
Reproducible Builds:
Increasing the Integrity of
Software Supply Chains

Chris Lamb
Reproducible Builds

Stefano Zacchiroli
Université de Paris and Inria, France

Abstract—Although it is possible to increase confidence in Free and Open Source Software
(FOSS) by reviewing its source code, trusting code is not the same as trusting its executable
counterparts. These are typically built and distributed by third-party vendors, with severe
security consequences if their supply chains are compromised. In this paper, we present
reproducible builds, an approach that can determine whether generated binaries correspond
with their original source code. We first define the problem, and then provide insight into the
challenges of making real-world software build in a “reproducible” manner—this is, when every
build generates bit-for-bit identical results. Through the experience of the Reproducible Builds
project making the Debian Linux distribution reproducible, we also describe the affinity between
reproducibility and quality assurance (QA).

You can’t trust code that you did not
totally create yourself. [. . .] No amount
of source-level verification or scrutiny
will protect you from using untrusted
code.

— Ken Thompson (1984)

HOW CAN WE BE SURE that our software
is doing only what it is supposed to do? This
was the key takeaway from Ken Thompson’s
1984 Turing Lecture, “Reflections on Trusting
Trust” [1]. But with people today executing far
more software than they compile, the number of
users who “totally create” software they run has
dropped dramatically since then.

Let us narrow the issue to Free and Open
Source Software (FOSS), where all source code
is freely available. Hypothetically, users can ex-
amine the source of all the software they wish

to use in order to confirm it does not contain
spyware or backdoors—indeed, one of the orig-
inal promises of FOSS was that distributed peer
review [2] would result in enhanced end-user
security. However, whilst users can inspect source
code for malicious flaws, almost all software is
now distributed as pre-built binaries. This permits
nefarious actors to compromise end-user systems
by modifying ostensibly secure code during its
compilation or distribution.

For example, a Linux distribution might com-
pile “safe” software on compromised servers and
unwittingly spread malicious executables onto
countless systems. Other vectors include engi-
neers being explicitly coerced into incorporating
vulnerabilities, as well as the covert compromise
of developers’ computers (remotely or through
“evil maid” attacks [3]) so they unwittingly dis-
tribute tainted binaries via app stores and other

IEEE Software Published by the IEEE Computer Society © 2021 IEEE 1

channels.
Software supply-chain attacks are no longer

hypothetical scenarios. In December 2020, news
broke that attackers subverted the SolarWinds
Orion software to inject malicious code into
executables at build time, resulting in a se-
vere data breach across several US government
branches [4]. 174 similar attacks have been de-
tailed in the literature too [5]. Due to their poten-
tial impact, software supply chains have become
a high-value target in recent years, and this trend
appears to be accelerating.

Practical and scalable solutions to these at-
tacks are therefore urgently needed, and an ap-
proach known as reproducible builds is one such
countermeasure. However, it is only applicable
if the software sources are widely available—
although malware can be detected directly in
binaries [6], [7], doing so is inefficient when
source code is available for audit.

The key idea behind the reproducible builds
(R-B) approach is that, if we can guarantee that
building a given source tree always generates bit-
for-bit identical results, we can establish trust
in these artifacts by comparing outputs acquired
from multiple, independent builders.

In this paper, we present the R-B approach
from the perspective of software professionals.
We show how software users can benefit from
the increased trust in executables they run as well
as how developers and build engineers can help
make software reproducible. We also describe
the quality assurance (QA) tools available to
improve build reproducibility, highlighting how
they further mutually-beneficial goals such as
reducing build and test “flakiness” [8], [9]. This
paper is informed in large part by the experience
of the Reproducible Builds project (reproducible-
builds.org), a non-profit initiative that popularized
the R-B approach.

REPRODUCIBLE BUILDS
The core element of the reproducible builds

model is the following property:

Definition 1. The build process of a software
product is reproducible if, after designating a
specific version of its source code and all of its
build dependencies, every build produces bit-for-
bit identical artifacts, no matter the environment

in which the build is performed.

In other words, once we reach an agreement
on the exact software version(s) we wish to build,
anyone who builds that software should always
generate precisely the same artifacts.

Figure 1 shows how users can leverage this
property to establish trust in FOSS executables.
Software development happens upstream as usual
(e.g. on platforms such as GitHub and GitLab)
and, from there, source code reaches downstream
vendors such as Linux distributions and app
stores. These vendors then build binaries from
these sources, which are subsequently distributed
to end-users. Note that neither the distribution nor
the build process are completely trusted in this
scenario, reflecting the hostile environment of the
real world.

When software builds reproducibly, however,
we can still establish trust in these executables.
This is because users can corroborate whether
their newly-downloaded binaries are identical to
those that others have built themselves.

How this works is as follows: At the top of
the supply chain, trust in a specific version of a
piece of software is established through auditing
the source code or, more likely, by implicitly
trusting its developers (e.g. trusting version 5.11.5
of the Linux kernel as it is signed by Linus
Torvalds). Later, but before executing any binaries
they have downloaded, users can compare the
checksums of these files with the expected values
for that specific version, crucially aborting on any
mismatch.

These expected checksums could originate
from a limited set of trusted parties who publish
statements that building some specific source
code release results in a particular set of ex-
ecutables. However, another alternative is dis-
tributed consensus, where a loose-knit commu-
nity of semi-trusted builders independently an-
nounce their checksums. Normally, participants
in this scheme report identical checksums for
a given source code release, but in case of a
discrepancy (i.e. if some builders have been com-
promised), the checksum reported by ≥ 50% of
the builders may be the one to trust. Under this
verification scheme, the takeover at least 50% of
the builder community would be required to co-
erce users into running malicious binaries.

2 IEEE Software

https://reproducible-builds.org
https://reproducible-builds.org

Independent build

Independent build

End-user system

binary
distribution

build
artifacts

source
code

build
process

build
artifacts

build
outputs

build
inputs

Independent build

source
code

build build
artifacts

compare checksum
0xBAAD

 0x1337

 0x1337

build
toolchain

build
dependencies

(untrusted)

Upstream software
developers

source
code

eg. on GitHub

Software vendor
e.g. Linux distribution, app store

(untrusted process)

 0x1337

checksum
0xBAAD

Figure 1. The reproducible builds approach to increasing trust in executables built by untrusted third parties.
The end-user should reject the binary artifact from their software vendor, as its checksum (0xBAAD) does not
match the one built by multiple, independent third-parties (0x1337).

REPRODUCIBILITY IN THE SMALL
How hard is it to ensure that independent

builds always result in bit-for-bit identical ex-
ecutables? First, let us consider the software
vendor in Figure 1. Each build takes as its input
the source to be built, all of its build-time depen-
dencies, and the entire build toolchain including
the compiler, linker and build system. The build
produces a set of artifacts (executables, data,
documentation, etc.) as its output. Any change
in these inputs may legitimately affect its output.

However, even once all inputs have
been controlled for, the build may still be
unreproducible—that is, producing different
artifacts when the build is repeated. This results
from two main classes of problem: uncontrolled
build inputs and build non-determinism.

Uncontrolled build inputs occur when
toolchains allow the build process to be affected
by the surrounding environment. Common
examples include system time, environment
variables and the arbitrary build location on the
filesystem. Uncontrolled inputs can be seen as
analogous to breaking encapsulation in software
design; a tight coupling between a high-level
process and the low-level implementation details.

Build non-determinism occurs when aspects of
the build behave non-deterministically and these
“random” behaviours are encoded in the final
artifacts. For example, if the output is derived

in any way from the state of a pseudorandom
number generator or the arbitrary order of process
scheduling.

To address uncontrolled build inputs, it is
tempting to “jail” builds into sanitized environ-
ments that always present a canonical interface to
the underlying build system. Indeed, this was the
approach taken by early projects such as Bitcoin
and Tor (rbm.torproject.org). However, jails result
in slower build times and impose technical and
social restrictions on developers who may be
accustomed to choosing their tooling. Most jails
cannot address non-determinism issues either.

The ultimate and preferred solution is to en-
sure that any code run during the build only
depends on the legitimate build inputs (the source
being built, the build dependencies and the
toolchain), and that any non-deterministic behav-
ior does not affect the resulting artifacts.

We will now review some individual causes of
unreproducible builds and show how to address
them.

Build timestamps
Timestamps are, by far, the biggest source

of unreproducibility. It is a common practice
to explicitly embed dates into binaries via C’s
__DATE__ macro (see Listing 1), but many
tools record dates into build artifacts as well. For
example, help2man generates UNIX manual
pages directly from the output of --help, and

May/June 2021 3

https://rbm.torproject.org

Listing 1. The __DATE__ C preprocessor macro
“expands to a string constant that describes the date
on which the preprocessor is being run.”

void usage() {
fprintf (stderr,

"foo-utils version "
"3.141 (built %s)\n",
__DATE__);

}

in its default configuration, it embeds the current
date into generated files. As this value changes
from day-to-day, this results in an unreproducible
build. TEX’s \date macro also embeds the cur-
rent date, with similar implications for generated
documentation.

The value of these timestamps is extremely
limited, particularly as they don’t convey which
version of the software was actually built; after
all, older software can always be built later. Em-
bedded timestamps should therefore be avoided
entirely, but for cases where that is not possible
(e.g. in file formats that mandate their presence),
the Reproducible Builds project proposed the
SOURCE_DATE_EPOCH environment variable as
a way to communicate an acceptable timestamp
to build systems [10]. This typically represents
the last modification time of the source tree as
extracted from the software’s changelog file.

Build paths

The filesystem path where the build took place
is often embedded in generated binaries too,
usually via the __FILE__ preprocessor macro
(see Listing 2) or by assertion statements that
reference their corresponding line of code. Other
sources of build paths include logging messages,
locations of detached debug symbols, RPATH
entries in ELF binaries, and many other instances
that are intended, ironically, to assist the software
development process.

To help address this issue, the Reproducible
Builds project worked with the GNU GCC devel-
opers to introduce the -ffile-prefix-map
and -fdebug-prefix-map options which
support embedding relative (rather than absolute)
paths.

Listing 2. The __FILE__ C preprocessor macro
“expands to the name of the current input file”. This
results in non reproducibility when the program is built
from different directories, e.g. /home/lamby/tmp

vs. /home/zack/tmp.

fprintf (stderr,
"DEBUG: boop (%s:%s\n",
__FILE__, __LINE__);

Filesystem ordering
Contrary to the output of ls(1), the POSIX
Unix standard does not specify an ordering for
results returned by the underlying readdir(3)
system call. As a result, directories accessed
in naive “readdir order” may be processed
in a non-deterministic manner. If this arbitrary
ordering influences any build artifacts, the build
will not be reproducible.

For example, the build system of the PikePDF
library located its own source files using Python’s
glob routine. But as glob’s result value in-
herits the non-determinism of readdir(3),
PikePDF’s source files were linked in an arbitrary
order.

This is a particularly pernicious problem as
some filesystem implementations return different
orderings “more often” than others. To avoid
these issues, build systems should impose a deter-
ministic order on any directory iteration encoded
in its artifacts, e.g. via an explicit sort().

Archive metadata
.zip and .tar archives store timestamps and
user ownership information in addition to the
files themselves. However, if this metadata is
inherited from the surrounding build environment,
it will not be replicated when building elsewhere.
For example, if a .tar archive stores files as
belonging to the build user (e.g. lamby), another
user (e.g. zack) building the same software will
obtain a different result.

This can be avoided by instructing tools to
ignore on-disk values in favour of metadata cho-
sen by the build system (e.g. using tar(1)
with --owner=0 and --clamp-mtime=T),
or by normalizing metadata before archiv-
ing begins (e.g. by using touch(1) with
SOURCE_DATE_EPOCH as a reference times-
tamp).

4 IEEE Software

Listing 3. Perl’s hash type does not define an order-
ing of its keys, so a call to sort should be inserted
before keys %h to make it deterministic.

my %h = (a => 1, b => 2, c => 3);
foreach my $k (keys %h) {

print "$k\n";
}

Randomness
Even when the entire environment is con-

trolled for, many builds remain inherently non-
determinstic. For example, builds that iterate over
hash tables (such as Perl’s “hash” or the dict
type in Python < 3.7) exhibit arbitrary behaviour
as their respective elements are returned in an un-
defined order—the code in Listing 3, for example,
may print any combination of abc, bac, bca,
etc. This affects reproducibility if these results
form any part of the build’s artifacts.

Parallelism (such as via processes or threads)
can also prevent reproducibility if the arbitrary
completion order is encoded into build results
too. Similar to filesystem ordering, these issues
can be resolved by imposing determinism in key
locations, seeding any sources of randomness
to fixed values or sorting the results of hash
iterations and parallelized tasks before generating
output.

Uninitialized memory
Many data structures have undefined areas that
do not affect their operation. The FAT filesystem,
for example, contains unused regions that may
be filled with arbitrary data. In addition, modern
CPU architectures perform more efficiently when
data is naturally aligned, and the padding added to
ensure alignment can result in similarly undefined
areas. These regions containing “random” data
affect reproducibility when stored in build results.

One solution is to explicitly zero-out memory
regions that may persist in artifacts. For example,
Listing 4 shows a patch for GNU mtools that
ensures generated FAT directory entries do not
embed uninitialized memory.

REPRODUCIBILITY IN THE LARGE
Now that we know how to address some

individual reproducibility issues, we turn to the
problems that arise when making large software

Listing 4. A patch for GNU mtools ensuring that
a direntry_t struct does not contain uninitialized
memory.

--- a/direntry.c
+++ b/direntry.c
@@ -24,6 +24,7 @@

void initializeDirentry(
direntry_t *entry, Stream_t *Dir) {

+ memset(entry, 0, sizeof(direntry_t));
entry->entry = -1;
entry->Dir = Dir;

collections reproducible.
The Reproducible Builds project started in

2014 with the aim of making the Debian oper-
ating system (www.debian.org) completely repro-
ducible. This is a formidable goal, as not only is
Debian a extremely mature Linux distribution, it
is one of the largest curated collections of FOSS
software in general.

Seven years later, over 95% of the 30 000+
packages in Debian’s development branch can
now be built reproducibly, and as the Linux
distribution with the largest total number of repro-
ducible packages, it serves as an extremely rele-
vant case study. The evolution of this effort can
be found at wiki.debian.org/ReproducibleBuilds.

Adversarial rebuilding
Given its scale, Debian developers realized they
would need a programmatic way to test for re-
producibility. To this end, they developed a con-
tinuous integration (CI) [11] system which builds
each package in the Debian archive twice in a
row, using two independent build environments
that are deliberately configured to differ as much
as possible. For instance, the clock on the second
build is set 18 months in the future, and the
hostname, language, system kernel, etc., are all
varied so that if any environmental differences are
used as a build input, the two builds will differ as
a result. The large number of variations applied
(30+) can validate build reproducibility to a high
degree of accuracy.

To identify any reliance on non-deterministic
filesystem ordering, the R-B project also de-
veloped a FUSE-based [12] virtual filesystem
called disorderfs (salsa.debian.org/reproducible-
builds/disorderfs) which can provide a view of

May/June 2021 5

https://www.debian.org
https://wiki.debian.org/ReproducibleBuilds
https://salsa.debian.org/reproducible-builds/disorderfs
https://salsa.debian.org/reproducible-builds/disorderfs

Listing 5. An example .buildinfo file, recording both the environment and results of building Debian’s
black package. (Excerpt: see buildinfo.debian.net/sources/black/20.8b1-1 for the full version.)

Source: black
Version: 20.8b1-1
Checksums-Sha1:

9915459ae7a1a5c3efb984d7e5472f7976e996b1 2584 black_20.8b1-1.dsc
14bfd3011b795f85edbc8cc4dc034a91cfaa9bcd 111096 black_20.8b1-1_all.deb
69c3d4ae7115c51e7b00befe8b4afd5963601d66 285684 python-black-doc_20.8b1-1_all.deb

Checksums-Sha256: [...]
Build-Architecture: amd64
Installed-Build-Depends: autoconf (= 2.69-11.1), automake (= 1:1.16.2-4), [...],

gcc (= 4:10.2.0-1), [...], python3 (= 3.8.2-3), [...]
xz-utils (= 5.2.4-1+b1), zlib1g (= 1:1.2.11.dfsg-2)

a filesystem with configurable orderings. The R-
B CI system reverses the filesystem ordering
between the builds, revealing any dependency on
non-deterministic filesystem ordering.

Recording build information
As per Definition 1, a reproducible build must
always use the same original source, toolchain
and build dependencies, and to ensure these in-
puts can be replicated correctly, Debian devised
the .buildinfo file format.

Once a Debian package is built, the precise
source version and the versions of all its build
dependencies are recorded in a .buildinfo
file. This file also contain checksums of any
generated .deb artifacts, the Debian binary pack-
age format. (An example file may be found in
Listing 5.)

.buildinfo files are a crucial building
block for any process wishing to validate repro-
ducibility. A .buildinfo is produced during
an initial build and is then used to reconstruct a
second build environment. The build is repeated
within this second environment and the check-
sums from this latter build are compared with the
ones in the original .buildinfo—if they do
not match, the build is unreproducible or a build
host has been tampered with.

Users can employ .buildinfo files to
implement the consensus-driven approach out-
lined above, verifying downloaded packages
by comparing them against the checksums in
.buildinfo files distributed by Debian and
other builders. In this scenario, .buildinfo
files are cryptographically signed to represent a
build attestation, e.g. “I, Alice, given source X

and environment Y, have built a package with
checksum K.” Bob would verify that Alice really
made this claim, and then compare Alice’s K
against his downloaded file, potentially trusting
Alice’s K over any divergent (and likely mali-
cious) claim from Eve.

Debian currently hosts over 20 million
.buildinfo files in a number of experimen-
tal services. However, centralized distribution
schemes inherit many of the issues of the SSL
certificate authority ecosystem, particularly in
representing an obvious target to attack [13].
Decentralized alternatives remain a future chal-
lenge at this point, as does a practical consensus
mechanism to determine the “valid” checksum for
any given package.

Root cause analysis
As we have outlined, it is trivial to detect mis-
matches between builds simply by comparing the
checksums of their artifacts. However, it can be
extremely difficult to understand the root cause
of this difference.

Therefore, the R-B project developed diffo-
scope (diffoscope.org), a visual “diff” tool that
recursively unpacks a large number of archive
formats and translate tens of binary formats into
human-readable forms. As a result, it can display
the meaningful, code-level differences between,
for example, two compiled Java .class files,
even if they were contained in .tar in a .xz
(in a .deb in a .iso, etc.).

In most cases, diffoscope indicates which cat-
egory of fix is required to make a build re-
producible. For instance, when programs embed
build dates into their binaries, diffoscope clearly

6 IEEE Software

https://buildinfo.debian.net/sources/black/20.8b1-1
https://diffoscope.org

Figure 2. diffoscope recursively unpacks archives of many kinds and transforms various binary formats into
more human-readable forms in order to compare them.

highlights these date-based variations, and the
surrounding context tends to assist in identifying
which part of the original source code to fix.

An example diffoscope output is shown in Fig-
ure 2, where two versions of the dolfinx-doc
package differ. Here, diffoscope indicates that the
difference is in CMakeLists.txt, a generated
file which contains the same entries with a differ-
ent ordering between the two builds. This would
appear to be a filesystem ordering issue, solved
by the addition of an explicit sort. However, this
may be a problem affecting all software that uses
CMake, so the issue may be better addressed
there; alas, diffoscope cannot entirely replace a
software engineer’s judgement.

Quality Assurance (QA)
Adopting a methodical approach to verify the re-
producibility of builds can be highly complemen-
tary to QA efforts. This is because problems that
affect build reproducibility are often symptoms of
larger, systemic issues.

To begin with, systematic reproducibility test-
ing implies systematic build testing, so will easily
identify software that fail to build under any
circumstances. Other software will fail to build
only in the extreme environments designed to
test for reproducibility, but will become more
robust as a result of behaving well there. For

example, some software will fail to build in the
future due to hardcoded SSL certificates with
expiry dates—these are detected due to the build
environment’s artificial future clock. Others fail
to build in rarely-used timezones due to incorrect
assumptions about time offsets—the test suite
for the Ruby Timecop library failed in this way
(bugs.debian.org/795663).

Due to these serendipitous quality
improvements, addressing reproducibility
issues improves the correctness and robustness
of the Debian distribution as a whole. However,
even less-critical problems can be identified
through reproducibility testing as well. For
example, an issue in the Doxygen documentation
generator (bugs.debian.org/970431) led to broken
hyperlinks that linked to their build-time location
(e.g. /tmp/build/foo/usage.html)
instead of their run-time one
(/usr/share/doc/foo/usage.html).
This was trivial to identify with diffoscope, and
fixing it corrected broken documentation for
hundreds of end-users.

Reproducibility testing can even flag spuri-
ous content within documentation. For instance,
manual packages generated by executing an un-
derlying program can fail in several ways, of-
ten printing error messages that are mistak-

May/June 2021 7

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=795663
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=970431

Listing 6. An example ConfigData.pm. As it was
created at build time, all users shared the same
OpenIDConsumerSecret.

{
’cgibin’ => ’/usr/lib/cgi-bin/gbrowse’,
’conf’ => ’/etc/gbrowse’,
’databases’ => ’/var/lib/gbrowse/databases’,
’htdocs’ => ’/usr/share/gbrowse/htdocs’,
’OpenIDConsumerSecret’ => ’639098210478536’,
’tmp’ => ’/var/cache/gbrowse’
},

enly shipped as the package’s “documentation”
(e.g. bugs.debian.org/972635). These bugs are
difficult to detect if the failure does not occur
on a developer’s own machine, but they can be
easily spotted whilst testing for reproducibility as
the error messages are deliberately designed to
appear in different languages.

Even security issues can be discovered
whilst testing for reproducibility. In one ex-
ample, the GBrowse biological genome an-
notation viewer failed to build reproducibly
(bugs.debian.org/833885), and diffoscope identi-
fied a configuration file that contained a differ-
ent OpenIDConsumerSecret value between
builds (see Listing 6). Although this secret was
being securely generated, it was being created at
build time, so the same value was distributed to all
users of the package—the fix was to generate the
secret at installation time so that each deployment
possessed its own unique key. The mechanics
of reproducibility testing suggest that this issue
would not have been readily discovered another
way.

Community engagement
Although the causes of build unreproducibility
often reside within the source code of individual
projects, it is far more effective to detect issues
via centralized testing in distributions such as
Debian due to the uniform build interfaces these
large collections provide. Nevertheless, the social
norms of the FOSS community dictate that fixes
should be integrated upstream, instead of remain-
ing in distribution-specific patch sets.

To this end, the Reproducible Builds project
has contributed to hundreds of individual FOSS
projects, in addition to working with key
toolchains such as GCC, Rust, OCaml, etc.

This community-oriented approach ensures that
as many users as possible can benefit from the
specific advantages of reproducible builds, as
well as from the software quality improvements
achieved while pursuing that goal.

THE REPRODUCIBLE BUILDS
ECOSYSTEM

Taking Debian to its current state required
over seven years of cross-community work that
was spearheaded by the Reproducible Builds
project (reproducible-builds.org), a non-profit or-
ganisation that aims to increase the integrity of
software supply chains by advocating for and
implementing the approach outlined in this paper.

Although originating in Debian around 2014,
many other FOSS projects have joined the ini-
tiative such as Arch Linux, coreboot, F-Droid,
Fedora, FreeBSD, Guix, NixOS, openSUSE and
Qubes. One milestone of this joint effort is
Tails (tails.boum.org), the operating system used
by Edward Snowden to securely communi-
cate the NSA’s global surveillance activities in
2013 [14]—Tails began releasing reproducible
ISO images in 2017 to improve end-user veri-
fiability and security.

The Reproducible Builds project has
also developed several tools (reproducible-
builds.org/tools) that facilitate various QA
processes related to reproducibility. Some of
these, such as diffoscope and disorderfs, have
been highlighted in this paper.

Increasing the security of open source soft-
ware is clearly a worthwhile goal, and software
professionals and organisations can always pro-
vide assistance. This is not only by addressing
any uncontrolled build inputs and sources of
non-determinism in the software they maintain,
but by working with the Reproducible Builds
project itself in terms of code, donations and other
traditional forms of community contribution.

CONCLUSION
In this article, we have outlined what it means

for software to build reproducibly and how that
property can be leveraged by end-users to es-
tablish trust in open source executables, even
when they are built by untrusted third parties. We
also surveyed several causes of unreproducibility
and located their causes in build systems and

8 IEEE Software

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=972635
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=833885
https://reproducible-builds.org
https://tails.boum.org
https://reproducible-builds.org/tools
https://reproducible-builds.org/tools

similar logic. We also described some of the
quality assurance (QA) processes and tools that
can be used to make large open source software
collections reproducible—using this model, the
Debian operating system has achieved 95% re-
producibility in over 30 000+ packages.

Additional work is still needed to address the
software that is not yet reproducible. In the case
of Debian, there are no insurmountable obstacles
preventing the project from reaching 100%—the
remaining 5% “only” need fixes similar in kind
to those already discussed. However, this has not
yet been achieved, partly because time and effort
are not inexhaustible or fungible resources in vol-
unteer communities, but also due to regressions
in previously-reproducible packages. Improved
awareness and prioritisation of reproducibility
amongst software developers would reduce the
incidence of such events.

Other challenges remain for the reproducible
builds ecosystem too. Cryptographically signed
artifacts are becoming more common, which can-
not be made reproducible without distributing
signing keys to builders. One solution is to adopt
detached signatures, but the addition of parallel
distribution channels for these (unreproducible)
files would require extensive changes to existing
software distribution channels.

The verification of open source software for
mobile devices also remains problematic. With
the notable exception of F-Droid, not only are
the build processes of the major app stores unre-
producible (or not even FOSS), the checksums of
artifacts are hidden from end-users, rendering any
distributed validation scheme impossible. Signifi-
cant usability and transparency improvements are
needed to make meaningful progress in this area.

Finally, we are left with the recursive ques-
tion of whether we can trust even reproducible
binaries without trusting where our compilers
and other toolchain components come from. To
address this, the parallel Bootstrappable Builds
(bootstrappable.org) project seeks to minimize the
amount of binary code required to bootstrap a
minimal C compiler—at time of publication, a
binary as small as 6 KB is enough to activate
a chain of steps from TCC [15] to GCC from
which almost all toolchains can then be obtained.
Ken Thompson would likely approve, whilst still
pointing out that 6 KB is too much untrusted

code.

ACKNOWLEDGMENTS
The authors would like to thank the Repro-

ducible Builds and the wider Debian community
for their feedback on this paper, as well as for
their invaluable work on increasing the trustwor-
thiness of free and open source software. The
authors also thank Giovanni Mascellani for their
insightful discussions on bootstrappable builds.

REFERENCES
1. Ken Thompson. Reflections on trusting trust. Commu-

nications of the ACM, 27(8):761–763, 1984.

2. Peter C. Rigby, Brendan Cleary, Frédéric Painchaud,

Margaret-Anne D. Storey, and Daniel M. Germán. Con-

temporary peer review in action: Lessons from open

source development. IEEE Software, 29(6):56–61,

2012.

3. Joanna Rutkowska and Alexander Tereshkin. Evil

maid goes after TrueCrypt. The Invisible Things Lab,

2009. https://theinvisiblethings.blogspot.com/2009/10/

evil-maid-goes-after-truecrypt.html.

4. Catalin Cimpanu. Third malware strain

discovered in SolarWinds supply chain attack.

ZDNet, 2021. https://www.zdnet.com/article/

third-malware-strain-discovered-in-solarwinds-supply-chain-attack/,

retrieved 2021-03-01.

5. Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael

Meier. Backstabber’s knife collection: A review of open

source software supply chain attacks. In DIMVA 2020:

The 17th International Conference on Detection of In-

trusions and Malware, and Vulnerability Assessment,

volume 12223 of Lecture Notes in Computer Science,

pages 23–43. Springer, 2020.

6. Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama

Iyengar. A survey on malware detection using data

mining techniques. ACM Computing Surveys (CSUR),

50(3):1–40, 2017.

7. Edward Amoroso. Recent progress in software security.

IEEE Software, 35(2):11–13, 2018.

8. Thomas Durieux, Claire Le Goues, Michael Hilton, and

Rui Abreu. Empirical study of restarted and flaky builds

on Travis CI. In MSR 2020: The 17th International

Conference on Mining Software Repositories. IEEE,

2020.

9. Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko

Marinov. An empirical analysis of flaky tests. In

Proceedings of the 22nd ACM SIGSOFT International

May/June 2021 9

https://bootstrappable.org
https://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
https://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
https://www.zdnet.com/article/third-malware-strain-discovered-in-solarwinds-supply-chain-attack/
https://www.zdnet.com/article/third-malware-strain-discovered-in-solarwinds-supply-chain-attack/

Symposium on Foundations of Software Engineering,

pages 643–653, 2014.

10. Chris Lamb and Ximin Luo. SOURCE DATE EPOCH

specification. Technical report, Reproducible Builds

project, 2017. https://reproducible-builds.org/specs/

source-date-epoch/.

11. Mathias Meyer. Continuous integration and its tools.

IEEE Software, 31(3):14–16, 2014.

12. Bharath Kumar Reddy Vangoor, Vasily Tarasov, and

Erez Zadok. To FUSE or not to FUSE: performance of

user-space file systems. In 15th USENIX Conference

on File and Storage Technologies, FAST 2017, pages

59–72. USENIX Association, 2017.

13. Ben Laurie. Certificate transparency. Communications

of the ACM, 57(10):40–46, 2014.

14. Susan Landau. Making sense from Snowden: What’s

significant in the NSA surveillance revelations. IEEE

Secur. Priv., 11(4):54–63, 2013.

15. Fabrice Bellard. TCC: Tiny C compiler. https://bellard.

org/tcc/, 2003. Retrieved 2020-10-05.

10 IEEE Software

https://reproducible-builds.org/specs/source-date-epoch/
https://reproducible-builds.org/specs/source-date-epoch/
https://bellard.org/tcc/
https://bellard.org/tcc/

	REPRODUCIBLE BUILDS
	REPRODUCIBILITY IN THE SMALL
	REPRODUCIBILITY IN THE LARGE
	THE REPRODUCIBLE BUILDS ECOSYSTEM
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

