
Package Upgrades in FOSS Distributions: Details and Challenges ∗

Roberto Di Cosmo Stefano Zacchiroli
Université Paris Diderot, PPS, UMR 7126, France

{ dicosmo , zack }@pps.jussieu.fr

Paulo Trezentos
UNIDE / ISCTE, 1600-082 Lisbon, Portugal

Paulo.Trezentos@iscte.pt

Abstract
The upgrade problems faced by Free and Open Source Soft-
ware distributions have characteristics not easily found else-
where. We describe the structure of packages and their role
in the upgrade process. We show that state of the art package
managers have shortcomings inhibiting their ability to cope
with frequent upgrade failures. We survey current counter-
measures to such failures, argue that they are not satisfactory,
and sketch alternative solutions.

Categories and Subject Descriptors D.2.9 [SOFTWARE
ENGINEERING]: Management—Life cycle; K.6.3 [MAN-
AGEMENT OF COMPUTING AND INFORMATION SYS-
TEMS]: Software Management—Software selection

General Terms Management, Reliability, Verification

Keywords FOSS, upgrade, packages, distribution, rollback

1. Introduction
Free and Open Source Software (FOSS) has attracted the at-
tention of software engineers in the past decade [16, 14] due
to its peculiarities. Among them, release management [11] is
the most relevant for software upgrades: software bundles—
like an operating system with a basic stack of applications—
in the FOSS bazaar are made of components developed
and released independently without a priori coordination or
central authority able to control the involved parties [10].
The volunteer nature, the licensing terms, and the need to
reuse, have produced a huge amount of components, which
is unparalleled in the proprietary software world. Interac-
tions among such components are non trivial, and this is
the main reason why early approaches to software upgrades,
where users had to manually download, compile, install, etc.,

∗ Partially supported by the European Community’s 7th Framework Pro-
gramme (FP7/2007-2013), grant agreement n◦214898.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
HotSWUp’08, October 20, 2008, Nashville, Tennessee, USA.
Copyright c© 2008 ACM ISBN 978-1-60558-304-4/08/10. . . $5.00

were doomed to fail. FOSS distributions were therefore in-
troduced around 15 years ago to reduce the complexity of
installations and upgrades for final users. Distribution main-
tainers act as intermediaries between “upstream” software
authors and users, by encapsulating software components
within abstractions called packages.

Distributions have been really successful: nowadays ev-
ery GNU/Linux user is running one of the hundreds of avail-
able distributions. Still, distributions have inherited some
properties from the FOSS bazaar: complex inter-package
dependencies and frequently available package upgrades.
Sysadmins unsurprisingly perform package upgrades at least
once a month [1]: new software requirements of users re-
quire new programs to be installed and old programs to be
removed; routine upgrades are required regularly to address
security issues, bug fixes, or to add new features; release-
wide upgrades are less frequent (typically once or twice a
year), but can have higher impact as a significant fraction
of the installed packages are involved. Since a large part
of FOSS software is installed from packages, the damages
caused by failed upgrades are potentially higher than in pro-
prietary systems.

This paper is structured around three claims. The first
one is that FOSS package upgrades have underestimated
peculiarities. The claim is supported by Section 2 which
reviews all the actors involved in FOSS package upgrades—
packages as the involved entities, the upgrade process and
its decomposition in clear-cut phases, the possible failures
which can occur during upgrades—and highlights their pe-
culiarities. This paper provides a detailed description of
FOSS package upgrade which, to the best of our knowledge,
was missing from the literature.

The second claim is that current rollback and snapshot
techniques are not enough to cope with unpredictable pack-
age upgrade failures. Rollback and snapshot techniques are
the only countermeasures currently being proposed against
upgrade failures. Exploiting filesystem-level details, snap-
shots can be taken before performing an upgrade, and the
possibility to rollback to them can then be offered to users in
case of failures. Section 3 gives an overview of mainstream
snapshot and rollback solutions and argues that no such solu-
tion is satisfactory (in part because of excessive disk-space
requirements induced by long-term upgrade rollbacks, and

mailto:roberto@dicosmo.org
mailto:zack@pps.jussieu.fr
mailto:Paulo.Trezentos@iscte.pt

in part because it is not always possible to define the rollback
scope, i.e., what should be rolled-back and what should not).

The third claim is that some of these problems can be
tackled by: (1) adopting lightweight rollback techniques to
address short-term rollback needs, and integrating version
control system within package managers to better handle
system-wide configuration files; (2) designing a domain spe-
cific language, equipped with an undo semantics, for the im-
plementation of scripts which are executed during the up-
grade process and which have side-effects outside the con-
trol of package managers. Details are given in Section 4
which also highlights a novel problem in the specification of
upgrade requests, namely the need of expressing preferences
to discriminate among package statuses which are equivalent
from the point of view of dependency soundness, but which
can be sensibly different from that of user-specified criteria.

2. Packages, upgrades, failures
Packages are abstractions defining the granularity at which
users can act (add, remove, upgrade, etc.) on available soft-
ware. A distribution is a collection of packages maintained
(hopefully) coherently. The subset of a distribution corre-
sponding to the actual packages installed on a machine is
called package status and is meant to be altered with the
package managers offered by a given distribution. They can
be classified in two categories: installers which deploy in-
dividual packages on the filesystem, possibly aborting the
operation if problems (e.g., unsatisfied dependencies) are
encountered, and meta-installers which act at the inter-
package level, solving dependencies and conflicts, and re-
trieving packages from remote repositories as needed; dpkg
and rpm are representative examples of installers, apt and
urpmi of meta-installers. We use the term upgrade problem
to refer generically to any request to change the package
status; such problems are usually solved by meta-installers.

Packages Abstracting over format-specific details, a pack-
age is a bundle of 3 main parts:

Package



1. Set of files
1.1. Configuration files

2. Set of valued meta-information
2.1. Inter-package relationships

3. Executable configuration scripts

The set of files (1) is common in all software packaging
solutions, it is the filesystem encoding of what the package
is delivering: executable binaries, data, documentation, etc.

Configuration files (1.1) is a distinguished subset of
shipped files, identifying those affecting the runtime behav-
ior of the package and meant to be locally customized with
or without package manager mediation. Configuration files
need to be present in the bundle (e.g., to provide sane de-
faults or documentation), but need special treatment: during

apt-get install aterm 1. user request

Reading package lists... Done 2. dep.resolution

Building dependency tree... Done

The following extra packages will be installed:

libafterimage0

0 upgraded, 2 newly installed, 0 to remove and

1786 not upgraded.

Need to get 386kB of archives.

807kB of additional disk space will be used.
Get: 1 http://ftp.debian.org libafterimage0 2.2.8-2

Get: 2 http://ftp.debian.org aterm 1.0.1-4

Fetched 386kB in 0s (410kB/s) 3. package retrieval

5a. (pre-)configuration

Selecting package libafterimage0. 4. unpacking

(Reading database ... 294774 files and dirs installed.)

Unpacking libafterimage0 (libafterimage0_2.2.8-2_i386.deb)

Selecting package aterm.

Unpacking aterm (aterm_1.0.1-4_i386.deb) ...
Setting up libafterimage0 (2.2.8-2) ...

Setting up aterm (1.0.1-4) ...5b. (post-)configuration

Table 1. The package upgrade process

installation of new versions of a package, they cannot be
simply overwritten, as they may contain local changes.

Package meta-information (2) contains information which
varies from distribution to distribution. A common core
provides: a unique identifier, software version, maintainer
and package description, but most notably, distributions
use meta-information to declare inter-package relationships
(2.1). The relationship kinds vary with the installer, but there
exists a de facto common subset including: dependencies
(the need of other packages to work properly), conflicts (the
inability of being co-installed with other packages), feature
provisions (the ability to declare named features as provided
by a given package, so that other packages can depend on
them), and restricted boolean combinations of them [3].

Packages come with a set of executable configuration
(or maintainer) scripts (3). Their purpose is to let package
maintainers attach actions to hooks executed by the installer;
actions usually come as POSIX shell scripts.

Three aspects of maintainer scripts are noteworthy: (a)
they are ordinary programs that can do anything permitted
to the installer (usually run with administrator rights); (b)
the functionality of maintainer scripts can not be obtained
by just shipping extra files: the scripts may customize part
of the package using data which is available only in the tar-
get installation machine, and not necessarily in the package
itself; sometimes the same result obtained using scripts can
be precomputed (increasing package size), sometimes it can
not; (c) maintainer scripts are required to work “properly”:
upgrade runs in which they fail trigger upgrade failures.

Upgrades Table 1 summarizes the different phases of what
we call the upgrade process, using as an example the popular
apt meta-installer (others follow a similar process).

Phase (1) is a user specification of how she wants the lo-
cal package status to be altered. The expressiveness of the
language available to formulate this user request varies with
the meta-installer: it can be as simple as requesting the in-

stallation/removal of a single package, or as complex as apt
pinning that allows to express preferences to discriminate
among multiple versions of the same package.

An upgrade problem is a triple 〈U, So, R〉, where U is a
distribution (i.e., a set of packages), So ⊆ U is a package
status, and R a user request; its solutions are all possible
package status S ⊆ U , satisfying:1

a. The user request R is satisfied by S;
b. If S contains a package p, it contains all its dependencies;
c. S contains no two conflicting packages;
d. S has been obtained executing all required hooks and

none of the involved maintainer scripts has failed.

Phase (2) performs dependency resolution: it checks
whether a package status satisfying (b) and (c) exists;2 if
this is the case one is chosen in this phase.

Deploying the new status consists of package retrieval
(3) and unpacking (4). Unpacking is the first phase actu-
ally changing both the package status (to keep track of in-
stalled packages) and the filesystem (to add or remove the
involved files). During unpacking, configuration files are
treated checking whether local configuration files have been
manually modified or not; if they have, merging is required.
The naive solution of asking the user to manually do so is
still the most popular.

Intertwined with package retrieval and unpacking, there
are several configuration phases (5) where maintainer scripts
get executed.3

Failures Each phase of the upgrade process can fail. De-
pendency resolution can fail either because the user request
is unsatisfiable (e.g., user error or inconsistent distribu-
tions [6]) or because the meta-installer is unable to find a
solution. Completeness—the guarantee that a solution will
be found whenever one exists—is a desirable meta-installer
property [17], unfortunately missing in most meta-installers,
with too few claimed exceptions [12, 19].

SAT solving has been proven to be a suitable and com-
plete technique to solve dependencies [6], what is still miss-
ing is wide adoption. In that respect recent off-springs4 are
really promising. Handling complex user preferences is a
novel problem for software upgrade. It boils down to letting
users specify which solution to choose among all acceptable
solutions. Example of preferences are policies [12, 18], like

1 While (a) is installer-specific, (b) and (c) have been generalized and for-
malized in [6]; studies of (d) are still lacking. These are just the functional
properties of an upgrade outcome, but there are also non-functional proper-
ties that can be used to choose optimal solutions (e.g., minimality of change,
or downtime length); this issue is outside the scope of this paper. Note that
while checks for (b) and (c) can be performed statically, checks for (d) can
only be performed at run-time while executing scripts.
2 The problem is at least NP-complete [3].
3 The details depend on the available hooks; dpkg offers: pre/post-
unpacking, pre/post-removal, and upgrade to some version [4].
4 Apache Maven and the Eclipse P2 platform are resorting to SAT solving
to manage their components and plugins, following the seminal work done
by the EDOS Project (http://www.edos-project.org).

minimizing the download size or prioritizing popular pack-
ages, and also more specific requirements such as blacklist-
ing packages maintained by an untrusted maintainer.

Package deployment can fail as well. Trivial failures,
e.g., network or disk shortages, can be easily dealt with
when considered in isolation: the whole upgrade process
can be aborted and unpack can be undone, since all the
involved files are known; no upgrade is performed so, the
system is unchanged. Maintainer script failures can not be
as easily undone, nor prevented. Scripts are implemented
in Turing-complete languages, and all non-trivial properties
about them are undecidable, including determining a priori
their effects to be able to revert them upon failure.

A subtle type of upgrade failure deserves mention: unde-
tected failures, those failures not observable by the package
manager while the newly installed software can be misbe-
having (e.g., a network service happily restarting after up-
grade, but refusing connections). Undetected failures can
take very long (weeks, months) before being discovered. Of-
ten they can be fixed by configuration tuning, but there are
cases in which the desired behavior can no longer be ob-
tained, leaving upgrade undo as the only solution (in cases
where undoing the upgrade is possible).

3. Rollback & snapshot technology overview
Current countermeasures to package upgrade failures are
based on the principle of undoing residual effects of failed
upgrades. Three strategies have been proposed: rollbacks,
filesystem snapshots, and purely functional distributions.

Rollback capabilities depend on the package manager;
the most well-known implementations are: RPM transac-
tions [13] which work at the installer level, re-creating pack-
ages as they are removed, so that they can be re-installed
to undo upgrades; Apt-RPM [18] which implements trans-
actions at the meta-installer level and additionally handles
past versions of configuration files. All package-based roll-
back approaches can track only files which are under pack-
age manager control, and only at package manager invoca-
tion time; therefore none of such approaches can undo main-
tainer script effects as they can span the whole system.

Snapshots are used to cheaply save copies of physical
filesystems as they were at a given time in the past. ZFS
snapshot (based on copy on write) was the first implemen-
tation that made filesystem snapshots popular. ZFS snapshot
is integrated with apt-clone (Nexenta OS meta-installer)
to automatically take snapshots upon upgrades. The Logical
Volume Manager (LVM) is a disk abstraction layer imple-
mented by the Linux kernel, which include support for copy
on write snapshots, without relying on any particular filesys-
tem implementation.

These snapshot techniques work at the physical filesys-
tem level, hence are unsuitable for recovering from upgrade
failures, for various reasons. The first reason is a granular-
ity mismatch with package managers that work at the logi-

http://www.edos-project.org

cal file system level: changes induced by upgrades can span
several partitions and it can not be taken for granted that
all support snapshots; since even the set of files of a single
package can span multiple partitions, rolling back only some
of them will be too prone to additional problems like “half-
installed” packages. How to split the logical filesystem to
support rollbacks is not clear either: while /home should not
be rolled back (it contains user data), /var is a hard choice,
since it contains data which are usually affected by main-
tainer scripts (and hence needs to be rolled back upon fail-
ure) as well as system logs and database data which usually
should not be rolled back. This problem can be mitigated by
a wider acceptance of the Filesystem Hierarchy Standard5 or
similar initiatives to model the purpose of specific paths.

The second reason of the unsuitability of snapshot tech-
niques is disk usage: even though copy on write requires less
space than full copying, snapshots consume as much space
as the divergence between the snapshot and the live instance.
The longer a snapshot is kept alive, the more physical space
is needed to store deltas. Snapshots are then useful only
against quickly discoverable failures (modulo the filesystem
granularity problem), because it cannot be usually afforded
to keep snapshots for the time span of undetected failures.

Functional distribution are embodied by NixOS [2] that
proposes a functional approach to package management,
where files never change after installation and are built
deterministically evaluating simple functional expressions.
Package deployment is based on garbage collection, hence
packages can never break due to disappearing dependencies.
NixOS suffers from various issues, most notably uncon-
ventional configuration handling intermixed with package
building, and the fact that some actions related to upgrade
deployment can not be made purely functional (e.g., user
database management). NixOS made no attempt to make
maintainer scripts purely functional, despite that being the
place where functional purity is needed the most.

4. Towards perfected package upgrade undo
While for detectable failures trade-offs can be made using
snapshot and appropriate partitioning, no fully generic solu-
tion exists to counter upgrade failures. Each of the discussed
technologies focuses on one or more of the axes:

Domain : What can and should be undone upon failures
(e.g., binary files, configuration files, user files)?

Time : For how long a specific upgrade can be undone?
Granularity : Does the undo of one unit imply the undo of

other units? Should the unit be file, package, filesystem?

As it is unlikely that a “one size fits all” solution exists,
we are pursuing6 several research directions to improve re-
silience to upgrade failures in FOSS distributions:

5 http://www.pathname.com/fhs/
6 In the frame of the Mancoosi project (http://www.mancoosi.org)

1. Improve meta-installers by the means of (a) lightweight
snapshot integration and (b) versioning;

2. Define a proper domain specific language (DSL) to be
proposed as maintainer script implementation language;

3. Define ad-hoc optimized algorithms for handling com-
plex user preferences to choose package statuses.

Simple technical improvements can sensibly improve sup-
port for upgrade failures in meta-installers. For example,
porting Nexenta ideas to LVM poses no conceptual prob-
lems, and will enable GNU/Linux users to enjoy similar ben-
efits, no matter the used filesystem. The need of LVM can
be further relaxed by exploiting lightweight snapshot tech-
niques as implemented by UnionFS [20].

Neither of these two solutions mitigates the problem of
long term snapshot persistence, which will still be too expen-
sive in terms of disk usage. Hence we also propose to exploit
filesystem notifications (e.g., Linux inotify) to cheaply
spot during package upgrades exactly which files are being
modified. This would enable to trim down snapshots at the
end of the upgrade, reducing space requirements.

The need of snapshots can be completely avoided by run-
ning upgrades inside controlled environments as supported
by Linux out of the box (e.g., LD PRELOAD to replace the
system call library, and ptrace, a debugging interface to
trace process execution). Using these approaches, one can
save on the fly the files being altered by the upgrade process
just before they get modified [9].

Proper handling of configuration file changes and their
undo seems the easiest goal to achieve, at least at the work-
flow level: it is enough to properly integrate version con-
trol systems (VCSs) with meta-installers. etckeeper7 is a
promising example of such an approach. With etckeeper
the whole /etc directory can be put under version con-
trol and enjoy integration with apt via hooks that commit
changes to configuration files performed by upgrades, so that
they can be recognized and reverted.

This does not address yet the complexity of merging user
changes. A noteworthy example is the need of better inte-
grating the merge capabilities of modern distributed VCSs.
By simply keeping the pristine configuration files in a sepa-
rate branch, we can isolate changes and have a clear view of
the differences when manual merge is required. A related is-
sue is the heterogeneity of languages used to write configura-
tion files, which inhibits relying on a single diff/merge tool.
To mitigate this problem we observe that for specific classes
of configuration languages (e.g., XML or other structured
syntaxes), syntax-level diff/merge tools can be employed,
instead of the legacy VCS tools, to get rid of bogus merge
failures caused by semantically irrelevant changes.

Regarding maintainer scripts, the only way we see to re-
liably address the undo of their effects is by properly for-
malizing such effects. Previous attempts to prove properties

7 http://joey.kitenet.net/code/etckeeper/

http://www.pathname.com/fhs/
http://www.mancoosi.org
http://joey.kitenet.net/code/etckeeper/

about shell scripts [21, 8] have given pale results very far
even from the minimal requirement of determining a priori
the set of files touched by their execution, letting aside how
restricted were the considered shell language subsets. Given
these premises, we are skeptical that static analysis can fully
solve this problem. Hence, we are developing a sound DSL
equipped with undo semantics, to be proposed as the imple-
mentation language for maintainer scripts. Although it will
be hard to migrate thousands of existing scripts, empirical
analysis on a distribution sample has shown that most scripts
are just a few lines of code, and are mostly automatically
generated. The fact that scripts are maintained by distribu-
tion maintainers will enable us to test-drive the DSL on a dis-
tribution among the Mancoosi partners. The DSL will prob-
ably not be able to address all of maintainer script needs, but
if it can handle most of them, we can resort to other tech-
niques only for the remaining scripts.

As a first step in DSL design, we are applying fingerprint-
ing techniques [15] to cluster all Debian’s maintainer scripts
and get a clear view of all their use cases. It is already clear
that about a half of such scripts only invokes external idem-
potent tools to update caches of some data; this class of ef-
fects can be undone by removing the involved data—usually
shipped as files by the owner package—and then re-running
the script. What is still not clear is how heterogeneous are
the remaining scripts which escape the former class.

Considering the intrinsic complexity of the sole depen-
dency resolution, designing good optimizing algorithms to
handle complex user preferences for package status choices
is a rather ambitious goal. However, the particular shape of
inter-package relationships has enabled deriving rather ef-
ficient ad-hoc dependency solvers (e.g., edos-debcheck).
We believe similar successes can be obtained for user prefer-
ences. Hence we are not only working to apply multicriteria
optimization techniques [5], but also looking for a tentative
“social” solution. We are organizing a competition [7] whose
participants will compete in finding the “best” algorithm to
address the static part of the upgrade process. We believe
the competition has chances to attract researchers attention,
as it will offer real problems collected from user machines,
instead of the usual in vitro problems.

5. Conclusion
This paper argues that upgrades in FOSS distributions have
underestimated peculiarities. We have discussed the nature
of packages as well as their role in the upgrade process and
the potential failures. We surveyed related work and tech-
nologies, showing their shortcomings, especially in dealing
with misbehaving maintainer scripts. Finally, we presented
ongoing research ideas to improve the state of the art: de-
signing a DSL for implementing maintainer scripts, and at-
tracting the research community to work on the static part of
package upgrade, including the novel problem of supporting
complex user preferences among packages.

Acknowledgments The authors thank the anonymous ref-
erees for their feedback; Paulo Trezentos thanks Ines Lynce
and Arlindo Oliveira for interesting discussions on this topic.

References
[1] O. Crameri, N. Knezevic, D. Kostic, R. Bianchini, and

W. Zwaenepoel. Staged deployment in mirage, an integrated
software upgrade testing and distribution system. SIGOPS
Oper. Syst. Rev., 41(6):221–236, 2007.

[2] E. Dolstra and A. Löh. NixOS: A purely functional Linux
distribution. In ICFP, 2008. To appear.

[3] EDOS Project. Report on formal management of software
dependencies. Deliverable D2.1 and D2.2, Mar. 2006.

[4] I. Jackson and C. Schwarz. Debian policy manual, 2008.
[5] D. Le Berre and A. Parrain. On SAT technologies for

dependency management and beyond. In ASPL 2008.
[6] F. Mancinelli, J. Boender, R. D. Cosmo, J. Vouillon, B. Durak,

X. Leroy, and R. Treinen. Managing the complexity of large
free and open source package-based software distributions.
In ASE 2006, 199–208, Sept. 2006. IEEE CS Press.

[7] Mancoosi workpackage 1 team. Mancoosi project presenta-
tion. Deliverable D1.1, Aug. 2008.

[8] K. Mazurak and S. Zdancewic. Abash: finding bugs in bash
scripts. In PLAS ’07, 105–114, 2007. ACM.

[9] R. McQueen. Creating, reverting & manipulating filesystem
changesets on Linux. Dissertation, Computer Laboratory,
University of Cambridge, 2005.

[10] M. Michlmayr. Managing volunteer activity in free software
projects. In 2004 USENIX, FREENIX Track, 93–102, 2004.

[11] M. Michlmayr, F. Hunt, and D. Probert. Release management
in free software projects: Practices and problems. In Open
Source Development, Adoption and Innovation, 295–300.
Springer, 2007.

[12] G. Niemeyer. Smart package manager. http://labix.

org/smart, 2008.
[13] J. Olin Oden. Transactions and rollback with RPM. Linux

Journal, 2004(121):1, 2004.
[14] C. Payne. On the security of open source software.

Information Systems Journal, 12:61–78, 2002.
[15] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing:

local algorithms for document fingerprinting. In SIGMOD
’03, 76–85, 2003. ACM.

[16] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris.
Code quality analysis in open source software development.
Information Systems Journal, 12:43–60, 2002.

[17] R. Treinen and S. Zacchiroli. Solving package dependencies:
from EDOS to Mancoosi. In DebConf 8, 2008.

[18] P. Trezentos, R. DiCosmo, S. Lauriere, M. Morgado,
J. Abecasis, F. Mancinelli, and A. Oliveira. New Generation
of Linux Meta-installers. FOSDEM 2007.

[19] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner. Opium:
Optimal package install/uninstall manager. In ICSE ’07,
178–188, 2007. IEEE Computer Society.

[20] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P. Quigley,
E. Zadok, and M. N. Zubair. Versatility and unix semantics
in namespace unification. ACM TOS, 2(1):1–32, 2006.

[21] Y. Xie and A. Aiken. Static detection of security vulnera-
bilities in scripting languages. In USENIX-SS’06, 179–192.
2006.

http://labix.org/smart
http://labix.org/smart

	Introduction
	Packages, upgrades, failures
	Rollback & snapshot technology overview
	Towards perfected package upgrade undo
	Conclusion

