
Mining Component Repositories
for Installability Issues

Pietro Abate∗, Roberto Di Cosmo∗‡, Louis Gesbert†, Fabrice Le Fessant∗†, Ralf Treinen‡, Stefano Zacchiroli‡
∗INRIA, Email: pietro.abate@pps.univ-paris-diderot.fr, roberto@dicosmo.org, Fabrice.Le fessant@inria.fr

†OCamlPro, Email: louis.gesbert@ocamlpro.com
‡Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, F-75205 Paris, France,

Email: {ralf,zack}@pps.univ-paris-diderot.fr

Abstract—Component repositories play an increasingly rel-
evant role in software life-cycle management, from software
distribution to end-user, to deployment and upgrade manage-
ment. Software components shipped via such repositories are
equipped with rich metadata that describe their relationship (e.g.,
dependencies and conflicts) with other components.

In this practice paper we show how to use a tool, distcheck,
that uses component metadata to identify all the components in
a repository that cannot be installed (e.g., due to unsatisfiable
dependencies), provides detailed information to help developers
understanding the cause of the problem, and fix it in the
repository.

We report about detailed analyses of several repositories: the
Debian distribution, the OPAM package collection, and Drupal
modules. In each case, distcheck is able to efficiently identify not
installable components and provide valuable explanations of the
issues. Our experience provides solid ground for generalizing the
use of distcheck to other component repositories.

I. INTRODUCTION

In the last two decades, component repositories have played
an important role in many areas, from software distributions
to application development. All major Free and Open Source
Software (FOSS) distributions are organized around large
repositories of software components. Debian, one of the largest
coordinated software collections in history [11], contains in
its development branch more than 44’000 binary packages
generated from over 21’000 source packages; the Central
Maven repository has a collection of 100’000 Java libraries;
the Drupal web framework counts over 16’000 modules.

Despite different terminologies, and a wide variety of
concrete formats, all these repositories use metadata that
allows to identify the components, their versions and their
interdependencies. Figure 1 shows an example of the metadata
of a Debian binary package, highlighting the rich nature of
inter-package relationships. In general, packages have both de-
pendencies, expressing what must be satisfied in order to allow
for installation of the package, and conflicts that state which
other packages must not be installed at the same time. While
conflicts are simply given by a list of offending packages,
dependencies may be expressed using logical conjunction
(written ‘,’) and disjunctions (‘|’). Furthermore, packages

Work partially performed at, and supported by IRILL
http://www.irill.org. Unless noted otherwise, all URLs in the
text have been retrieved on February 13, 2015.

Package: libacl1-dev
Source: acl
Version: 2.2.51-5
A r c h i t e c t u r e: amd64
Prov ides: acl-dev
Depends: libc6-dev | libc-dev,
libacl1 (= 2.2.51-5),
libattr1-dev (>= 1:2.4.46)

C o n f l i c t s: acl (<< 2.0.0), acl-dev,
kerberos4kth-dev (<< 1.2.2-4)

Fig. 1: Example of Debian metadata (excerpt)

mentioned in inter-package relations may be qualified by
constraints on package versions.

The fact that these repositories contain FOSS software,
and are widely and freely accessible, make them particularly
interesting data sources for mining experiments [19]: various
studies have analyzed their growth patterns, according to
package size and programming language usage [11], [17], [6],
or the evolution of package dependencies and their impact on
upgrades [5].

In this article, we focus on a specific quality aspect that
concerns large repositories: the amount of components that
are not installable, due to the impossibility of satisfying their
dependencies and conflicts. These packages can not be used,
under any circumstances, so they should either be removed
from the repositories, or made installable again by identifying
and fixing the reasons of their non-installability. In general,
this kind of problems should be detected and fixed before it
hits the users of the repository.

It turns out that it is possible to perform this kind of analysis
by properly exploiting the metadata extracted from component
repository using techniques that were first introduced in [16],
for the specific case of FOSS distributions like Debian and
RedHat. Despite the fact that the underlying problem is NP-
complete [3], it was possible to implement several tools which
are extremely efficient in practice, and are now used daily in
the quality assurance (QA) process for several GNU/Linux
distributions [21].



Our contribution

The approach pioneered back then has been generalized
and is now embodied in the distcheck tool, which can be used
to find not installable components across many different kinds
of repositories. In this practice article we show how to analyze
heterogeneous component repositories for non-installability
using distcheck, and report our findings on repositories as
diverse as: the Debian distribution (Section IV), the OPAM
development library collection (Section V), and the software
stack of the Drupal web framework (Section VI).

Our findings suggest that, unless a proper quality assurance
process is put in place to avoid not installable components,
they will remain commonplace in component repositories and
affect final users. Thanks to its ability to create reports that
pinpoint the causes of non-installability, such a QA process
is easy to engineer on top of distcheck, as shown by our
study of the impact of distcheck adoption by the Debian
distribution. Hence, we strongly advocate the integration of
tools like distcheck in the release process of other component
repositories.

Code availability

The distcheck tool and the other tools used in this paper are
implemented in OCaml and part of the Dose library, which is
freely released under the terms of the LGPL3 license.

Full information on Dose can be found on our website1

and precompiled packages are today available in all major
GNU/Linux distributions.

II. THEORETICAL MODEL

The distcheck tool is based on an underlying formal model
of inter-component relationships, as they are commonly found
in several component models. In this section we briefly recall
the main notions of the model. For more details we refer the
reader to [16], [2], [3].

A. Components

The metadata associated to a software component in most
repositories allow to express at least the following features:

• name: a long-lived component identifier, stable across
software releases, e.g., libac11-dev

• version: an identifier for a specific release of a given
component, e.g., 2.2.51-5

• dependencies: a description of the additional components
that must be installed to make a component usable

The expressiveness of the dependency language varies, but
at the very minimum allows for a list of components that
are required to be installed. More evolved models also allow
for disjunctions (alternatives) and version constraints (like
“component c in any version greater than 42”).

1http://dose.gforge.inria.fr/

Most component models also allow to describe:

• conflicts: components that are not to be installed at the
same time as the given component. Conflicts may come
with version constraints, similar to dependencies.

• features: names of virtual components provided by a
component. They may be used to satisfy dependencies
of other components and must not conflict with other
installed components.

Conflicts are necessary to describe existing incompatibilities
among components in a repository: repositories that do not
contain this metadata should rely on strict policies to avoid all
incompatibilities, or provide tools to install different versions
of components in different namespaces [7], otherwise the
users will be confronted with serious trouble at installation
or execution time.

Features are a convenient way of modularly adding disjunc-
tive dependencies to existing components in a repository.

B. Repositories and installations

A repository R is a set of components, uniquely identified
by name and version.

An R-installation I is a set of components, taken from
repository R, that enjoys the following two global properties:

• abundance: for each component p in I , its dependencies
can be satisfied using only components in I;

• peace: no components in I conflict with each other.

Definition 1. We say that a component p is installable in a
repository R if there exists an R-installation I that contains
it.

Note that component non installability does not just mean
that a given component is not installable on top of a set
of previously installed components. Such a scenario is not
necessarily problematic. Rather, according to the above
definition a component is not installable if there is no subset
of the components shipped by a repository in which the
dependencies (and conflicts) of the given component can be
respected. De facto distributing a non installable component
is useless, as no user will ever be able to install it on
her machine (without violating its stated inter-component
relationships).

The notions of components, repository, and installation can
be made formally precise, and have been used to show that
checking package installability is an NP-Complete problem.
Moreover, it is so not only for component models with very
rich metadata, like those found in Debian [16], but also for
much weaker metadata, like those used in Maven or OSGI [3].
Nevertheless real-world instances of the installability problem
turn out to be well-structured, and can be efficiently solved
using a variety of approaches [3], ranging from boolean
satisfiability solvers to linear integer programming.



Fig. 2: distcheck architecture

III. THE DISTCHECK TOOL

The distcheck tool is a command line tool, capable of
verifying the installability of all (or a selection of) components
contained in a given component repository that is given as
input.

Internally, distcheck is designed as a pipeline, as shown in
Figure 2. The front-end on the left is a multiplexer parser
that supports several formats for component metadata (Debian
Packages files, RPM’s synthesis or hdlist files, Eclipse
OSGI metadata, etc). After metadata parsing, component inter-
relationships are internalized in a common data representation
called CUDF (Common Upgradability Description Format),
an extensible format, with rigorous semantics [22], designed
to describe installability scenarios coming from diverse envi-
ronments without making assumptions on specific component
models, version schemas, or dependency formalisms. CUDF
can be serialized as a compact plain text format, which makes
it easy for humans to read component metadata, and which
facilitates interoperability with other component managers that
are not yet supported by distcheck.

The actual installability check work is performed by a
specialized solver, developer by Jérôme Vouillon in 2006, that
uses the SAT encoding described in [16] and employs a cus-
tomized Davis-Putnam SAT solver [9]. Since all computations
are performed in-memory and some of the encoding work is
shared between all packages, this solver performs significantly
faster than a naive approach that would construct a separate
SAT encoding for the installability of each package, and then
run an off-the-shelf SAT solver on it. For instance, checking
installability of all packages of the Debian main repository of
the testing suite (for about 40’000 packages) takes about 30
seconds on a commodity 64 bit CPU.

The final component of the pipeline takes the result from
the solver and presents it in a variety of human and machine
readable formats to the final user. As we will see, an important
feature of distcheck is its ability, in case a package is found not
installable, to produce a concise human-readable explanation
that points to the reasons of the issue.

IV. THE DEBIAN DISTRIBUTION

The Debian distribution was started in 1993, it is composed
of FOSS software that is packaged by individual developers

and teams participating in the Debian project. The metadata
used to describe Debian packages is formally defined in [13],
and is quite rich: it allows to define dependencies and conflicts,
and to specify version constraints on them. Only one version
of a given package can be installed in a system at a given
moment in time. Recently, the Debian package toolchain has
also become multiarch aware allowing, for instance, to install
i386 packages on an amd64 machine. This recent extension
calls for a complex encoding of Debian package metadata into
CUDF using the architecture annotations associated to each
package.

At each point in time the Debian project offers three
branches named “stable”, “testing” and “unstable”, which
are used to implement a rigorous development and quality
assurance (QA) process: new packages are usually uploaded
to “unstable” first, from which they can migrate to “testing”
under several quality conditions. At some point during the
release process this migration process is stopped, and “testing”
enters a “freeze” phase during which only bug fixes can be
applied, until all the quality metrics are met [12] and the
“stable” snapshot is taken.

One important issue in Debian quality assurance is the
identification and resolution of not installable packages. Since
December 2006, distcheck is integrated in the Debian quality
assurance system, that automatically runs it daily to monitor
the state of several Debian distributions (unstable, testing,
stable). The results of these daily runs have allowed us to
detect and report2 numerous bugs, most of which have been
fixed.

Figure 3 shows the history of not installable packages during
the evolution of the Debian distribution, for the “unstable”
and “testing” repositories, over the past 9 years. (The “stable”
branch is just a snapshot of “testing” taken at the end of the
freeze period, and is not shown here: as it gets only security
updates, it is not an interesting target for the present study.)
We focused on the i386 architecture, because its history goes
back to 2006; the amd64 architecture has a shorter history.
The topmost graph shows the evolution of the overall number
of packages in Debian. The second and third graphs show the

2https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=edos-uninstallable;
users=treinen@debian.org



Fig. 3: Time line of not installable packages in Debian

TABLE I: Excerpt of the analysis of the Debian unstable
distribution, January 2015

Date amd64 arm64 armel armhf hurd-i386 i386
18 Jan 54/40 28/1008 69/193 52/143 616/2216 60/66
17 Jan 52/39 26/1007 67/192 50/142 616/2216 58/65
16 Jan 52/39 26/1007 67/192 50/142 616/2216 58/65
15 Jan 52/38 26/1006 67/191 50/141 616/2215 58/65
14 Jan 52/38 26/1006 67/191 50/141 616/2215 58/65
13 Jan 51/38 25/1006 66/191 49/141 616/2215 57/65
12 Jan 51/38 25/1006 66/191 49/141 616/2215 57/65

number of not installable packages over time. The vertical red
regions denote the duration of freezes before a new release. We
can observe how the number of not installable packages jumps
to relatively high level at the beginning of each release cycle,
immediately after the end of a freeze (and hence a release).
Then it steadily decreases throughout the release cycle, until
reaching almost zero the day of the release.

A live snapshot of our daily analysis for not installable
packages is available at the official Debian QA website.3

Debian builds components repositories for different operating
system kernels4 and CPU architectures, for a total of 13
different OS/CPU pairs (called architectures in the following).
We run our analysis for all of them, and also aggregate
results into cases that are not installable in some of them,
or packages that are not installable in any repository where
they are available (these are sure bugs).

Some packages are architecture-independent, like documen-
tation packages. These architecture-independent packages are
always available in the repositories of all architectures, but
may be not installable on architectures where they are not
useful5. We therefore distinguish these cases. Table I shows
an extract from the Debian QA pages. The table shows pairs

3http://qa.debian.org/dose
4Linux, kFreeBSD, Hurd
5e.g., the package console-setup-freebsd on Linux architectures

n/m where n is the number of not installable packages that
are specifically built for that architecture, and m is the number
of not installable packages which are architecture-independent.

For each of the architectures and aggregations we show
the difference between two consecutive runs of our analysis.
Packages that are newly found to be not installable are
classified into new packages in the archive, and old packages
that just have become not installable. Likewise, packages that
are no longer found not installable are distinguished between
packages that became installable, and packages that have been
completely removed from the repository.

It is important to distinguish transient from long-lived instal-
lability issues. For instance, given that the unstable distribution
is just a staging ground for testing, temporary failures are
normal there. Installability issues in testing may also occur,
but should be transient.

TABLE II: Not installable packages by duration in Debian un-
stable, February 2015. The arm64 architecture was introduced
in August 2014, and hence has no entries yet for 256 days.

Days amd64 arm64 armel armf some each
16 1/1 1/3 1/1 1/1 1/4 4/0
32 4/4 3/6 4/4 4/4 12/9 1/4
64 1/4 10/58 0/95 0/37 50/118 3/4

128 10/3 11/922 25/13 8/5 504/337 9/5
256 35/24 0/0 36/75 36/91 149/1862 34/15

For this reason we also track the duration for which a pack-
age is not installable, and classify the result on a logarithmic
time scale (see Table II). Packages which fail to install for
an extended period of time on any architecture are sure bugs.
We file systematically bug reports against packages that are
not installable for at least 64 days on all architectures where
they are available. The Debian Bug Tracker allows us to easily
follow all these bug reports by using a special usertag.

Table III shows a detailed explication of why a pack-
age is not installable. In this case, the failure is due to
a missing dependency at the end of a dependency chain:
chef-server-webui in version 10.12.0+dfsg-1 depends
on chef in at least version 10.12, which is satisfied by the
package of that name and version 11.12.8-1. This package in
turn depends on ohai at least version 6, which is satisfied by
version 6.14.0-2 of that package. Finally, this package has an
unsatisfied dependency on ruby-sigar.

Note that explications may become quite complicated, for
instance in case a package depends on the disjunction of two
packages, each of which has an unsatisfied dependency.

TABLE III: Detailed explanation of why package
chef-server-webui is not installable on kfreebsd
architectures in unstable, 2015/02/11.

chef-server-webui (10.12.0+dfsg-1)
↓chef (>= 10.12)

chef (11.12.8-1)
↓ohai (>= 6)

ohai (6.14.0-2)
↓ruby-sigar

MISSING



TABLE IV: Detailed explanation of why package
chef-server-webui is not installable on linux
architectures in unstable, 2015/02/11.

chef-server-webui (10.12.0+dfsg-1)
↓ chef-server-api (>= 10.12)

↓ chef (>= 10.12) chef-server-api (10.12.0-1)
↓ chef-solr (>= 10.12.0)

chef (11.12.8-1) chef-solr (10.12.0+dfsg-2)
CONFLICT

For the same package we obtain a different explanation
on most of the linux architectures, as shown in Table IV.
Here, chef-server-webui indirectly depends, via the
shown dependency chains, both on chef and chef-solr.
However, these two packages are in conflict.

V. THE OPAM REPOSITORY

OPAM is a recent package manager for OCaml libraries and
tools which is widely used since 2012. OCaml is stricter than
other languages on the compatibility of interfaces between
binary packages, so OPAM was designed to manage source
packages that have to be compiled before installation.

Fig. 4: We plot the evolution of the number of packages over
time since OPAM creation, and the evolution of non-installable
packages. Despite manual review of updates and automatic
testing, non-installable packages keep increasing, showing the
need for better Q&A tooling on the repository.

OPAM allows for multiple versions of the OCaml compiler
to be installed as different installation trees, called switches.
In a given switch, only one version of each package may
be installed at a given time, but the number of switches is
not limited. Internally, OPAM is implemented over the Dose
library, and thus uses CUDF to communicate with external
solvers. It actually includes Distcheck internally, to provide
better error messages on installation conflicts.

The OPAM repository itself is hosted on Github (http:
//opam.ocaml.org/). On Feb 2015, it contains 836 different
packages, and more than 3000 package versions. Updates are

received through Github’s pull-request mechanism. They are
reviewed by a few repository maintainers, after an automatic
testing system has shown that updated packages can be in-
stalled for every OCaml version they are available for.

Fig. 5: An excerpt of http://ows.irill.org/ show-
ing a sample of the summary table. Boxes are white when
explicitely disabled, red when otherwise non-installable, and
green when installable. Each column is for a different version
of OCaml (switch).

Figure 4 plots the evolution of the number of OPAM
packages over time. It shows how the tool became popular,
growing from 200 packages to 800 packages in two years, but
also that, despite the manual reviewing process and automatic
testing of pull-requests, the overall quality of the repository
(measured as the amount of uninstallable packages on any
given switch) keeps decreasing, especially for older versions
of OCaml, with over 20% of the packages not available for
OCaml 3.12.1.

The OPAM Weather Service (OWS, http://ows.irill.org/),
born on May 2014, provides a continuously updated HTML
report on the repository status for major compiler versions,
generated from the output of distcheck. The report tells, for
each package, which of its versions can be installed for which
of the compiler versions.

Figure 5 shows an excerpt of the report summary, available
on the OWS main page. It shows two packages, both with
multiple versions, and whether each of them is installable
for 4 different versions of the OCaml compiler. This allows
maintainers to check at a glance the health of a given package
or version, each red box providing a link to a page explaining
the reason why the package was found not to be installable.

Figure 6 shows such an explanation, for version 0.3.0 of
package mirage-www on OCaml 4.01.0. The output shows
a conjunction of dependency branches, leading to unsatisfiable
constraints: unsatisfiable constraints usually sum up to either a
missing version constraint (the package is not available at the
required version), or conflicting version constraints (the set of
versions for a dependency becomes empty). In this example,
the two root causes are of the second kind, conflicting version
constraints for both cstruct and mirage. Such information



Fig. 6: An excerpt of http://ows.irill.org/ showing
the explanation given by the algorithm when a package version
is not installable. Here, dependencies require that cstruct
be older than 0.6.0 and more recent than 0.7.1 at the same
time, and that mirage be older than 0.9.0 and more recent
than 0.9.2 at the same time, giving two root causes for the
problem.

is quite useful to the maintainer: a missing version constraint
may show that a package version was prematurely removed,
leading to the re-addition of the package to solve the de-
pendency; a conflicting version constraint has generally to be
solved within the package itself, by increasing its compatibility
with other packages, allowing to relax its version constraints.

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
3

2
4

2
5

2
6

2
7

3
1

3
4

3
5

4
0

4
1

4
6

4
9

5
0

6
1

Installability of Versions depending on the Number of Versions per Package

0 switch
1 switch

2 switches
3 switches
4 switches

All switches

Fig. 7: We plot the number of versions per package (x), and the
installability of each version (y), on the 5 different switches
currently available. We can see that, in OPAM, many different
versions of a package may be available at the same time (until
61), and that a big number of versions usually implies a worse
compatibility between switches.

Finally, it is interesting to study the impact of version man-
agement on the quality of the repository. Indeed, OPAM faces
two more challenges, compared to other package managers: (1)
each package can be available in multiple versions, and (2) the
OCaml compiler itself is available in multiple – incompatible
– versions, that may be installed at the same time in the user
directory, in different switches.

 0

 200

 400

 600

 800

 1000

 1200

3.12.1

4.00.1

4.01.0

4.02.0

4.02.1

Number of Packages Available by Version of OCaml

All versions are installable
Some versions are installable

All available versions not installable
No available version

Fig. 8: We plot the installability of packages by OCaml version
(switch). We see that, although 838 packages are available in
the repository, more than 50 are not installable for each switch.

Figure 7 plots the distribution of packages depending on the
number of versions in which they are available. High numbers
of packages versions are correlated with a lack of compatibility
of each of them across compiler versions: it appears that fast
moving developers tend to adopt new features of the language
rapidly, not caring about compatibility. Pointing this out is
a good way to push them towards maintaining backwards
compatibility, and increasing the quality of the repository. This
can be done either by proposing alternative implementations
chosen at compile-time by a preprocessor, or by delaying
the adoption of new language features until they have been
available for a long enough time.

Figure 8 plots the installability of packages per OCaml
version, while Figure 9 plots the evolution of installability for
the specific 4.00.1 version of the compiler, which was born
and replaced during OPAM lifetime. Both figures show that
the community focuses its effort on the most recent versions of
the OCaml compiler, increasing the compatibility of packages
when the new version is released, and letting it go when a
new version superseedes it.

Our findings show that the constant increase in the number
of packages, package versions and compiler versions cause an
amount of complexity that cannot be handled through manual
review and installation testing.

The deployment of the Opam Weather Service has already
fostered healthy discussions among the OPAM community,
and raised awareness of the need to use distcheck directly
within the reviewing process of updates. In particular, tight
integration with distcheck would allow maintainers to check
the consequences of removing a package version, something
that cannot be tested at all by the current testing process. It



would also allow to focus backwards compatibility efforts on
widely-used packages, which limit the available switches of
all their dependents.

VI. THE DRUPAL CONTRIBUTION REPOSITORY

Drupal is a FOSS content-management framework written
in PHP and distributed under the GPL license. It is used as
a back-end framework for ≈2% of all web sites worldwide
ranging from personal blogs to corporate, political, and gov-
ernment sites. The standard release of Drupal contains basic
features common to content management systems. As of Octo-
ber 2014, there are more than 16’000 community-contributed
modules (not considering themes), available to extend Drupal
core capabilities, adding new features or customizing Drupal
behaviour and appearance. Core and contributed modules are
described using a standardized php-init file 6.

To apply our analysis to Drupal we first mirrored all
modules from the Drupal Git repository; then, using a custom
script, we have converted all modules metadata to CUDF. We
created one universe for each Drupal release series, namely:
5.x, 6.x, 7.x. We did not consider the new upcoming Drupal
release 8.x, which is in alpha stage at the time of this writing.

The metadata we used in this paper is partially extracted
from the Drupal modules source (manually added by Drupal
developers) and partially extracted from the Git repository.

Drupal module dependencies naturally map to conjunctions
in CUDF. Since dependencies can have version constraints and
no two versions of the same module can be installed at the
same time, we made explicit this additional constraint via a
self conflict: that is, a package is always in conflict between
different module versions. Drupal metadata does not contain
explicit conflicts.

6https://www.drupal.org/node/542202

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

2012-07

2012-10

2013-01

2013-04

2013-07

2013-10

2014-01

2014-04

2014-07

2014-10

2015-01

Installability of Packages over Time for the OCaml 4.00.1 Switch

Specified as Available%
At least One Version Installable%

All versions Installable%

Fig. 9: We plot the evolution of installability over time for a
specific version of OCaml, 4.00.1. Since the release of 4.00.1
in Sept 2012, installability increases until Sept. 2013, where a
new version of OCaml is released. After that, a lot of packages
are specified not to be compatible (above the black curve),
which causes a lot more not to be (gap between the orange
and black curves).

TABLE V: Drupal modules analysis

Release Total Broken Unique Missing
5.x 17180 146 18
6.x 55814 412 80
7.x 93455 2064 190

The resulting CUDF universes for versions 5.x, 6.x and
7.x, contain respectively 16’000, 52’000, and 60’000 pack-
ages, accounting for all versions available for each Drupal
release. We also considered 480 Drupal “distributions”, that
are specifically tailored collection of modules and themes.

The results of our analysis are pretty encouraging. Table V
shows that despite the steady increase of modules in time, the
number of broken packages is limited. Our investigation also
shows that all installation problems are a result of missing
dependencies, and the number of unique missing packages is
a small fraction of the total number of modules. For example
161 modules are not installable because they require a module
field_collection_uuid that at the time of writing has
not been released and only available as a proposed patch 7.

VII. DISCUSSION

We have applied distcheck, which is based on a well
established sound and complete algorithm for detecting not
installable packages [16] to 3 relevant software component
repositories of different level of maturity.

On the Debian distribution, for which distcheck has been
originally developed, our experience spans almost a decade
since the installation of daily distcheck runs at the Debian QA
meeting in December 2006. A detailed analysis of the last
period of development of Debian has shown that distcheck
was instrumental in improving the quality of the Debian
distribution. In our opinion, a global quality assessment like
the one done by distcheck can have a positive effect on the
quality of a component repository when there are processes
and tools that facilitate the resolution of the issues detected
by analysis. In the case of Debian, an important tool is
the Bug Tracking System8 which keeps trace of open issues
about individual packages. The rules governing packaging
maintenance and bug resolution are documented in [4].

It is important to strike a balance between eagerness in
error reporting, and avoiding to annoy package maintainers.
This can best be achieved when one has internal knowledge
of the culture of component maintenance that is behind the
repository. Automated bug reports, for instance, are a priori
perceived negatively in Debian, and are only accepted in
restricted cases after prior discussion. When we started to
systematically send bug reports on installability issues we
therefore proposed precise criteria on when an issue merits
a bug report, and announced our plans in advance on the
developer mailing list [20].

7https://www.drupal.org/node/2075325
8https://bugs.debian.org



We also always attempt to be as useful to package main-
tainers as possible when filing a bug. This includes checking
whether a bug has already been filed, whether a different
package is to blame for a non-installability issue, or whether
an issue can simply be solved by recompilation of a source
package. In the latter case, a recompilation request is sent to
the team managing the autobuilder network, instead of a bug
report against the package itself.

In the larger Debian ecosystem, distcheck has also been
used by other distributions to prevent (as opposed to detect)
installation issues to occur. In particular Emdebian,9 a Debian-
based distributions for embedded devices, has developed the
emdebcheck wrapper around distcheck and has been using
it since 2008. The key idea is that, before each package upload
to the repository can happen, emdebcheck will simulate
the new status of the remote repository as if the upload had
already happened, run distcheck on it, and aborts the upload if
installability issues are found. Theoretically, approaches like
this one might guarantee that a given repository will never
suffer of installability issues. In practice though, there are
cases in which the distribution maintainers want to temporarily
allow installability issues, for instance when bootstrapping new
repositories; or when several upload of unrelated packages,
possibly by unrelated developers, are needed to transition the
repository from one steady state to another. Also, tightly con-
trolled approaches like the Emdebian one are not necessarily
portable to more complex infrastructure, where potentially
long delays between developer upload time and the time
the uploaded package is integrated into the repository might
induce race conditions that invalidate the guarantee of absence
of installability issues.

The OPAM package repository is a quite different envi-
ronment: unlike Debian, it provides only source packages to
its users, it keeps all old versions of a package in the same
repository, and it is specialized for a single programming
language, with switches intended to identify compiler versions
instead of distribution releases. It is also a very young and
dynamic repository sporting a fast growth rate. And yet, it
turned out that applying distcheck to OPAM was relatively
easy, with the major difficulty being the development of a
new explanation engine, to account for the fact that multiple
versions of a package are usually present in a repository.

Despite the fact that OPAM has a modern quality assur-
ance process based on continuous integration tests, organized
around GitHub pull requests, the historical analysis of the
repository shows a very significant amount of non-installability
problems, that keep growing. The OPAM weather service
was developped to help keep these under control, and the
maintainers have acknowledged that in needs to be included
in its quality assurance process.

Indeed, the OPAM weather service provides clear evidence
that running intallation tests on the modified packages before
accepting a pull request to the OPAM repository is not enough:
work is in progress to include distcheck as a leading part in

9http://www.emdebian.org/

these tests, likely by comparing its results before and after
the change, which gives a clear picture of its consequences
to the quality of the repository (as opposed to the quality of
a single package). Typically, if removing an older version of
a package makes a whole part of the repository uninstallable,
the maintainers should know.

Finally, our investigation of the Drupal module collections
showed that distcheck can be applied even to component
repositories with rather informal metadata, and despite the
freshness of the results, that could not yet be confronted
with feedback from the Drupal community, we could find a
significant number of issues.

We believe that these findings provide very strong evidence
of the relevance, applicability, and generality of repository
quality checks based on the automated analysis of component
interdependencies.

Hence, we do suggest that it would be highly beneficial to
adopt tools like distcheck in all other component repositories
where a clear, formalised quality assurance and release process
are in place to include the results of the analysis, and provide
proper response to the alarms raised. We hope that experience
reports such as those presented here will help reach the
necessary acceptance in the maintainer communities willing
to incorporate this approach.

VIII. THREATS TO VALIDITY

The data and results presented in this paper are based on
metadata extracted directly from component repositories which
are publicly available, and that contain metadata manually
compiled by package maintainers in Debian, Drupal, and
OPAM. The analysis is performed in all these cases by the
same distcheck tool, which is based on a sound and complete
algorithm organized around a pivot format, CUDF, which is
formally defined and comes with a precise semantics.

Hence the main threat to the validity of our analyses come
from the risk of errors introduced in the translation from the
original metadata to CUDF.

This risk is limited for Debian: successive releases of
distcheck have been in production use for almost 10 years
now, and hence systematically exposed to the scrutiny of
both Debian developers and. Also, important changes in the
package metadata have been introduced only very recently
(with the multiarch extension).

Since the OPAM package manager uses the CUDF format
internally, we consider the risk of mistakes extremely limited,
as the conversion is done by the OPAM developers themselves
for their daily usage, and the community has hence performed
an extensive validation of this conversion.

For the Drupal modules, despite these encouraging results,
the validity of our study is limited by the quality of the
metadata. The converter was developed by the authors,
and the results have not been validated yet by the user



community, so there is a risk that errors or misunderstanding
in the conversion lead to wrong results. We had also to fix
by hand a number of ill specified dependencies (mostly in
the 5.x series) and human errors. The absence of explicit
conflicts is also a limiting factor, as it is impossible for us
to detect real conflict among modules (for example, modules
that define the same menu entry in a website). We have also
detected a few false positives due to the fact that we did not
considered development releases.

Finally, we have a challenge related to generalizability:
despite the fact that we have shown clear evident of the
efficiency, extensibility and flexibility of our tool, distcheck
may need improvements in the future to cope with the ever
increasing size of component repositories, which is already
in the range of several tens of thousand components. The
explanation engine may also need to be adapted to continue
providing clear and succinct explanations when multiple ver-
sions of the same component are present in the same repository
(like in the case of OPAM).

IX. RELATED WORK

A. Other applications of installability checks

As part of Debian QA efforts, distcheck is also being used
for detecting cases of packages that fail at deployment time
attempting to hijack files already present on the user machine,
but owned by a different package [21]. This QA effort is
performed in several steps. First we construct the set of pairs
of packages in a repository that both claim ownership of a
given file. Next, we use distcheck to restrict these to the pairs
of packages that can be installed simultaneously, according
to the model of Section II. This can be done in a single run
of distcheck by constructing, for each pair of packages (a, b)
obtained in the first step, a dummy package that depends on
both a and b, and then checking for installability of all of these
relative to the original repository. For all the pairs of packages
that pass this second phase we have to test simultaneous
installation in a test bed, since Debian provides several ways
to patch the potential file conflict during deployment10.

In February 2015, for the unstable distribution on the
amd64 architecture there are 859 pairs of packages that share
a file (among the 109 possible pairs of packages), but only 72
can be installed simultaneously according to distcheck. Hence,
using distcheck reduces the number of cases that need testing
to less than 10% of the original search space.

The detected bugs are tracked in the Debian bug tracking
system11. We started this QA effort in April 2008 first by using
an ad hoc solution for the final installation test. Today this is
integrated in the piuparts test process [18]. By February 2015,
a total of 743 bug reports of this kind were filed, 732 of which
have been already resolved.

10either in the metadata using a Replaces relation, or in installation
scripts using the diversion mechanism

11https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=edos-file-overwrite;
users=treinen@debian.org

The distcheck tool is also being used to schedule package
rebuilds within Debian in a way that is aware of unsatisfiable
build-time dependencies (as opposed to deploy-time dependen-
cies, which are the main concern of this paper). In particular,
no build will be scheduled by the wanna-build scheduler,12

unless distcheck can show that the build-time dependencies
of a given source package are currently satisfiable in the
origin repository. This way spurious build errors, e.g., due to
temporarily unsatisfiable build-dependencies, are avoided, and
the amount of human intervention needed to reschedule them
at the right time is significantly reduced.

In [1], the temporal evolution of component repositories is
formalized, and the notion of outdated package introduced.
A package is outdated if not only it is not installable, but if
it also requires changes in its own metadata before becoming
installable again, i.e., no changes in other packages will suffice
to make it installable. Outdated packages are a refinement
of not installable packages discussed in this paper, and also
important quality markers, because they also pinpoint where
in the repository changes shall be made to correct installability
issues.

B. Other approaches to non-installability checks

At the scale of component repository, an approach based
on software product lines [10] has been proposed to, among
other applications, detect not installable packages, i.e.,
empty software product lines. The approach is sound but
Debian-specific, whereas distcheck works out of the box with
metadata coming from different component models, have we
have practically shown in this paper. Also, distcheck is much
faster than typical SPL tools, which are usually applied to
individual product lines that rarely have component numbers
in the tens of thousand.

At the scale of individual component installation, on top of
pre-existing user machine configurations, several works have
studied the problem of why component upgrade fails and
possible solutions to that problem. A good starting is [8],
which reviews previous work in the area and propose a
model to describe upgrade failures. As part of its analysis,
the paper also shows how most failed upgrade causes are
related to broken package dependencies. Although all non
trivial component models require that users might be faced
with component incompatibilities, the adoption of tools like
distcheck guarantees that users will never be faced with
unsolvable scenarios due to not installable packages.

C. Dependency graph analysis

Several works have analyzed the dependency graph of large
component repositories, including some of those we have
studied in this paper. For instance [14], [15] have studied
the Debian dependency graph to check whether interesting
graph theoretical properties are verified or not. Those work
are interesting in their own right, but do not help in verifying

12https://buildd.debian.org/



component installability, because they fail to take into account
the underlying semantics of dependency graphs, which is
rooted in their interpretation as propositional logic formulae.

Also, those studies do not take into account the temporal
evolution of dependencies, like we have done in our Debian
and OPAM case studies. Other studies have done so on other
ecosystems though, like [5] in which the authors have studied
the evolution of software dependencies (from the point of
view of developer) in the Apache ecosystem over 14 years.
As to the effects of introducing/upgrading dependencies, the
paper focused on the amount of source-code-level changes
induces by the change, rather than on the effect of package
installability as seen at the inter-component relationship level.

X. CONCLUSION

In this paper we have presented our experience with the
distcheck tool, which is specifically designed to identify all
the non installable packages in a software repository. We have
used distcheck in practice on three case studies involving
large scale repositories coming from different communities
and applicationd domains: Debian, OPAM, and Drupal.

Our findings show that distcheck produces efficiently
precise and useful analysis of all noninstallable components
found in all these repositories, providing precious information
that can be used by component and repository maintainers
to pinpointing and fix installability issues, a task which
is otherwise highly nontrivial, due to the entanglement of
dependencies and conflicts.

The result of these experiences, and the modular structure
of the tool, that requires little effort to be extended for new
kinds of component metadata, provide strong arguments for
the adoption and integration of tools like distcheck into the
quality assurance process of all component repositories.

REFERENCES

[1] P. Abate, R. D. Cosmo, R. Treinen, and S. Zacchiroli. Learning from the
future of component repositories. Sci. Comput. Program., 90:93–115,
2014.

[2] P. Abate, R. di Cosmo, R. Treinen, and S. Zacchiroli. MPM: A modular
package manager. In CBSE 2011. ACM, 21/06/2011 2011.

[3] P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli. Dependency solv-
ing: a separate concern in component evolution management. Journal
of Systems and Software, 85(10):2228–2240, October 2012.

[4] A. Barth, A. D. Carlo, R. Hertzog, L. Nussbaum, C. Schwarz, and
I. Jackson. Debian developer’s reference, version 3.4.14, 2014.

[5] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella. How
the apache community upgrades dependencies: an evolutionary study.
Empirical Software Engineering, pages 1–43, 2014.

[6] M. Caneill and S. Zacchiroli. Debsources: Live and historical views on
macro-level software evolution. In ESEM 2014: 8th International Sym-
posium on Empirical Software Engineering and Measurement. ACM,
2014.

[7] E. Dolstra, A. Löh, and N. Pierron. Nixos: A purely functional linux
distribution. J. Funct. Program., 20(5-6):577–615, 2008.

[8] T. Dumitras and P. Narasimhan. Why do upgrades fail and what can
we do about it? In J. Bacon and B. F. Cooper, editors, Middleware
2009, ACM/IFIP/USENIX, 10th International Middleware Conference,
Urbana, IL, USA, November 30 - December 4, 2009. Proceedings,
volume 5896 of Lecture Notes in Computer Science, pages 349–372.
Springer, 2009.

[9] N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia
and A. Tacchella, editors, Theory and Applications of Satisfiability
Testing, 6th International Conference, SAT 2003. Santa Margherita
Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume 2919 of
Lecture Notes in Computer Science, pages 502–518. Springer, 2004.

[10] J. A. Galindo, D. Benavides, and S. Segura. Debian packages repos-
itories as software product line models. Towards automated analysis.
In Proceedings of the 1st International Workshop on Automated Con-
figuration and Tailoring of Applications, pages 29–34. CEUR-WS.org,
2010.

[11] J. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. Amor, and D. Ger-
man. Macro-level software evolution: a case study of a large software
compilation. Empirical Software Engineering, 14(3):262–285, 2009.

[12] R. Hertzog and R. Mas. The Debian Administrator’s Handbook.
Freexian SARL, 2013.

[13] I. Jackson and C. Schwarz. Debian policy manual. http://www.debian.
org/doc/debian-policy/, 2008.

[14] N. LaBelle and E. Wallingford. Inter-package dependency networks in
open-source software. CoRR, cs.SE/0411096, 2004.

[15] T. Maillart, D. Sornette, S. Spaeth, and G. von Krogh. Empirical tests
of Zipf’s law mechanism in open source linux distribution. Phys. Rev.
Lett., 101:218701, Nov 2008.

[16] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, X. Leroy,
and R. Treinen. Managing the complexity of large free and open source
package-based software distributions. In ASE 2006: Automated Software
Engineering, pages 199–208. IEEE, 2006.

[17] R. Nguyen and R. C. Holt. Life and death of software packages:
an evolutionary study of Debian. In Center for Advanced Studies on
Collaborative Research (CASCON), pages 192–204, 2012.

[18] L. Nussbaum. Use of grid computing for debian quality assurance.
In FOSDEM 2007, research room: Free and Open Source Software
Developers’ European Meeting, 2007.

[19] L. Nussbaum and S. Zacchiroli. The ultimate Debian database: Consol-
idating bazaar metadata for quality assurance and data mining. In MSR
2010: 7th IEEE Working Conference on Mining Software Repositories,
pages 52–61. IEEE, 2010.

[20] R. Treinen. mass bug filing: packages not installable on any architec-
ture. https://lists.debian.org/debian-devel/2010/08/msg00063.html, Aug.
2010.

[21] R. Treinen and S. Zacchiroli. Solving package dependencies: from
EDOS to Mancoosi. In DebConf 8: proceedings of the 9th conference
of the Debian project, 2008.

[22] R. Treinen and S. Zacchiroli. Common upgradeability description format
(CUDF) 2.0. Technical Report 3, The Mancoosi Project, Nov. 2009.

http://www.mancoosi.org/reports/tr3.pdf.


