For instance, it can be checked if forms,
very common in wiki pages too, follow the rules discussed in
[22] that suggests to use checkboxes instead of selection lists.

(3) Due to the ease of referring to pages (more than that
of referring to their fragments), wikis often use sets of pages
to describe different elements of the same ontological classes,
of software plugins, cities, instance, musical albums, and A
need faced by many wiki communities is then that of preserv-
ing the uniformity of pages describing elements of the same
class. The desired structure is often captured in page tem-
plates (stored in the wiki itself) and the need of uniformity
reified as a template-matching problem [23].

Surprisingly, the most widely used approach to create
and manage such structures is copy & paste and iterative
manual refinement and checking. Wiki content templating
mechanisms [23] offer more general solutions for this and
related needs. Still, they lack mechanisms to enforce template
matching between instances and the origin templates.

(4) Due to typical wiki limitations, it often happens to
have the same content replicas spread among different pages
of a wiki. For example, ordered lists of all the elements of a
class described on a wiki (e.g., the class of “European coun-
tries”) can be listed on different pages according to different
sorting criteria.

The fact that all those lists should contain the same ele-
ments is an obvious quality requirement, which remains
implicit with current wiki technology.

From the above scenario, we can draw the potential ben-
efits of constraint-checking support and some characteristics
of light constraints. In particular, we observe that light con-
straints can be classified along two axes: scope and expressiv-
ity.

The scope indicates the cardinality of the set of pages
related by a specific light constraint. As an alternative intu-
ition, the scope can be seen as a measure of how many pages
are needed as input of the boolean predicate representing the
light constraint (see Definition 1) to evaluate it.

In simple scenarios, like (1) and (2) above, constraints
apply to the content of a single page (i.e., the set of pages
related by the light constraint is a singleton): checking the
length of a section or the presence of some content are all
examples of such intrapage constraints. In other scenarios
constraints span multiple pages: preserving the uniformity
of all pages describing objects of the same class or checking
the consistency of lists in different pages are examples of such
interpage constraints. The fact that a constraint is local or
not obviously impacts on the way it is verified: intrapage
constraints are easier to verify and can be processed by
external entities that do know or very little about the origin
wiki; checking an interpage constraint requires in general
more knowledge of the wiki structure and extra communi-
cation (to retrieve all the involved pages).

On the other hand, the expressivity of a light constraint
indicates how much of some semantic meaning of pages
is needed to establish whether the constraint is respected
or not. For instance, to establish the fulfillment of light
constraints in scenario (1) above, only a basic knowledge of
the surface syntax is needed (e.g., to spell check it is enough
to distinguish words from meta commands). On the other

Advances in Human-Computer Interaction 5

hand, to verify if a wiki page matches a specific structural
markup validation schema, as in scenario (2), more semantic
knowledge is required, in particular an understanding of the
structure of the page is needed to recognize headings, para-
graphs, flow markup, and so forth. Once more, this distinc-
tion in expressivity impacts on how the constraint can be ver-
ified and in particular how much knowledge of the specific
syntax of a wiki engine is needed.

Furthermore, semantics wikis [16, 19, 24] offer the ability
to check light constraints on top of semantics facts naturally
entailed by the wiki semantics. It then becomes possible to
check the semantic content of a page, rather than the syntac-
tic one. For instance, users might be interested in checking
that in SemanticWikipediA [16] specific kinds of pages
(e.g., those belonging to the category “countries”) contain a
specific statement (e.g., “. . . is the capital”). It also becomes
possible to express constraints that involve both syntactic and
semantic data: for instance, a constraint checking that a given
statement exists and belongs to a given section (information
about the capital of a country is always in the introduction
or in a summary table) or checking that two sections
contain the same semantic information (the capital of a
country does not change throughout a page) and so on.

Constraint scope and expressivity are effectively orthog-
onal aspects. A trivial example of intrapage syntactic con-
straint is spell checking; one of interpage syntactic con-
straints is checking broken links. (Wikis may contain “bro-
ken links” that do not represent a real problem when
intentionally created to add new pages, but it’s still generally
useful to spot them). The properties shared among pages
belonging to the same group suggest a further example of
interpage syntactic constraint. Many times wiki users define
the structure of specific pages, the type of content, the order
of the elements, and so on. These requirements are often
nonwritten and manually checked or simply ignored. For
instance, in [25] authors discussed the adoption of wikis
within an Italian academic community, reporting examples
of repeated pages, structures, and patterns developed in that
context.

Even semantic constraints can be either intrapage or
interpage. Checking that a triple in a wiki page expresses a
given information that belongs to the first category, as well as
checking that semantic data are consistent within a page. On
the other hand, users might be interested in checking that
the overall wiki does not contain incoherent statements or
subareas of the wiki are consistent, as in scenario (4).

These scenarios taken all together emphasize that the
relationship between wiki systems and light constraints is
already pervasive within the wiki community, even if not
explicitly. In fact, some of the most popular wikis support a
limited version of light constraints as described in this work.
For instance Twiki [12] presents conditional plugin, cur-
rently no longer needed because IF-THEN-ELSE construct is
now part of the core engine that allows to define nonnested
conditional expressions used mainly to show or hide portion
of content upon the occurrence of the declared condition.
For instance, it can be used also to check absence of
important section block and thus print message. Similarly
dokuwiki [26] provides a macros plugin that permits users to

create simple conditional statements to generate text. Finally
media wiki presents conditional template. This extension
enables the conditional execution of a template, allowing
users to define rules regarding structural composition of the
page in terms of inclusion of sections if the condition occurs.

The rest of the paper will identify a possible enhancement
of wikis to generlize such approaches and to helps users in
establishing and verifying all kinds of light constraints.

4. Requirements

Before introducing the constrained wiki framework we need
to discuss the requirements that a proper solution should
strive to address. Sections 1 and 3 have shown evidence of
the need of supporting light constraints in real world collab-
orative editing and the challenges in doing so. To our best
knowledge, no wiki supports them in their full generality.
For this reason, even what does “supporting them” mean
is not yet clear in the literature. This work postulates that
a system can be said to support light constraints when

(1) it helps the editing work of all authors giving visibility
to constraint violations;

(2) it helps the work of some expert users, called “tailors”,
enabling the description of constraints and their
association to pages. (We refer to these users as tailors
adapting to the wiki context the definition (“users
who coordinate the collaboration”) of [9].)

Instantiating such a system in the wiki setting poses
additional requirements on the way users should interact
with it; in particular, the WikiWay should be preserved to
avoid drifting from the wiki paradigm. We propose the fol-
lowing requirements as a merger between the above general
needs and the WikiWay.

Requirement 1 (unconstrained save). “Authors should not be
forced to resolve all light constraint violations in order to
save a page”. In apparent contrast with the purpose of light
constraints support, this requirement embodies the essence
of the “lightness” of constraints; it stresses the fact that con-
straints are meant to help in formalizing their best practices
but that should not come at the cost of diminishing editing
freedom.

Requirement 2 (constraint definition freedom). “Tailors
should be able to work on constraints and associate them to
pages using legacy wiki techniques”. This includes providing
simplified markup for constraint definitions and versioning
of both constraints and of their association to pages.

Requirement 3 (constraints visibility). “Information on con-
straints should be visible to all users”. This requirement is
meant to provide visibility of all information relative to
light constraints (which are associated to pages, which are
currently being violated and which are not. Such information
is required to be public beside being visible to authors during
page editing. This helps diminishing the gap between page

6 Advances in Human-Computer Interaction

producers and page consumers. (The more is visible that
something needs to be fixed, the more is likely that someone
will fix it.) Ideally, the adherence to this requirement would
reduce the workload (and need) of WikiGnomes.

Additionally, we recognize in light constraints a global
nature that extends beyond single wiki instances. In fact
their occurrence in large wiki communities is precisely what
enabled the identification of light constraints in the first
place. Hence, we additionally put forward the following
requirement:

Requirement 4 (decoupling constraints/wikis). Light con-
straints are neither intimately related to pages, nor to wiki
engines. Light constraints should be reusable across both
pages (i.e., the same constraints associated to multiple pages
of the same wiki) and wikis. The intuition behind this
requirement is that constraints are conceptual entities dis-
tinguished from wiki-specific concepts such as pages or set
of pages, as such it is reasonable to expect constraint reuse.

Requirement 5 (constraint generality). “All light constraints
should be expressible”. As wiki community needs changes
and cannot be predicted, the framework should account for
generality leaving open the possibility to define currently
unforeseeable constraints and enforce them. Clearly, it is
likely to exist a tradeoff between the achieved generality
and the ease of encoding constraints by random users (see
Section 7).

We claim that all the above requirements are fulfilled
in the light constraint framework, whose architecture is de-
scribed in the next section.

5. Constrained Wiki Framework

The definition of light constraints (Definition 1) bounds
constraints only to be decidable, that is, every computable
function. While apparently too liberal, that choice inherits
from the observation that constraint scenarios are very gen-
eral. For instance, document validation needs to be paralleled
with mainstream validation languages (since they are there,
experienced user are likely to want them), which are able
to express complex constraints escaping the expressivity
of simpler languages [27]. Similarly complex needs can be
found in domain-specific wikis, for example, mathematical
libraries, which exhibit constraints as complex as type check-
ing in higher order logics. All in all, the choice of decidable
constraints offers a paradigm which is fully general and on
top of which more specific limits can be deployed for specific
settings, without having to push them at the basis of the
framework.

As a consequence, the most natural way to encode light
constraints is by the means of functions, which we will call
validators.

Definition 2 (validator). A validator is a function from a wiki
page (the page being validated, or subject) and, optionally, an
additional set of pages (the validation context) to a validation
outcome.

A (validation) outcome is a boolean value paired with an
optional explanation, meant for user consumption.

Intuitively, validators are computational entities able to
decide whether part of the content of a wiki, usually a
page, fulfills the light constraint embodied by the validator.
Validators will be associated to pages and will produce a
validation outcome. View, save, and other actions on pages
will be changed to exploit that outcome. Most notably: save
will become conditional on the validation outcome (or on an
explicit “forced saving” required by the author) and view will
notify every wiki user of the validation status of the viewed
page.

In the rest of this section we will go into details of the
Light constraints architecture that implements this proposal.
The discussion is split in two parts: we first introduce the
main concept and static entities of the framework and then
we discuss how the usual wiki work flow is affected by the
presence of validators.

5.1. Data Model. One of the most important aspects of the
constrained wiki framework is generality: the framework
does not rely on a specific wiki platform, a specific language
or a specific protocol. Figure 1 is an unified modeling
language (UML) sketch of the general data model behind our
proposal that can be in fact adapted to any wiki environment.

The basic entity is naturally the page, which is reported
on the left. At the very minimum each page is characterized
by the following properties.

Markup. a text string containing the actual wiki markup the
user sees when editing a page and that is rendered on-the-fly
upon page viewing. Its actual syntax is system dependent.

Name. a text string denoting univocally a page inside the
system, the name should follow system-specific conventions
(like CamelCase) since it is used to ease linking mechanisms.

Version. a text string denoting the version of a page; over the
set of versions a total order should be defined.

Let us consider the spell checking scenario mentioned in
Section 1. A sample page might be represented in the dis-
cussed minimal data model as follows, including a gratuitous
spell-checking mistake. The used syntax is inspired by the
object as record metaphor [28].

Page about = {
markup = “Tranzactions on the Web,
constrained wiki”;

name = “AboutThisArticle”;

version = “3.14”;

}
The above three properties are enough, together with a

distinguishable page naming convention (CamelCase in the
example) to implement a basic wiki system, with versioning
capabilities.

The constrained wiki framework essentially relies on two
additional properties added to the page.

Advances in Human-Computer Interaction 7

Wiki page

+ Markup: wiki markup
+ Name: wiki name
+ Version: wiki version

+ Name: wiki name
+ Version: wiki version

+ Validators: validator list
+ Status: validation status list

+θ n

+θ n

θ n

θ n
1

1

+1

Validation status

+ Valid: bool
+ Errors: located error list
+ Context snapshot: wiki Id list
+ Validator: validator

Located error

+ Message: wiki markup
+ Location: int

Validator

Wiki Id

+ Is valid (page: wiki page, context: wiki page list): validation status···

···

···

···

Figure 1: UML sketch of the constrained wiki data model.

Validators. A list of validators (Definition 2), one for each
light constraint, which should be enforced on the page.

Status. A list of validation statuses which were associated to
the owning page when the last validation attempt has been
performed.

The validator and status properties are strongly intercon-
nected. In fact, each validator exports a isValid() method
producing the validation outcome and there is a 1-to-1
relation between validators and validation results. Note that
validators are conceptual entities at this point of discussion.
There are a lot aspects that need to be discussed about
validators: the languages used to code them, their position
within a wiki, the communication protocol between wikis
and validators, and so forth. Sections 6 and 7 will be devoted
to go into details of these aspects. What is relevant here is
the logical distinction between validators and wikis and the
leading role of validators in the overall LC framework.

The isValid() method abstracts the actual validation
process. It takes as input both the page is being validated and
a validation context. From several of the scenarios discussed
in Section 3 we learned that light constraints are not always
local to a single page. They often need additional information
that should be found on wiki pages or even external to the
wiki site. (The latter form of additional information should,
however, be minimized in order to preserve the ability of
users to influence validation.) In the spell checking scenario
for instance, the validation can be parametric on a dictionary
external to the wiki site and on extra pages containing
additions to the dictionary. That page is likely to be editable
by users. For this reason we extended the LC data model to
also include contexts.

ValidationContext. a list of “context” pages involved in the
validation. It represents the set of wiki pages (referenced by
their names) on which a validator is parametric. Note that
pages referenced from validation contexts are nonversioned,
to better ensure liveness of wiki content validation will always
be attempted using the right version of a page.

The output of the isValid() method represents the actual
validation outcome (status), for each validator applied to
the page. In order to meet Requirement 3 it has to provide
users as much information as possible. For this reason,
the ValidationStatus is not limited to be a boolean value

(indicating whether or not that page is valid), but it may also
contain a list of located errors, if the page turns out not to be
valid.

LocatedError. Textual message which is bound to particular
characters in the page markup.

This choice is motivated by the need of guiding authors
toward fulfilling constraints: localized errors are easier to be
spotted than global ones and hence faster to solve (at the very
minimum the spotting time is reduced). The Located Error
is then characterized by a location property that indicates the
offset of the error in the page markup. Once again, syntactic
details are not relevant at this stage, though the offset changes
according to the wiki format and syntax. Note also that
the textual part of message can actually be wiki markup to
provide fancier (hence more expressive) messages to the user.
In the example above, the ideal error message, representable
in our data model, would be located at the beginning of the
string peper and would contain a statement that the word
does not spell check together with a link for adding the word
to the current spell checking exceptions page.

Error messages are not enough to explain to users why
a page is invalid. Pages which are part of the validation
context of other pages may indeed change, and that can have
effect on the validity of other pages. Consider once more
the spell checking scenario, a user removing a word from
an exceptions list may change the amount of spell checking
errors in other pages. The information on why this page is no
longer valid needs to be available to users. That is why we also
included contextSnapshot as a property of validation status.

ContextSnapshot. A list of page references corresponding to
the validation context, together with their version.

The ContextSnapshot is slightly different from the input
validation context as it also indicates the actual version
number of each page involved in the validation. This way
it will always be possible to retrieve the exact set of pages
which leaded to a particular validation outcome and to better
explain that outcome to the final user. (Note that changes to
external information used by validators cannot, in general, be
captured in the same way: yet another good reason to keep as
much validation information as possible represented as wiki
pages.)

8 Advances in Human-Computer Interaction

1

2
3

4

5

View

Wiki engine

Get pagep

p

Pages

P. status

Figure 2: Runtime behaviour of the View action.

5.2. Changes on the Wiki Work Flow. The presence of valida-
tors changes substantially the work flow of wikis based on our
model. Each operation on a page becomes parametric in the
set of validators associated to that page. In particular, viewing
a page becomes viewing both its actual content and its vali-
dation status (supplied with all the relevant information to
spot and fix validation errors), while saving a page becomes
invoking validators and, if not valid, deciding whether saving
it or not.

Two main classes of users are involved in this scenario
(as often happens, the same user can play different roles at
different times).

Visitors and Authors. Users who view or edit the actual con-
tent of wiki pages. No particular skills are required nor more
expertise than that required by common wiki sites.

Tailors. Users in charge of configuring and selecting valida-
tors associated to a given page. Usually, but not necessarily,
users playing this role are more experienced than others [9].

In order to explain the role of each user and the revised
LC wiki work flow, we discuss individually the two main
operations of a light-constrained wiki, View and Save focus-
ing on their differences with the corresponding wiki opera-
tions.

View. Our architecture transforms the view operation in
annotated viewing whenever a user accesses a page. The page
content is rendered as usual, but is enriched with a detailed
report of the validation process. Figure 2 summarizes the
runtime behaviour of the View action.

The user involved in such scenario is a common user who
simply requires a page (step 1 in Figure 2); the wiki engine
retrieves it (steps 2-3) and its associated validation status
(step 4) before returning it to the user (step 5).

Some points are worth being remarked about the gen-
eralization of our schema. First of all, we have depicted a
content repository without dealing with its actual imple-
mentation: wiki systems use different techniques to store
pages, from MySQL (http://www.mysql.com/) databases (as
WikipediA) to plain text file (as most wikis), from RDF tuples

[29] to version control system repositories (e.g., [30]) More-
over, they implement specific solutions to associate metadata
to pages (fields in databases, external log file, specific lines
in text files, and so on) and these metadata can be usually
customized or extended. We propose to introduce a new
class of metadata about the validation status of a page. The
key point is that the wiki engine gets pages and retrieves
such status, previously set by validators: no matter how these
actions are actually performed. Note also that the position of
validators, as well as their internal behavior, is not relevant at
this stage.

The analysis of the View action from the user perspective
is interesting as well. Few changes are introduced on the
behaviour of readers, who access wiki content as they always
do, but can even read suggestions from validators or simply
ignoring them, if not interested. The wiki engine produces
a compound page where content and validation outcomes
are displayed together (see Figure 5 for a sample screenshot).
It is worth spending some words about the format and
detail of such outcome: different pages can be involved in
the validation process so that several information could be
displayed, often not stored in the page being validated. Con-
sider for instance, the spell-checking scenario, where pages
are validated against another page listing exceptions, or the
template matching, where the same template can be referred
from many pages it applies to. It is very useful to show users
such a chain of dependencies and relationships. Moreover,
errors should be localized, as discussed in Section 5.1. Issues
related to the usability and cognitive overhead problems in
managing a so huge amount of information are as inevitable
as complex, but we consider them out of the scope of this
paper.

Save. While the presence of light constraints does not affect
the actual text editing, it changes the operation of saving. Our
architecture transforms such operation into conditional sav-
ing: whenever an user saves a page, validation is performed
and according to its outcome a proper page is returned.
Two outcomes are possible: the page is valid, and a simple
acknowledgement is return to the user, or it is not, and
a detailed report of errors is returned. Then the user can
choose whether saving that page or not. Figure 3 summarizes
the runtime behaviour of the SAVE action.

After submitting a page (step 1 in Figure 3), the wiki
engine invokes each validator associated to that page on the
submitted content (steps 2–4). Note that the position of
validators, as well as the language used to implement them
and/or configure the validation itself, are not relevant for
the purposes of this section. The crucial point is the logical
separation between the validation process and the common
wiki work flow: such distinction makes it easy to apply a
general model to different wiki clones by introducing few
modifications and importing external validators or imple-
menting them with less effort (see Sections 6 and 7 for more
details about strategies for deploying and coding validators).
Note also that no limitation is imposed over the number and
variety of validators: different kind of light constraints can be
checked over the same page by invoking different validators,

Advances in Human-Computer Interaction 9

· · · · · ·

· · ·

· · ·

· · ·

· · ·

1

2

3

4

5

6

6

7

8

9

10

11

Get validator

Get validator

Save

Ok

Save notify
p

v

v1. is valid,

v. is valid,

v2. is valid,

/ p

Put page

Wiki engine

p1 p2

Pages

Hall
monitor

{Get, put} page

v1

v2

Validators

Figure 3: Runtime behaviour of the Save action.

each implementing its own strategies and each interacting
with the wiki in a different way.

In case a page is valid, a confirmation message is delivered
to the user (step 5) who goes on surfing (or continue editing)
normally. On the contrary, in case a page is not valid, two
options are provided (step 5 as well): the user can “forcibly
save”, being aware the page violates some light constraints or
can fix errors and try saving again.

“Forced Saving” Is Crucial. It fully adheres to “the Wiki Way”,
as users can freely modify content and ignore validators, and
allows users to save work in progress pages (not yet valid)
or intentionally invalid pages (for instance, as examples of
common errors and bad practices). For these reasons, we
claim that collaboration is not hindered when adopting our
approach.

When a user accepts saving a page, two events are trig-
gered (steps 6): the new page is stored into the wiki page
repository (notice that it implies storing both its content
and its validation status) and a notification is sent to a
component we call hall monitor, which is a process running
in background that addresses context-related issues. As
discussed before, validation is not limited to a single and
isolated page, but rather a global process that can involve sets
of pages up to the whole wiki. Then, running validators only
on the submitted content is not enough, since changes can
affect validity of other pages too. Our solution is notifying

save events to the hall monitor and letting it invoking
validators over each page included in the current context.
Note again that the overall architecture and the function of
this new component do not change whether validators are
deployed in the wiki itself or as remote services.

The hall monitor proceeds as follows: it identifies all
validators associated to all pages in the context (steps 7–9),
invokes them (step 10), and updates pages accordingly to the
validation outcome (step 11). The latter action of updating
does not trigger any further validation. The hall monitor
works behind the scenes, while the user has simply received a
saving confirmation message. This choice is motivated by the
possible huge amount of pages involved in validation.

The presence of the hall monitor drives us into a very
interesting field: analysing how versioning is affected by
validation. In the classical wiki model a new version of a page
can be created only by an editing session (actually some wikis
allow users to group minor changes or adjacent versions into
a single one) but such approach is not enough in our setting.
Users, in fact, can be interested in knowing that a page
changed its validation state but, as outlined so far, this can
even happen without explicit modifications on that page. In
a sense, there exist two overlapping and intermixing version
trees (one directly created by the users and one derived from
the validation processes) and users should be able to see both.

Adding such enhanced versioning functionalities to a
wiki might be quite difficult. In fact, the implementation
is rather invasive and strictly dependant on the internals of

10 Advances in Human-Computer Interaction

the wiki itself (how versions are stored, how versions are
organized and displayed in the interface, how users can surf
multiple versions, and so on). On the other hand, such a
feature is optional and can be omitted without impacting on
the overall LC architecture.

6. Deploying Validators

The general discussion of the LC framework was deliberately
independent on the “position” of validators and their actual
interaction with the wiki engine accessing them. The goal of
this section is to give an overview of the various possibilities
to deploy validators, while the next section will investigate
how validators can be internally implemented.

Firstly, validators can be implemented as internal mod-
ules of a wiki engine. This solution is very viable as most wiki
clones are open source and maintained by a lively community
of developers. In most cases, wiki clones are natively designed
to be customized: just think about MediaWiki extensions or
TWiki plugins. Another advantage of this approach is the
efficiency: embedded modules guarantee a faster access to
internal data structures since no external communication
is required and all actions are completely local. On the
other hand, such a locality is a limitation. Besides being a
matter of configuration and maintainability, considering that
administrators have to manually install plugins for each wiki
instance, it also opens some security problems on who
associates validators to pages: in fact, validation can be a
resource- and time-consuming activity and allowing all users
to activate them could even lead to a denial of service sce-
nario. Administrators hence need to integrate some controls
in the wiki to prevent this risk, by enabling only trusted
users to tune the page-validator association. Last but not
least, internal modules do not allow users to share and reuse
validation facilities among different wiki sites.

The best solution to mitigate the above issues is to
externalize the validation process. Such an approach is in
line with the recent evolution of the world wide web where
an increasing number of tools are hosted by SaaS (Software
as a Service) providers. Even word processors, spreadsheets,
mail readers, and calendars are hosted “somewhere in the
cloud” and can be easily accessed through a web browser.
Suffice it to mention the Google Apps framework, (http://
www.google.com/apps/) a rich set of web-based tools for
personal use, companies, and educational institutions. In this
context, a very central role is played by mashups, that is,
applications which combine other available services into a
new integrated one. Thousands and thousands of mashup
applications are available on the web (see [31, 32] as intro-
ductory references).

The composition of external services into mashup
applications has been widely studied in the literature. In
[33] authors proposed a dynamic approach for composing
external web services and checking on-the-fly whether or not
they are compatible and satisfy user requirements. Such a
user-driven approach relies on a clear distinction between
the composition itself and the end-users interfaces. Other
researchers proposed a semantically-driven discovery and
composition [34]: OWL-based descriptions of services are

combined into a shared knowledge-based software agents
can search and integrate. Experiments have also been carried
on the way users interact with mashup applications and
authoring environments and outlined interesting usability
issues [35] and editing patterns and regularities [36]. The
overall trend is that (even nonexpert) users are getting more
and more confident in assembling external services.

A similar approach can be used for validators: they
become remote services that multiple wiki engines can
invoke to verify light constraints. This solution requires
implementers to customize each wiki in order to interact
with validators, albeit only once and for all possible future
validators, which was not the case with the previously
discussed deployment possibility. That extension consists
of adding a module that passes content to the validator,
retrieves the validation report, and mashes it up into the
rendered page. There are evident advantages for both wiki
administrators and users: validators can be implemented
and installed once for all, without requiring each wiki to
run its own duplicate; different wiki sites can share the
same validator, even if they are actually running on different
clones; as a consequence, communities of users can share
validation facilities and also foster the creation of new ones.
Existing technologies are sufficient to make such an approach
possible. Section 6.1 goes into details of an abstract API to let
wikis and validators communicate.

A slightly different strategy can also be implemented
to deploy fully external validators. Instead of coding the
module that invokes the validator as an internal component
of the wiki (that acts server side) the same functionalities can
be implemented client-side through Ajax technologies. The
client-side deployment of rich applications is a very common
approach nowadays: [37] discussed issues and guidelines for
partitioning web applications between servers and clients
and outlined very well the contexts where some strategies are
preferable to others; [38] proposed a model-driven approach
to design and deploy sophisticated client-side applications.
The model adapts “traditional” web engineering solutions
to the new context of RIAs (Rich Internet Applications) and
helps users in integrating synchronous/asynchronous com-
munication, client-side DOM manipulation, and friendly
interface widgets. Several examples of client-side applications
can be listed: BrowserShield [39], for instance, inspects the
dynamic content of HTML pages on-the-fly and detects
vulnerability issues before running it in the browser. No
intermediates are required and the overall computation is
performed in the browser. Actually external services can also
be invoked but they do not interact directly with the original
HTTP request.

In the LC context, a client-side module can be added to
the wiki layout, able to invoke validators, and to add on-the-
fly a validation report to the page. The wiki engine could even
be unaware of validation facilities or be limited to store a very
few information about that.

In particular, the View operation is implemented as
follows. The original page does not contain any information
about validation. When loaded in the browser, a JavaScript
module annotates the page, by invoking remote validators

Advances in Human-Computer Interaction 11

and manipulating the DOM. The Save operation changes
accordingly. After the editing session, in fact, the client-
side module invokes the validator and shows the validation
outcome to the user that can select saving the page content
or not. Note that the Ajax-based architecture makes also pos-
sible to activate validation facilities when previewing a page
and, more important, even while editing it. In fact, validation
reports could be built “behind the scenes” and updated
periodically (or on demand) through HTTP requests and
DOM manipulations. Yet, usability issues must be taken into
account (how often a validation report should be updated?
where to show that information? how to integrate it with the
legacy wiki editor?), but interactivity and user feedback can
be greatly improved.

Another aspect is worth remarking: very few modifica-
tions to the wiki engine are required in order to deploy
such a solution. The overall validation machinery (or better,
the interaction with external validators that actually perform
validation) is completely coded in JavaScript and can be
added by simply modifying the skin of the wiki itself and by
overriding the default handlers for very few events. The same
code can even be used across multiple wiki clones as it does
not depend on the internals of the wiki.

Note also that in the scenario discussed so far the wiki
is completely unaware of the validation process. Hybrid
approaches are also interesting as a way to distribute the
computation, optimize some actions, and improve user feed-
back. For instance, it would be possible to send both the page
content and the validation outcome to the wiki engine and to
store both of them in the internal database. Such a solution
would make the information available for all users (without
being computed at every access) but require more invasive
changes to the server-side modules. In that case the client-
side module has also to send a separate request for activating
the hall monitor that will check all pages in the context (see
Section 5.2) by invoking remote validators. A crucial aspect is
that either client-side modules or server-side ones can invoke
validators through the same remote calls and run the same
validation processes. Further details about such a common
API are provided in Section 6.1.

There is actually a further externalization possible for
validation services. Instead of considering a validator as a
component that interacts with a client-side module of the
wiki, a validator might be a fully external agent activated on-
demand after a wiki page is delivered to the browser. In that
case, the validation outcome is merged on-the-fly with the
original unmodified content into the final annotated page
[40]. Such an approach opens up interesting perspectives as
it makes it possible to share validation rules stored in public
repositories, to personalize validation processes for different
classes of users and to validate any (wiki) page regardless of
access permission. On the other hand, its requirements and
goals are very different from the ones of this work: while fully
external validators are meant to produce an extra-layer that
added a posteriori on the top of unmodified wiki pages, light
constraints validators impact the internal wiki work-flow
and aim at supporting both readers and authors to handle
constraints.

6.1. A Common API to Deploy Multiple Validators. Designing
a common API that allows validators and wikis to communi-
cate is useful to identify precisely the set of operations and
parameters validators have to support and to simplify the
integration of new validators into existing platforms.

This section proposes an API that is shared for either
internal or external validators. The actual communication
between wikis and validators might be implemented via
direct function calls, SOAP web services, Java RPCs or any
other protocol. As far as this work is concerned, these solu-
tions only differ in syntactic and implementation details.
Note also that some frameworks reify SOAP/WSDL methods
as real language methods, so that using the API can actually
be agnostic on where the validator is deployed. We then
discuss this API through a java-like syntax, without loss of
generality.

The API is actually composed by one method, exported
by each validator, that implements the isValid() abstract
method discussed in Section 5.1:

public validationstatus isValid (

wikiMarkup content,

idPage page,

wikiAPIType∗ API,

wikiType wType,

idPage∗ context,

hashmap params

)

As expected the method takes as input the page to be
validated. Two approaches are actually available to pass that
content: (1) a push mode, where the content of the page is
directly passed to the validator in the content parameter
or a (2) pull mode, where references to get that content are
passed to the validator (in the page parameter) that actually
retrieves it. Different APIs exist to interact even remotely
with a wiki such as WikiGateway [41], WikiRPC [42],
MediaWiki API, [43] or SocialText REST API [44]. They all
provide a rich set of methods to get a wiki page, to save a new
one, to get information about changes, versions, metadata,
and so on. Validators can exploit those methods to retrieve
the actual data they need.

Both the push and pull modes are useful. The first ap-
proach is more efficient and suitable for validators deployed
as internal modules. It can be used for external validators as
well. Such a solution comes to play in the Ajax-based context
too. In fact, it allows the client-side module to even send
the actual page content to the validators while the user is
editing the page (or when previewing it). The “pull” mode,
that is useful for the client-side AnnotatedView, would not
be enough, as the content is not stored in the wiki yet, but
only in the client-side data structures. The “pull” approach
is slower as at least two HTTP requests are required for any
validation process. On the other hand, it allows validators to
select which data they actually want to retrieve and how. Note
also that such approach allows validators to perform caching
and apply customized efficiency strategies. In order to enable

12 Advances in Human-Computer Interaction

caching policies on the validator side, the parameter idPage
page must be a pair name/value.

The parameter wikiAPIType∗API has been introduced
to specify the set of APIs exported by the wiki and available
to the validator. It is actually a string chosen among a finite
set, as few wiki APIs exist that can be extended:

public enum wikiAPIType {
“WikiGateway”, “WikiRPC”, “MediaWiki
API”, “SocialText API”, . . .

}
We also introduced a WikiType wType parameter to

indicate the wiki clone invoking the validator. That value is
used to parse correctly the page source code and to specialize
the validation process in order to check features of specific
wiki clones. Consider, for instance, a Semantic Media Wiki
installation: although the API is the same of a plain Medi-
aWiki, further validation can be performed over the semantic
data unavailable on the plain wiki. Even the value of this
parameter is chosen among a finite set that can be easily
extended:

public enum WikiType {
“MediaWiki”, “SemanticMediaWiki”,
“TWiki”, “SocialText”, . . .

}
The context parameter is a set of references to get the

pages of the validation context according to the data-model
described in Section 5.1. Once again, the content can be
retrieved via internal functions or remote calls according to
the actual position of the validator. Finally the hash-map
params has been introduced as a general mechanism to pass
further values useful for the validation process. Examples are
the length to be verified for a section, the number of expected
items in a list, the exact URL to be checked in a link, and so
on. Notice that such parameters are different from the ones
expressed in the context that are actual wiki pages.

The isValid(. . .) method returns a structured valida-
tion outcome that includes rich information available to the
wiki and the final users:

Class ValidationStatus {
URL validator,

ProcessStatus status,

Boolean result,

LocatedError∗ errors-list,

IdPage∗ context,

InputFormat input

}
Some data have been introduced for debug purposes

only. The value validator indicates the name or the URL
(when it is a remote service) of the validator. The value
status contain diagnostic data about the validation process
itself. This parameter does not indicate whether or not a page

is valid, rather whether or not the validation process was
successful. The process could fail because of internal errors of
the validator, errors in the network communication, missing
data in the request, and so forth. For this reason, the output
is further structured into:

Class ProcessStatus {
ValidationCode code,

HTML message

}
The Integer status code is a code indicating the

status of the process, while the HTMLType message is a
human-readable explanation about that status, coded in
HTML. Further details about their possible values are out of
the scope of this paper.

The actual validation outcome is contained in the values
result, errors list, and context that express rich
information about localized errors and validation context.
They do not need further explanation here as they follow
straightforwardly the data model discussed in Section 5.1.

The localization of errors deserves some more discussion.
Each localized error is in fact a pair

Class LocatedError {
Integer location,

HTML message,

}
The value location indicates the offset to pinpoint the

error in the page source. Since validators can access the
source file in different formats (from a specific wiki syntax
to XML, from WikiCreole to HTML) this value alone would
not be enough. We then introduced the value InputFormat
input (in the ValidationStatus object) that indicates the
format of the source page used for validation. It will be used
by the wiki module to locate errors and correctly display
messages. Since all localized errors share the same input
format, this parameter is global instead of being repeated for
each error. The set of its possible values is again extensible:

public enum InputFormat {
“WikiCreole”, “WikiCreoleXML”, “HTML”,
“MediaWiki”, “TWiki”. . .

}
Finally, the value message contain a human-readable

explanation of the error, for the final user. Error messages
could be in the specific wiki syntax too. That solution would
require validators to know details of multiple wiki syntaxes
and to further convert messages. Using HTML messages
makes possible a single strategy for all wikis and reduce
complexity. Note also that similar considerations can be
extended to the debug status message discussed earlier on.

7. Wiki Content Validation

There is no universal answer to the question of “how to code
validators”. In fact, light constraints vary radically for their

Advances in Human-Computer Interaction 13

nature. A general classification is equally possible taking into
account (i) how many pages are involved in the validation
process and (ii) how much semantic analysis is needed to
validate content. Section 3 identified two orthogonal axes to,
respectively, cover these two aspects: scope and expressivity.

While the scope mainly impacts on the interaction
between the validator and the wiki (single or multiple pages
need to be retrieved, and in both cases it can be done through
the API discussed in the previous section) the expressivity has
great impact on the way the validator for a given constraint
is implemented. The goal of this section is to classify the
most feasible strategies to implement validators, dealing with
different levels of expressivity of the light constraints.

Before going on, we need to answer a very related ques-
tion: “who actually code the validators”. The WikiWay would
suggest us to allow any user to freely program validators.
That would be even more appropriate if the coding itself
could be done on the wiki site. Such a solution raises several
issues. First of all, it is very difficult to find a language
suitable for this purpose, due to the tension among language
expressiveness and simplicity (in term of both syntax and
semantics). A second issue is of course security: assuming
that a silver bullet language can be found, we need to prevent
malicious uses of validators which can easily provide denial
of services. Actually, such approach has already been faced by
the so called Community Programmable wikis [45], which
allows any user to modify the code of the wiki engine itself,
without arriving at satisfying solutions.

The most relevant issue here is a third one: average
wiki users are not capable of coding validators and, more
important, they are not expected to.

We in fact introduced in Section 4 a specific role called
tailor to indicate those users in charge of managing val-
idators. In [8], the authors noticed that, even when the
whole community is affected by system customization and
tailorability, it is very common that a restricted set of users
actually perform such task. On the contrary, in [9] authors
claimed that tailorability should be extended to all the users:
yet, differences among the expertise of users exist and are
required to exist, but the customization itself is improved
by involving average users too. Though wikis are inherently
closer to the latter approach, we believe validators manage-
ment is still a task meant for expert users.

In our view, however, the tailors are not expected to know
the internals of each validator. They are only required to
know validators’ interfaces and functionalities and to asso-
ciate validators to pages, by using wiki-specific mechanisms.
The actual implementation and deployment are delegated to
programmers and sysops.

The distinction between common users and tailors pro-
posed in Section can be then refined in four roles: common
users, who access validation facilities, tailors who configure
validators and associate them to the pages, implementers
who actually code validators and make them respect the
above mentioned API, and administrators who take care of
the final deployment.

The implementers code validators in multiple ways ac-
cording to the expressivity of the light constraint they are
required to meet. Our preliminary analysis identifies three

categories of validators: procedural, schema language, and
semantic.

7.1. Procedural Validators. The first category includes valida-
tors implemented through procedural languages such as C,
Java, or PHP. Obviously these validators allow implementers
to code any validation process and give them great flexibility
and control over the validation outcome. The validator for
the spell checking scenario is a very simple example of such
a category: an integrated Python module (or a spell-checker
written in any other language) can be invoked in order to
validate a page against a dictionary and a list of expectations,
retrieved by the validator itself from the wiki.

Procedural validators are particularly useful to check
interpages constraints (opposed to intrapage ones that only
involve one single page) as they make it easier to analyze
the overall wiki content space. Just think about the detection
of (the lack of) broken links mentioned in Section 3 that
requires the validator to access the wiki and check if the links
being verified refer to existing pages or not.

One issue about procedural validators might be their
interoperability: a module developed in a language may
require some rework and intermediate processing to be used
in a different environment. Code maintenance has also to be
taken into account: any (even slight update) to a procedural
validator requires recompiling and reinstalling it.

These problems can be mitigated by clearly distinguish-
ing the actual process of validating the content from the
process of retrieving that content. This second part can, and
in most cases need to, be procedural but the first one can
be done in a more declarative way, as in the case of schema-
language validators.

7.2. Schema-Language Validators. The basic idea of such class
of validators is to exploit validation languages for XML
[27]: light constraints are expressed as rules of the schema
language and wiki pages are validated against those rules by
a legacy schema processor.

Such an approach provides a lot of benefits to different
users, compared to the procedural one. First of all, imple-
menters are not required to code procedures from scratch as
the validation is delegated to another module: they have to
write schema rules and let the wiki interact with the schema
processor. Schema editors could also be very useful in
writing these rules. Note also that updating such a validator
means updating a schema document and does not require
any recompiling or installation. Last, but not least, schema
documents can be shared across different wikis and different
users.

The problem, on the other hand, is that schema languages
work on XML documents while most of the wiki content
is stored in a plain text syntax. Recent developments in the
world of wiki syntaxes solve such issue. WikiCreole [46]
is a common markup language for multiple wikis. Imple-
mentation-dependent wiki syntaxes can be easily translated
from/into WikiCreole, so that content can be transferred
across a broad range of wiki clones. Recently, the WikiCreole
committee also proposed an XML format for WikiCreole
[47] and released some stylesheets to perform bidirectional

14 Advances in Human-Computer Interaction

conversions between XML and the plain text syntax. Thus,
most of the wiki content can be easily expressed in XML and
validated against XML-Schema or RelaxNG schemas.

Just a few of applications of such an approach are listed
here, by using XML-Schema operators: the restrictions on
the length of a section can be verified through simple
types (in particular the <xs:minLength> facet), the correct
format of a date can be checked through native data
types (xs:date); the presence of sections or the order
of subsections can be verified through complex types
(<xs:sequence>, <xs:choice>); even the coexistence/
coherence of some data can be checked via assertions and
conditional type assignments introduced in XML-Schema
1.1 [48].

As expected, schema language validators do not cover all
the wiki constraints users might be interested in. In fact, these
validators can only process the content that wikis are able to
export in XML WikiCreole. While solving this issue might
be only a matter of time, a lot of other constraints cannot
be verified even if the XML file contained all the required
data: those constraints have a “higher level” of semantic
expressivity.

7.3. Semantic Validators. Semantic validators are meant to
be implemented when some semantic analysis of the wiki
content is needed to verify a light constraint. Different and
incrementally complex levels of semantic expressivity can be
identified.

The first example we discussed in Section 3 was about
template matching. When checking whether a page respects
a given template, some knowledge about the role of each
structural object is required. The validator has to recognize
headings, sections, paragraphs, and in-line elements. The
basic check consists of verifying if the objects in the page are
all present and exactly in the same position of the template.
That control can be implemented via a schema language
validator too. A “smarter and more semantic” validator could
also check whether the page contains the same information
but uses different constructs: for instance, users might be
interested in checking that a page about a book contains the
name of the author and the publication date, regardless of
the fact that they are organized in a table, a list or multiple
paragraphs. Yet, such an approach requires some extra-
information embedded in the page source code about each
relevant data fragment. Several semantic wikis [16, 19, 24]
provide final users with these semantic editing facilities (see
Sections 3 and 2 for more details about them).

Semantic wikis allow users to create rich knowledge bases
and provide them with advanced functionalities for surfing
and reasoning about these data. Those community-driven
knowledge bases express facts that are very often stored as
RDF statements. The further level of semantic validators is
then to verify light constraints on top of these statements.
For instance, users might be interested in checking that in
SemanticWikipediA [16] specific kinds of pages (e.g., those
belonging to the category “countries”) contain a specific
statement (e.g., “. . . has currency”), or that a page about
a paper contains [a statement with] the complete list of
authors, and so on. Since the entire pool of statements is

available, such a verification can be easily performed to spot
missing data throughout the wiki.

The semantic verification can also be extended to multi-
ple pages, in order to check semantic interpages constraints.
This can be exploited for example to ensure that pages
express a consistent set of assertions (for instance, they all
indicate correctly the date of a given event, or the capital of a
given nation, etc.). Semantic Web reasoners, such as Pellet
(http://pellet.owldl.com/) come into play at this stage.
Launching a reasoner on the set of RDF and OWL statements
derived from a semantic wiki, in fact, it returns inconsisten-
cies (besides new inferred statements) that can be translated
into localized-errors in the LC validation report.

8. Implementation

We wrote a proof-of-concept implementation that showcases
the techniques discussed so far to deploy and code multiple
validators and to make them interact with multiple wikis. It
is a distributed environment including one instance of Moin-
Moin [49] and one instance of MediaWiki [50] enhanced
with LC validation capabilities (the source code is available
at http://vitali.web.cs.unibo.it/lcwikis). Our goal is not to
extend these wiki clones into full-fledged constraint-enabled
wiki systems but rather to show the peculiar aspects of the
framework, proving that

(1) validators can coexist with wikis without impacting
the main work flow and without burdening nonin-
terested users.

(2) validators can be deployed in multiple ways (internal
modules, external web services, client-side exten-
sions, see Section 6 for more details) without requir-
ing invasive modifications to wikis.

(3) there is no interdependency between the strategies to
deploy validators and to code them. A common API
can be exploited to make one wiki invoke multiple
validators.

(4) there is no inter-dependency between validators and
specific wiki clones. Multiple wiki clones can then
share the same validator by exploiting the above
mentioned API.

The overall architecture is shown in Figure 4. We imple-
mented three validators and made them communicate to
either MoinMoin and MediaWiki through the API discussed
in Section 6.1.

(i) V1 is an internal module of MoinMoin checking
whether or not a page is compliant to a given tem-
plate. MoinMoin allows users to create new pages
by copying the same structure and initial content
of a template. Such a model, called creational tem-
plates, has been widely studied and compared to
its counterpart functional templates in [23]. Wiki
pages are weakly connected with creational tem-
plates as they can be completely modified, up to
loose relevant information for that page. It is then
useful to check if a page is still valid against a tem-
plate even after its initial creation, in order to

Advances in Human-Computer Interaction 15

MediaWiki

API

API

API

API

API

API

API

API

API

V1

V4

V2

V3

dispatcher

Validators

Validators
proxy

dispatcher

Validators
dispatcher

Ajax
validators

Figure 4: The overall view of the LC proof-of-concept implementation.

Figure 5: Screenshot of our LC templating implementation in the MoinMoin wiki engine. The shown tool tip is associated to the first of the
template mismatch errors summarized at the top of the page, localized at the second (error) marker in the page.

check the presence of some data or the uniformity
with other content. The validator checks if a page
contains all required sections and subsections, as
defined in the template. The verification is performed
through regular expression matching on the page
source.

(ii) V2 is an external validator written in python and
invoked via SOAP, in charge of checking the length of
a given section in the page. The control can be easily
performed by parsing the page source, extracting the

required section (whose title is passed as a parameter)
and running very common string functions.

(iii) V3 is a second external validator invoked via SOAP,
in charge of spell checking the content of a page. The
actual spell check is a command-line utility installed
on the server deploying the validator.

We actually combined validators V2 and V3 in the same
web service, as shown in the right part of the picture. Such
an optimization reduces the number of remote calls without
requiring modifications to the overall framework. In fact, the

16 Advances in Human-Computer Interaction

#format validate check-template (BookTemplate)
section length (abstract, 500) spellcheck (WikiWords)

= The Old Man and the Sea =

= Context =

“The Old Man and the Sea” is a novella by Ernest Hemingway
written in Cuba in 1951 and published in 1952. It was [.]
in his selection for the Nobel Prize in Literature in 1954.

= Background =

Most biographers maintain that the years following Hemingway’s
publication of For Whom the Bell Tolls in 1940 until 1952 were. . .

Algorithm 1: MoinMoin markup of a page equipped with validators.

wiki uses the same API to invoke a “proxy validator” that in
turn invokes the actual validators by passing them the right
parameters. Notice also that the picture shows a fourth and
not yet implemented validator. The dashed arrows indicate
that V4 could be accessed through the same API (and from
multiple wikis) without the mediation of a proxy.

The ValidatorsDispatcher is a component worth dis-
cussing more in detail. This is the core module that interacts
with the wiki and invokes validators. In particular, it
performs four main actions: (i) intercepts wiki events to
trigger Annotated View and Conditional Save, (ii) finds the
validators associated to a given page, (iii) invokes them
through the API and (iv) enriches the page with the valida-
tion outcome.

This is the only part that needs to be added to a wiki
in order to get LC facilities, unless of course the validator
is implemented as an internal module. Most existing wikis
provide standard noninvasive mechanisms to add extensions.
The ValidatorsDispatchers for both MediaWiki and Moin-
Moin were in fact developed by exploiting such standard
mechanisms. In particular, Mediawiki defines a set of Hooks
that allow developers to override the wiki behaviour for
specific events. The hook wgHooks [“CustomEditor”] is
used to interpose the Conditional Save action after any
editing session and to activate validation. Similarly, Moin-
Moin defines a set of EventHandlers, among which the
PagePreSaveEvent and PagePostSaveEvent are used
for implementing the Conditional Save, and an extensible
set of Parsers invoked when a page or a fragment is
written in a specific format. The MoinMoin dispatcher is in
fact implemented as a parser that identifies the validators
associated to a given page, and invokes them internally or
remotely. More details about the actual syntax and rules to
find validators are provided below.

Notice that in presence of a proxy validator some
operations of the wiki dispatcher could even be delegated
for optimization purposes. For instance, the dispatcher could
pass the whole page to the proxy and let it to parse it, identify
validators and invoke them separately. Such a solution makes

the wiki dispatcher very simple and fast, reduces the number
of remote requests, and externalizes the whole complexity
into the proxy. On the other hand, it requires the proxy to
be aware of the syntax used to associate validators and makes
it dependent on the wiki. An aspect worth remarking is that
it can be again implemented on top of the same API.

We also implemented an alternative approach for
enabling MoinMoin with LC facilities, shown in the left side
of the picture. The Ajax ValidatorsDispacther is a Javascript
module added to the MoinMoin skin that performs very sim-
ilar actions of a server-side dispatcher: intercepting events,
invoking validators through the same API (the Javascript
XMLHttpRequest is used for this purpose), and enriching
the page with the validation outcome. As highlighted in
Section 6, such a solution provides users a more interactive
environment as the validation outcome is shown when they
preview the page and even while they are editing it (DOM
manipulations functions are exploited to update periodically
a special page section). On the other hand, such a solution
required us to patch the MoinMoin installation by overriding
the hard-coded definition of the editor (basically we had
to add some JavaScript declarations and an handler for the
onSubmit event). Since very few lines of code were actually
required and limited to a specific part of the original code,
we consider it as an acceptable trade-off to get LC facilities.

Let us now briefly explain how users interact with the
framework, using the MoinMoin installation as example. To
associate validators to a page users are simply required to
add a processing instruction at the beginning of that page.
Validator and context are in fact stored as part of the page
markup using MoinMoin #pragmas, the preferred place
where to keep page metainformation. Algorithm 1 shows a
snippet of markup of a page (about a review of Hemingway’s
book “The Old Man and the Sea”) associated to all three
validators V1, V2, and V3. The first line contains the list of
validators, each of which is passed a list of context pages and
arguments.

The latter (spellcheck) validator ensures correct spell
checking using a page named WikiWords as its exceptions

Advances in Human-Computer Interaction 17

list, the second (section length) checks that the abstract
is no longer than 500 characters, and the former one
(check-template) checks the page against the template
BookTemplate. This template organizes a page as a sequence
of a title and four sections “Abstract”, “Author”, “Back-
ground”, and “Review”.

Figure 5 shows the Annotated View of the page after the
validation process. The validation outcome is composed of
two parts: a validation summary and a set of located errors.
The summary is added at top of the page and reports, for
each attached validator, whether the validation has been
successful or not and the description of each error. Located
errors are reported as links in the markup with (CSS) pop-
up descriptions of the errors, pointing to the corresponding
error entries in the summary. In fact, validators V2 and V3

show that the page meet the requirements on the length of
the abstract and the spell checking. Instead V1 spots two
localized errors, namely, that sections “Author” and “Review”
are missing in the page markup. Users are then notified
that parts of the original templates are missing and are
encouraged to fill in the appropriate information. A similar
feedback has been returned to the user who last edited that
page, before she chose to forcibly save.

Notice that the overall validation outcome has been
assembled by the ValidationDispatcher from the outcome
of the three validators, deployed as internal or external
modules and invoked through the API. The dispatcher uses
a configuration file to locate external validators and to
compose remote requests.

In conclusion, the proof-of-concept implementation
showed that adding support for light constraint to existing
wiki systems is far from being challenging. The availability of
standard extensions mechanisms for the most common wiki
platforms can be exploited towards this goal, along with the
general API presented in this paper. In fact, new and more
powerful/complex validators can be added to this architec-
ture following the same schema. At the time of writing we
have not yet implemented any specific semantic or schema-
language validator but we believe this to be a rather sim-
ple part of the problem at hand. More important, such sub-
problems that can be addressed as independent units and
their solutions can be easily “plugged” in the general LC
architecture.

9. Conclusions

Drawing the word “wiki” close to the word “constraint”
sounds as an oxymoron. The success of wikis derives from
the openness and freedom of the wiki editing process: wiki
users are entitled to modify any page at any time, apart
from specific well-controlled cases. On the other hand, wiki
users tend to define implicit constraints to improve content
correctness and clearness. Those rules are usually expressed
as community guidelines and manually enforced within the
community. The goal of this research is to transform such an
oxymoron into a novel fruitful synergy. This paper presented
a general framework, called constrained wiki, to make that
possible for different wiki platforms, without disrupting “the

WikiWay” and without changing the way users interact with
their wikis.

An aspect is crucial about the overall vision: the lightness
of the constraints. Constraints are not meant to be strict
prohibitions that prevent users from freely expressing their
ideas and comments, rather to help them in creating uniform
and high-quality content. The solution proposed here relies
on a strong distinction between the actual wiki engine and
a set of validators, in charge of verifying the respect of light
constraints associated to the pages: by exploiting validators
wiki systems can provide conditional saving and annotated
viewing. Particular attention to the strategies for deploying
and implementing validators was given in the central sections
of this paper.

The framework does not mandate neither a specific wiki
clone nor a specific validation process. On the contrary,
we propose a general-purpose architecture that can be
instantiated for multiple wikis and multiple validators,
following the models and rules discussed in this paper. Our
goal is to foster the discussion about lightly constrained
editing within the wiki community, in order to create a free
marketplace where users can easily share, improve, and add
new validators.

References

[1] B. Tancer, “Look who’s using wikipedia,” Time 2007, http://
www.time.com/time/business/article/0,8599,1595184,00.html.

[2] B. Leuf and W. Cunningham, The Wiki Way: Quick Collabora-
tion on the Web, Wesley Longman, Boston, Mass, USA, 2001.

[3] F. B. Viégas, M. Wattenberg, and K. Dave, “Studying coopera-
tion and conict between authors with istory ow visualizations,”
in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’04), pp. 575–582, ACM, 2004.

[4] Wikipedia, “WikiGnomes,” 2010, http://www.en.wikipedia
.org/wiki/Wikipedia:WikiGnome/.

[5] J. Grudin, “Computer-supported cooperative work: history
and focus,” Computer, vol. 27, no. 5, pp. 19–26, 1994.

[6] K. Y. Lai, T. W. Malone, and K. C. Yu, “Object lens: a ’spread-
sheet’ for cooperative work,” ACM transactions on office infor-
mation systems, vol. 6, no. 4, pp. 332–353, 1988.

[7] T. W. Malone, K. R. Grant, and F. A. Turbak, “The information
lens: an intelligent system for information sharing in organi-
zations,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’86), pp. 1–8, ACM, 1986.

[8] W. E. Mackay, “Patterns of sharing customizable software,”
in Proceedings of the ACM Conference on Computer-Supported
Cooperative Work (CSCW ’90), pp. 209–221, ACM Press, 1990.

[9] A. MacLean, K. Carter, L. Lovstrand, and T. Moran, “User-
tailorable systems: pressing the issues with buttons,” in
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’90), pp. 175–182, ACM Press, 1990.

[10] A. Haake, S. Lukosch, and T. Schummer, “Wiki-templates
adding structure support to wikis on demand,” in Proceedings
of the Conference Proceedings of the International Symposium
on Wikis (WikiSym ’05), pp. 41–51, ACM Press, 2005.

[11] C. Arnold, T. Fleming, D. Largent, and C. Lüer, “DynaTable: a
wiki extension for structured data,” in Proceedings of the 5th
International Symposium on Wikis and Open Collaboration
(WiKiSym ’09), pp. 26:1–26:2, ACM, Orlando, Fla, USA,
October 2009.

18 Advances in Human-Computer Interaction

[12] P. Thoeny, “TWiki: enterprise collaboration platform,” 1998,
http://www.twiki.org/.

[13] L. Argerich, E. Polidor, and G. Foster, “TikiWiki: CMS/Group-
ware,” 2002, http://www.tikiwiki.org/.

[14] C. Trattner, I. Hasani-Mavriqi, D. Helic, and H. Leitner, “The
Austrian way of wiki(pedia)! Development of a structured
wiki-based encyclopedia within a local Austrian context,” in
Proceedings of the 6th International Symposium on Wikis and
Open Collaboration (WikiSym ’10), pp. 9:1–9:10, ACM, July
2010.

[15] P. Buneman, J. Cheney, S. Lindley, and H. Müller, “DBWiki: a
structured wiki for curated data and collaborative data man-
agement,” Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pp. 1335–1337, 2011.

[16] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and R.
Studer, “Semantic Wikipedia,” in Proceedings of the 15th Inter-
national Conference on World Wide Web, pp. 585–594, ACM,
May 2006.

[17] Y. Koren, Semantic forms 2008, http://www.mediawiki.org/
wiki/Extension:Semantic Forms.

[18] T. Kuhn, “Acewiki: a natural and expressive semantic wiki,”
Proceedings of Semantic Web User Interaction at CHI, vol. 543,
2009.

[19] M. Buffa and F. Gandon, “SweetWiki: semantic Web enabled
technologies in Wiki,” in Proceedings of the International Sym-
posium on Wikis (WikiSym ’06), pp. 69–78, ACM, Odense,
Denmark, August 2006.

[20] N. Kong, B. Hanrahan, T. Weksteen, G. Convertino, and E. H.
Chi, “VisualWikiCurator: human and machine intelligencefor
organizing wiki content,” in Proceedings of the 16th interna-
tional conference on Intelligent user interfaces (IUI ’11), pp.
367–370, ACM, 2011.

[21] A. Batliner, D. Seppi, S. Steidl, and B. Schuller, “Segmenting
into adequate units for automatic recognition of emotion-
related episodes: a speech-based approach,” Advances in Hu-
man-Computer Interaction, vol. 2010, Article ID 782802, 2010.

[22] J. A. Bargas-Avila, O. Brenzikofer, A. N. Tuch, S. P. Roth, and K.
Opwis, “Working towards usable forms on theWorldwideWeb:
optimizing multiple selection interface elements ,” Advances in
Human-Computer Interaction, vol. 2011, Article ID 347171, 6
pages, 2011.

[23] A. Di Iorio, F. Vitali, and S. Zacchiroli, “Wiki content tem-
plating,” in Proceedings of the 17th International Conference on
World Wide Web, pp. 615–624, ACM, April 2008.

[24] S. Schaffert, “IkeWiki: a semantic Wiki for collaborative
knowledge management,” in 15th IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE ’06), pp. 388–393, ACM, June 2006.

[25] E. D. Lio, L. Fraboni, and T. Leo, “TWiki-based facilitation in
a newly formed academic community of practice,” in Proceed-
ings of the International Symposium on Wikis (WikiSym ’05),
pp. 85–111, ACM, October 2005.

[26] Dokuwiki, Constrained Wiki: the Wiki Way to validating con-
tent 33, http://www.splitbrain.org/projects/dokuwiki/.

[27] M. Murata, D. Lee, M. Mani, and K. Kawaguchi, “Taxonomy of
XML schema languages using formal language theory,” ACM
Transactions on Internet Technology, vol. 5, no. 4, pp. 660–674,
2005.

[28] G. Castagna, Object-Oriented Programming: A Unified Foun-
dation, Birkhauser Boston Inc., Cambridge, Mass, USA, 1997.

[29] S. B. Palmer, “Rdfwiki,” 2001, http://infomesh.net/2001/rdfwiki/.

[30] J. Hess, “Ikiwiki,” 2012, http://ikiwiki.info/.
[31] J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding

mashup development,” IEEE Internet Computing, vol. 12, no.
5, pp. 44–52, 2008.

[32] V. Hoyer and M. Fischer, “Market overview of Enterprise
Mashup tools,” in Proceedings of the 6th International Con-
ference on Service-Oriented Computing (ICSOC ’08), pp. 708–
721, Springer, 2008.

[33] Q. Zhao, G. Huang, J. Huang, X. Liu, and H. Mei, “A web-
based mashup environment for on-the-y service composi-
tion,” in Proceedings of the IEEE International Symposium on
Service-Oriented System Engineering, pp. 32–37, IEEE Com-
puter Society, 2008.

[34] H. N. Talantikite, D. Aissani, and N. Boudjlida, “Semantic an-
notations for web services discovery and composition,” Com-
puter Standards and Interfaces, vol. 31, no. 6, pp. 1108–1117,
2009.

[35] N. Zang, M. B. Rosson, and V. Nasser, “Mashups: who? what?
why?” in Proceedings of the Extended Abstracts on Human Fac-
tors in Computing Systems (CHI ’08), pp. 3171–3176, ACM,
2008.

[36] J. Wang, H. Chen, and Y. Zhang, “Mining user behavior pat-
tern in mashup community,” in Proceedings of the 10th IEEE
International Conference on Information Reuse & Integration
(IRI ’09), pp. 126–131, IEEE Press, 2009.

[37] J. Kuuskeri and T. Mikkonen, “Partitioning web applications
between the server and the client,” in Proceedings of the 24th
Annual ACM Symposium on Applied Computing (SAC ’09), pp.
647–652, ACM, March 2009.

[38] P. Fraternali, S. Comai, A. Bozzon, and G. T. Carughi,
“Engineering rich internet applications with a model-driven
approach,” ACM Transactions on the Web, vol. 4, no. 2, article
7, 2010.

[39] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir,
“BrowserShield: vulnerability-driven filtering of dynamic
HTML,” ACM Transactions on the Web, vol. 1, no. 3, article
11, 2007.

[40] A. Di Iorio, D. Rossi, F. Vitali, and S. Zacchiroli, “Where are
your manners? Sharing best community practices in the Web
2.0,” in 24th Annual ACM Symposium on Applied Computing
(SAC ’09), pp. 681–687, ACM, March 2009.

[41] B. Shanks, “WikiGateway: a library for interoperability and
accelerated wiki development,” in Proceedings of the Interna-
tional Symposium on Wikis (WikiSym ’05), pp. 53–66, ACM,
October 2005.

[42] J. Jalkanen, “Wiki RPC interface 2, API version 2,” 2006,
http://www.jspwiki.org/Wiki.jsp?page=WikiRPCInterface2/.

[43] R. Kattouw, V. Vasiliev, B. T. Minh, and Y. Astrakhan,
MediaWiki API, 2007, http://www.mediawiki.org/wiki/API.

[44] M. N. Van Ert, W. R. Easterday, L. Y. Huynh et al., “Global
genetic population structure of Bacillus anthracis,” PLoS ONE,
vol. 2, no. 5, article no. e461, 2007.

[45] Community programmable wikis, 2006, http://www.purl.net/
net/cpw/.

[46] M. Junghans, D. Riehle, R. Gurram, M. Kaiser, M. Lopes, and
U. Yalcinalp, “An ebnf grammar for wiki creole 1.0,” in Pro-
ceedings of the ACM SIGWEB Newsletter, vol. 4, ACM, 2007.

[47] M. Junghans, D. Riehle, and U. Yalcinalp, “An xml interchange
format for wiki creole 1.0.,” in Proceedings of the ACM SIGWEB
Newsletter, vol. 5, 2007.

[48] S. S. Gao, C. M. Sperberg-McQueen, and H. S. Thompson,
“Xml schema 1.1 part 1: structures,” W3C Working Draft,
2009, http://www.w3.org/TR/xmlschema11-1/.

Advances in Human-Computer Interaction 19

[49] T. Waldmann, “The MoinMoin Wiki Engine,” 2000, http://
www.moinmo.in/.

[50] WikiMedia, “MediaWiki,” 2002, http://www.wikipedia.source-
forge.net/.

