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Abstract

Maintenance of component-based software platforms often has to face rapid evolution of
software components. Component dependencies, conflicts, and package managers with
dependency solving capabilities are the key ingredients of prevalent software maintenance
technologies that have been proposed to keep software installations synchronized with
evolving component repositories.

We review state-of-the-art package managers and their ability to keep up with evo-
lution at the current growth rate of popular component-based platforms, and conclude
that their dependency solving abilities are not up to the task.

We show that the complexity of the underlying upgrade planning problem is NP-
complete even for seemingly simple component models, and argue that the principal
source of complexity lies in multiple available versions of components. We then discuss
the need of expressive languages for user preferences, which makes the problem even
more challenging.

We propose to establish dependency solving as a separate concern from other upgrade
aspects, and present CUDF as a formalism to describe upgrade scenarios. By analyzing
the result of an international dependency solving competition, we provide evidence that
the proposed approach is viable.

Keywords: component, dependency solving, software evolution, package management,
open source, competition

1. Introduction

A program that is used and that as an implementation of its specification reflects
some other reality, undergoes continual change or becomes progressively less useful.
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The above law of Continuing Change [20] applies to all evolving software systems, which
are deemed to be the vast majority of existing systems [7]. The advent of Component-
Based Software Engineering [6, 36] did not affect this fundamental truth: mutatis mu-
tandis continuing change also holds for component-based systems [21]. The diffusion of
rapidly evolving component-intensive software platforms—i.e. platforms where the num-
ber of components is in the tens or even hundreds of thousands—has raised the quality
requirements for automatic tools that maintain component installations on behalf of
users, be them developers, architects, administrators, or final users empowered to assem-
ble components.

Component-intensive platforms are commonplace: FOSS (Free and Open Source Soft-
ware) distributions (where components are called “packages”), development platforms
like Eclipse and Apache Maven [9, 25] (which call components “plugins”), OSGi [29]
(“bundles”), CMS communities (“add-ons”), Web browsers (“extensions”), and countless
others. Despite apparent differences in terminology, all these platforms share concepts,
properties, and problems. For instance, components have expectations on the deploy-
ment context: they may need other components to function properly—declaring this fact
by means of dependencies—and may be incompatible with some other components—
declaring this fact by means of conflicts. Those expectations must be respected not only
at initial deployment-time, but also at each component release and for each individual
component: a new version of a component cannot be deployed if its expectations are not
met on the target system.

To maintain component assemblies, (semi-)automatic component manager applica-
tions are used to perform component installation, removal, and upgrades on target
machines—we use the term upgrade to refer to any combination of those actions. Ex-
amples of component managers are as commonplace as component-intensive platforms:
package managers, such as APT or Aptitude used in FOSS distributions to manage
packages; P2 [19], used in Eclipse to deal with plugins; OSGi resolvers, which perform
component deployment and configuration. These tools—called generically package man-
agers in the following—incorporate numerous functionalities: trusted retrieval of com-
ponents from remote repositories; planning of upgrade paths in fulfillment of deployment
expectations (also known as dependency solving); user interaction to allow for interactive
tuning of upgrade plans; and the actual deployment of upgrades by removing and adding
components in the right order, aborting the operation if problems are encountered at
deploy-time [10].

In contexts where the pace of component releases is rapid (e.g. FOSS [31, 14, 1])
the quality demand on package managers, and in particular on dependency solving, is
very high. Package managers should: (1) devise upgrade plans that are correct (i.e. no
plan that violates component expectations is proposed) and complete (i.e. every time a
suitable plan exists, it can be found); (2) have performances that scale up gracefully at
component repositories growth; (3) empower users to express preferences on the desired
component configuration when several options exist, which is often the case. Surprisingly,
all mainstream component manager applications the authors are aware of fail to address
one or several of those concerns. Not addressing them is far from being a purely academic
exercise, as Figures 1 and 2 show. Although anecdotal those and similar examples,
which populate the experience of everyday package manager users, show that state-
of-the-art component managers are short of fulfilling the aforementioned requirements.



# aptitude upgrade

1163 packages upgraded, 633 newly installed,

195 to remove and O not upgraded.

The following packages have unmet dependencies:

[...]

open: 4892; closed: 4995; defer: 170; conflict: 86

No solution found within the allotted time. Try harder? [Y/n]
Resolving dependencies...

open: 7592; closed: 7654; defer: 193; conflict: 89

open: 7798; closed: 7879; defer: 233; conflict: 89

open: 9938; closed: 9977; defer: 315; conflict: 89

No solution found within the allotted time. Try harder? [Y/n]
Resolving dependencies...

open: 14915; closed: 14952; defer: 372; conflict: 89

No solution found within the allotted time. Try harder? [Y/n]
Resolving dependencies...

open: 19880; closed: 19981; defer: 445; conflict: 89

No solution found within the allotted time. Try harder? [Y/n]
Resolving dependencies...

open: 25017; closed: 24998; defer: 467; conflict: 90

No solution found within the allotted time. Try harder? [Y/n]
Resolving dependencies...

open: 30110; closed: 29978; defer: 498; conflict: 91

No solution found within the allotted time. Try harder? [Y/nln

Figure 1: Unexpected behaviour while using the legacy Aptitude package manager, on a FOSS system
on the Debian GNU/Linux distribution. The user attempts to upgrade all components in need of
upgrade on a machine equipped with the GNOME desktop environment and several IATEX packages.
The dependency solver loops and is unable to find a solution; after several attempts, the user gives up.
(See http://bugs.debian.org/590470; retrieved November 29th, 2010.)

Considering the recent popularity of dependency-based abstractions in Component Based
Software Engineering (CBSE, e.g. [17, 33, 11]), overlooking important dependency solving
requirements appears to be dangerous.

This work provides substantial coverage of concepts and problems that are common
in component managers equipped with automatic dependency solving abilities, for any
non-trivial component model. Understanding such problems is of paramount importance
because, in the context of component-intensive software platforms, software evolution is
observed by users through the lens of component releases and often judged by the pack-
age manager abilities to successfully deploy new releases. Therefore, to avoid software
evolution bottlenecks at the component deployment stage, we need to improve the ability
of our tools to plan component upgrades. Unfortunately, as we will show, the problem is
a hard one to tackle. In order to attack such a non-trivial and fairly overlooked problem,
this paper proposes to treat dependency solving as a separate concern of component
evolution and details the formalisms and technologies that are needed to enable such
separation.

Paper contributions and structure. In Section 2 we present the upgrade planning prob-
lem, or simply wupgrade problem, in a general setting, showing that in any non-trivial
component model dependency solving is NP-complete. To tackle the problem, in Sec-
tion 3 we propose to treat dependency solving as a separate concern, in order to share
research and development efforts on upgrade planning. To that end, we need formalisms
to: (1) capture upgrade scenarios coming from different component models in a unifying,
well-defined semantics and (2) describe user preferences which are advanced enough to
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# aptitude install baobab
[...1]
The following packages are BROKEN: gnome-utils
The following NEW packages will be installed: baobab
[...1
The following actions will resolve these dependencies:
Remove the following packages:

gnome gnome-desktop-environment libgdict-1.0-6
Install the following packages:

libgnome -desktop-2 [2.22.3-2 (stable)]
Downgrade the following packages:

gnome -utils [2.26.0-1 (now) -> 2.14.0-5 (oldstable)]
[...1
0 packages upgraded, 2 newly installed, 1 downgraded,
180 to remove and 2125 not upgraded. Need to get 2442kB
of archives. After unpacking 536MB will be freed.
Do you want to continue? [Y/n/7]

Figure 2: Attempt to install a disk space monitoring utility (called baobab) using Aptitude. In response to
the request, the package manager proposes to downgrade the GNOME desktop environment all together
to a very old version compared to what is currently installed. As shown in Section 6 a trivial alternative
solution exists that minimizes system changes: remove a couple of dummy (or “meta”) packages.

cover realistic use cases, but yet simple enough to be efficiently dealt with by state-of-the-
art constraint solvers. Our proposals for those two formalisms are detailed in Sections 4
and 5. Section 6 validates the proposed approach by discussing an international depen-
dency solving competition—called MISC—which has been run exploiting the proposed
formalisms. Competition results show that state-of-the-art constraint solvers can eas-
ily outperform ad-hoc solvers embedded in mainstream package managers, confirming
the thesis that separation of concerns and reuse are not only feasible, but also a viable
strategy to improve upgrade planning and support component evolution.

2. Component Evolution and the Complexity of the Upgrade Problem

In this section we start by studying the complexity of the upgrade problem that
package managers for component-intensive software platforms have to face. An important
feature of the problem is that there is usually a multitude of possible choices. This has
two consequences:

e For any given user request, there potentially exists an exponential number of so-
lution candidates, which makes the problem NP-complete in all relevant cases (see
Sections 2.1 and 2.2).

e There might be an exponential number of actual solutions to a problem instance,
and we need a good way to pick the best among these solutions (see Section 2.3).

2.1. Complexity of the Upgrade Problem

A software component is a bundle of: (1) files that are to be installed on a target
machine, (2) configuration logic to be executed at various stages of deployment, and (3)
metadata which, among others, describe component expectations [10]. For the purpose of
this paper we focus only on metadata since this is the information used by package man-
agers to plan upgrades. There are different component models, but metadata contains
at least the following features:



name: a component identifier that has a meaning over a time-line of releases;

version: an identifier of a specific release of a component that is meaningful relative to
a given name;

dependencies: components that must be installed to make a component usable.

The expressiveness of the dependency language varies, but at the very minimum allows
for a list of components that are required to be installed. More evolved models also allow
for disjunctions (alternatives) and version constraints (like “component ¢ in any version
greater than 427). Most component models also allow for:

conflicts: components that are not to be installed at the same time as the given com-
ponent. Conflicts may come with version constraints, similar to dependencies.

features: names of virtual components provided by a component. They may be used to
satisfy dependencies of other components and must not conflict with other installed
components.

We assume that each package is uniquely identified by its name n and version v, and
denote it as (n,v). A repository R is a set of components. An R-installation I is a set
of components I C R that has the properties of:

abundance: each package in I has its dependencies satisfied by packages in I;
peace: no package in I conflicts with another package in 1.
The following theorem was proven, in a more specific context, in [12]:

Theorem 1. Satisfiability of package upgrade requests is NP-complete, provided the com-
ponent model features conflicts and disjunctive dependencies.

Proof. First, we remark that the problem is clearly in NP since, given a subset of the
repository, one can check in polynomial time that it satisfies abundance, peace, and the
specific user request.

To prove NP-completeness, we show how to reduce the well known NP-complete
problem 3-SAT to the upgrade problem. For this, we show that any instance of 3-SAT
can be encoded into a simple instance of the upgrade problem, consisting of a single
component installation request in an empty initial installation.

Let F = Cy A ... ANC, be an instance of the 3-SAT problem, where each C; is a
disjunction of three literals. We define a repository Rp that contains:

e for every literal L occurring in F' a package (L, 0) which conflicts with the package
whose name is the complement of L,

e for every clause C; = L} V L? vV L? occurring in F a package (C;,0) which depends
on the disjunction of the packages (L},0), (L?,0), and (L?,0),

e apackage (F,0) which depends on the conjunction of the packages (C1,0), ..., (Cyp,0).

It is easy to see that F' has a solution iff there is an Rp installation containing pack-
age (F,0). Note that no sophisticated usage of versions is needed for this encoding: we
have used version 0 everywhere. O



The above proof makes essential use both of disjunctions in dependencies, and con-
flicts. In fact there are different ways how disjunctions in dependencies may appear:
through explicit alternatives (as used in the proof), features, or multiple versions of a
package. In fact, having both conflicts and disjunctions (in any form) are crucial for
NP-completeness, as the following theorem shows:

Theorem 2. Installability of a package in an empty environment is in PTIME in any
of the two following cases:

1. The component model does not allow for conflicts.
2. The component model does not allow for disjunctive dependencies or features, and
the repository does not contain multiple versions of packages.

Proof. We first recall that component installability can be encoded into Boolean sat-
isfiability [23]. Given a repository R, we construct a logical theory Tx as follows: we
introduce, for every component or feature in R of name n and version v, a propositional
variable X". A dependency d of package (n,v) is translated into an implication X? — d,
where d is the logical formula representing the dependency d, obtained by replacing an
atomic dependency by the disjunction of all variables corresponding to components sat-
isfying that atomic dependency!. For every conflict (n/,v’) of a package (n,v) we add a
formula - X" \/—.X}ij. If packages (n1,v1),. .., (nk, vg) provide feature f of version v then
we add X — (X3! V...V X)), It is easy to see that Tr A X, has a propositional model
iff there exists an R-installation that contains component (n,v). The formula T A X
falls into particular classes in the two cases of the theorem:

1. If there are no alternatives in dependencies, no features, and no multiple ver-
sions of packages then all implications obtained from dependencies are of the form
X — (X1A...AX,,), which is equivalent to (X — X1),..., (X — X,,). Since clauses
obtained from conflicts are always binary, and since the formula X is unary, one
obtains a theory which is a set of unary and binary clauses. The PTIME results
follows since satisfiability of sets of unary and binary clauses is decidable in poly-
nomial time [32].

2. If there are no conflicts then one just has formulas (X — d). Since all occurrences
of literals in d are positive, we can rewrite each of these formulas by transforming
d into disjunctive normal form as a set of clauses of the form X? — (L1 V...V L,).
These are dual Horn clauses, that is clauses that contain at most one negative
literal. Satisfiability of sets of dual Horn clauses is again decidable in PTIME ([32],
who calls them weakly positive clauses).

O

2.2. Complexity in the Case of Component Evolution

The problem of package installation becomes significantly harder when one imposes
that old versions of packages have to be replaced by new versions of packages, instead
of just installing old and new version at the same time. This requirement appears in
different form in different component models:

1This disjunction is empty, yielding the formula L, in case the package mentioned in the dependency
is absent from the repository.



e The Debian package model allows to install only one version of a package at a time.

e In the RPM package model, it is a priori possible to install multiple versions of a
package at a time; however it is in practice almost always excluded by the fact that
different versions of a package install files with the same path on the file system,
and hence are in conflict with each other.

e The Eclipse model allows for an explicit singleton property in component meta-
data, with the semantics that only one version of that component must be installed.

In order to state a complexity result, we will consider in this subsection that com-
ponent installations must be flat, that is must not contain two packages with the same
name (which then would have different version). The complexity result stated in the
following theorem, however, applies equally to the other models mentioned above since
we may always require uniqueness of version for the packages used in the proof.

Theorem 3. Existence of a flat installation containing a component is NP-complete,
even when the component model does not allow for explicit conflicts, alternatives, and
features.

Proof. The problem is in NP for the same reason as in Theorem 1: one can check in
polynomial time for every subset of the repository whether it satisfies abundance, peace,
flatness, and the specific user request.

We show NP-completeness by giving a polynomial reduction of the 3-SAT problem.
Let F = C1A...AC,, be a problem instance, where each C; is of the form C; = L}VL?VL3.
We define a repository Ry consisting of the following components:

e for each propositional variable X a package with name X, existing in versions 0
and 1. Each of these versions has no explicit conflicts or dependencies.

o for each clause C; a package C; in three versions 1, 2, and 3. None of them has
conflicts. If the literal L] (j = 1,2,3) is a positive literal X then component (Cj;, 5)
depends on X (= 1). If the literal Lg is a negative literal =X then component
(Ci, ) depends on X (= 0).

e a package of name F' and version 1 that depends on Cf,...,C,.

If there is a flat Rp-installation containing (F,1) then F is satisfiable : Any flat
installation may in particular contain at most one version of any package associated to a
propositional variable. Hence, a flat Rp-installation I defines a propositional valuation a;
(if I does not contain any version of a package X then we may choose ay(X) arbitrarily),
and when I contains (F, 1) then oy obviously satisfied the 3-SAT instance F.

If F is satisfiable then there exists a flat Rp-installation containing (F,1) : Let «
be a solution of F. This means that one may choose, for any clause C;, one index
s(i) € {1,2,3} such that « satisfies the literal Lf(l). We construct an Rp-installation
from all the packages corresponding to propositional variables in the version according
to their respective truth value in «, the packages (L1, s(1)),..., (L, s(n)), and finally
the package (F,1). O



In some sense, a dependency on a package with name n acts like an exclusive choice
in case of the flatness requirement on installations. If we have versions 1, 2 and 3 of
packages with name n, then an unqualified dependency on name n can be read as the
requirement on exactly one of (n, 1), (n,2), (n,3).

For the problem to be NP-complete, it is enough to have just two versions of each
component:

Corollary 1. Theorem 3 holds for repositories containing at most two versions per
package.

Proof. Tt is sufficient to replace in the above proof each of the components C; by two
components, C} and C?, each of them coming in version 1 and 2:

C},2) depends on C?,

K2

)
C?,1) depends on (X,v) corresponding to the second literal of C;,
e (C2,2) depends on (X,v) corresponding to the third literal of C;,

The component (F, 1) depends on C7,...,C}.

n

2.3. Dealing with exponentially many solutions

Having established the complexity of finding a solution to an upgrade problem, we
now turn our attention to the amount of existing solutions for any given user request. The
interest in analyzing that aspect stems from the observations that, among all possible
solutions, package managers generally try to offer to the user the “best” solution, at
least according to some predefined strategy. Indeed an often overlooked fact is that a
user request that consists of just a list of components to install, remove or upgrade may
have exponentially many solutions. This is closely related to the complexity results of the
previous section which rely on the fact that there is an exponential number of solution
candidates.

Example 1. Consider a repository R consisting of components q;, for 1 < i < n, in
versions 1 and 2, and a component p in version 1 depending on all of q1,...,q, in any
version. The initial installation contains each of the package q; in version 1, and we ask
to install package p, where installations have to be flat.

Any of the 2™ configurations {(p,1)} U{(¢;,1)]i € 1...n,1 <1i <2} is a solution.

These 2" solutions are all pretty different from a user point of view. The solution that
keeps the originally initially version of all the ¢; may be preferred by “paranoid” users
who want to avoid unnecessary changes to the system (as it is often the case for system
administrators of critical production servers). The solution that changes all the ¢; to
their most recent version might be preferred by “trendy” users willing to have a system
as up to date as possible (which is the case for many desktop and developer users).

State of the art package managers try to handle this issue by incorporating hard-
wired criteria (most of which would give preference to the trendy solution above) and
sometimes provide a bit of flexibility by means of cumbersome mechanisms that let the



user alter the standard solver behavior, like the pinning schema used by APT [28], or an
API for programming custom criteria in Smart? and libzypp.?

Such ad-hoc mechanisms suffer from two main drawbacks: (1) they are package man-
ager specific and therefore cannot be shared among different tools, preventing the devel-
opment of common good practices in component deployment; (2) they are not expressive
enough to encode all but the simplest use cases, making it difficult to precisely specify
user needs. The right approach is—on the user side—to expose a high-level, solver in-
dependent, flexible mechanism to specify user preferences and—on the package manager
side—to enable solver externalization and reuse.

3. Dependency solving as a separate concern

We have seen how dependency solving is a difficult, recurrent, and apparently under-
estimated problem. Re-developing from scratch dependency solvers as soon as depen-
dencies and conflicts are introduced in yet another component model does not seem to
have not served well users of component based systems. We argue that an alternative,
more modular, approach is possible by treating dependency solving as a separate concern
from other component management concerns. The goal is to decouple the evolution [sic]
of dependency solving from that of specific package managers and component models.

We believe such a separation will benefit, at first, the involved scientific communities:
CBSE and constraint solving. The former will gain the attention of the latter and will
avoid to reinvent (solving) wheels, the latter will get access to a corpus of challenging
upgrade problems to better tune existing solvers and techniques. Later on, we posit
that synergies among the involved stakeholders will benefit final component users, by
improving dependency solving abilities in state-of-the art package managers. Our early
results seem to support these beliefs, as shown in Section 6.

To treat dependency solving as a separate concern, however, we need suitable ab-
stractions and technologies that allow to describe upgrade problems in a way which is
agnostic from specific component models and tools. In particular, we need ways to grasp
all the information that describe any given upgrade problem instance:

1. installed and available components—describing all known components (local and
remote) and information about which are currently installed;

2. user request—detailing the components that are requested to be installed, removed
or upgraded, possibly with version constraints;

3. user preferences—the criteria describing how a user wants to choose a preferred
solution out of the many possible ones.

In the following we present a Domain Specific Language (DSL)—called CUDF—able to
encode (1.) and (2.), as well as a formalism defined on top of it to grasp (3.). Taken
together they provide an unified way to capture all of the above in a unified way, which
is both independent from component model details and rigorously defined to enable
independent implementations of upgrade problem solvers. Having those devices available,

2http://labix.org/smart, retrieved December 2010
3http://en.opensuse.org/Portal:Libzypp, retrieved December 2010
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Figure 3: Modular package manager architecture

we can build adapters for each component platform and then build a modular solver
engine where solvers can be plugged in according to user needs. Even more so, solvers
can be run in parallel locally or outsourced (e.g. to solver farms in the “cloud”), in order
to provide the user with the best solution current techniques and technologies can find.

The resulting modular architecture is shown in Figure 3. In such an architecture sep-
aration of concerns is established as following: package manager developers may focus
on the killer features of their software (trust management, user interface and interaction,
transactional upgrade deployment, etc.) and stop worrying about dependency solving
issues; CUDF adapters are created for each component model and maintained by compo-
nent metadata architects, or by CUDF experts working with them; dependency solvers
are maintained by solver experts, who will see their technology gain many new fields
of application by just supporting one generic I/O format—CUDF—which comes with
a rigorous semantics, relieving the pain of interpreting the meaning of platform-specific
component metadata.

4. A unified description of upgrades

To enable treating dependency solving as a separate concern in component upgrade
planning, we need a language able to capture all relevant aspects of upgrade problem
instances. In this section we present a DSL called CUDF (for Common Upgrade Descrip-
tion Format), whose documents describe instances of the component upgrade problem.
The design of CUDF has been guided by a few general principles:

Platform independence. CUDF is a common format to describe upgrade scenarios
coming from diverse environments. As a consequence, CUDF makes no assumptions on
specific component model, version schema, dependency formalism, or package manager.
Solver independence. In contrast to encodings of inter-component relations which are
targeted at specific solver techniques (see Section 7), CUDF stays close to the original
problem, in order to preserve its structure and avoid bias towards specific solver.
Readability. CUDF is a compact plain text format which makes it easy for humans to
read upgrade scenario, and ease interoperability with package managers.*

4 As evidence of the benefits of this choice, CUDF is routinely used by the Eclipse P2 team to reason
about upgrade scenarios, instead of the native XML encoding that comes with Eclipse. See http:

10


http://wiki.eclipse.org/Equinox/p2/Meetings/20091221
http://wiki.eclipse.org/Equinox/p2/Meetings/20091221

Extensibility. Only core component properties that are shared by mainstream plat-
forms and essential to grasp the meaning of upgrade scenarios are predefined in CUDF.
Other auxiliary properties can be declared and used in CUDF documents, to allow
the preservation of relevant information that can then be used in optimization crite-
ria, e.g. component size, number of bugs, etc.

Formal semantics. CUDF comes with a rigorous semantics that allows package man-
ager and solver developers to agree on the meaning of upgrade scenarios. For example,
the fact that self-conflicts are ignored is not a tacit convention implemented by some
obscure line of code, but a property of the formal semantics.

4.1. Language overview

An upgrade scenario is represented by a CUDF document. It consists of a sequence
of stanzas, each of which is a collection of key-value pairs called properties. Properties
are typed within a simple type system containing basic data types (integers, booleans,
strings) and more complex, component-specific data types such as boolean formulae over
versioned components used to represent inter-component relationships.

Each CUDF document is made up of three logical sections: a preamble, a component
universe, and a request. The universe contains one component stanza for each component
known to the package manager, so both installed and non-installed (but available) com-
ponents are represented uniformly in a document, in contrast to current platforms which
often distribute this information in different locations using different formats. Component
stanzas support a set of core properties (possibly optional, with default values), the most
important of which are: package and version (which uniquely identify a component
in the universe), depends and conflicts (context requirements), provides (features
provided by the component), and installed (whether the component is installed).

Figure 4 shows a sample CUDF document. The component universe contains several
component stanzas, where both core and extra properties are used. Extra properties
must be declared in the preamble, which starts the document. Extra properties account
for extensibility of the format and enable type checking of CUDF documents. A request
stanza encodes the user request and concludes the document. In its general form, the
request stanza details the components the user wants to install/remove/upgrade (using
the homonymous properties), possibly specifying version requirements.

The full syntax of CUDF is given, as an EBNF grammar, in Appendix A; the formal
semantics in Appendix B.

4.2. Erpressiveness

As CUDF lays at the “interface” between package managers and dependency solvers,
its expressiveness should be validated looking from both angles. From the point of
view of package managers, we have shown that upgrade scenarios coming from several
major component models can be encoded in CUDF; adapters are already available for:
Debian and RPM packages,® Eclipse [5]—with an extension for full OSGi bundles in the
working—, and common feature diagram formalisms used in software product lines [11].

//wiki.eclipse.org/Equinox/p2/Meetings/20091221, retrieved November 2010.
5both are supported out-of-the-box by Mancoosi tools [24]
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preamble:
property: bugs: int = 0, suite: enum(stable,unstable) = "stable",

package: car

version: 1

depends: engine, wheel > 2, door, battery <= 13
installed: true

bugs: 183

package: bicycle
version: 7
suite: unstable

package: gasoline-engine

version: 1

depends: turbo

provides: engine

conflicts: engine, gasoline-engine
installed: true

request:

install: bicycle, gasoline-engine = 1
upgrade: door, wheel > 3

Figure 4: Sample CUDF document
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solvers solvers

User Request
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Figure 5: Sharing upgrade problems and solvers among communities

All encodings are linear in the number of components to encode, even in the presence of
XOR dependencies.®

From the converse angle, that of dependency solvers, we observe that entrants in the
MISC competition (see Section 6) have used very different solver technologies: boolean
satisfiability (SAT), Mixed Integer Linear Programming (MILP), Answer Set Program-
ming (ASP), and graph constraints. They have all been able to handle upgrade problems
encoded as CUDF documents, providing convincing evidence that CUDF is adequate for
a large spectrum of solving techniques.

Hence, at the time of writing, CUDF is already a unique pivot format that allows on
one hand to share solvers among different package managers, and on the other hand to
share a corpus of challenging upgrade problems among solver communities, as shown in
Figure 5. The number of supported solver technologies and component frameworks has

6while usual SAT encodings blow up quadratically in the number of XOR dependencies.
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grown steadily over the past years and it is likely to keep growing in the future.

4.3. Implementations

CUDF has been subject to an ad-hoc standardization process, resulting in a specifi-
cation [37]. 1libcudf is the “reference” implementation of the specification; it consists of
a parsing and pretty-printing library for CUDF, as well as an implementation of CUDF
semantics. The latter consists in:

1. given a CUDF document, libcudf can verify whether installed components are
consistent, i.e. whether they satisfy abundance and peace;

2. given a CUDF document and an encoding of a potential solution, 1ibcudf can
verify whether the solution is valid, i.e. abundance, peace, and request satisfaction.

libcudf comes with the cudf-check command line tool which provides the above two
features out of the box. libcudf is Free Software and can be used both from the OCaml
and C programming languages; it is available at http://www.mancoosi.org/software/.

The authors are aware of other CUDF implementations. Some have been developed
in the context of the Mancoosi project to capture FOSS distribution upgrade scenario
descriptions into CUDF, in order to build a cross-distribution corpus of upgrade problem
instances [3]. Using the tools we have verified that the average size of an upgrade scenario
encoded in CUDF is linear with the size of the original package manager information and
usually smaller, since metadata not relevant for describing the upgrade problem can be
dropped. For instance, on a large Debian installation, using both testing and unstable
suites (totaling ~ 45’000 packages), APT information on disk amounts to 14 Mb while
the corresponding CUDF document is only 9 Mb.

An independent CUDF implementation is also available in CUPT,” a recent APT-
compatible package manager for Debian. In CUPT, CUDF is used as an interface format
to pipe upgrade scenarios to external solvers, so that upgrade planning can be decoupled
from other package manager activities. While no stable software has been released yet,
work is ongoing to implement CUDF in APT and APT2 in order to decouple dependency
solving from the package managers.

5. User preferences as multicriteria optimization

The DSL presented in the previous section addresses the need of grasping those
aspects of an upgrade scenario that are related to the correctness of a given solution
(i.e. “does the solution satisfy the user request as well as the expectations of all installed
components?”). Quality aspects of solutions (i.e. “is the proposed solution to my liking?”)
are much less known, not to mention agreed upon, and hence they do not yet constitute
suitable material for DSL standardization. Nonetheless, to improve the state-of-the-art
in upgrade planning we do need at the very least a rigorous framework to reason about
solution quality. In this section we propose one such formalism.

As we have seen in Section 2, there are in general exponentially many solutions to
a user request, so it is necessary to allow users to express their preferences about the

"http://wiki.debian.org/Cupt, retrieved December 2010
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desired solution. The state-of-the-art approach is to present one particular solution—
found according to some built-in strategies generally unknown to the user—and then
allow the user to interactively fiddle with the solution. Considering again Example 1,
it is easy to see why this approach has serious shortcomings: a “paranoid” user who
is presented with a “trendy” solution will need to make n changes to the solution (and
usually rerun the solver each time) before getting what she wants. In modern component
repositories, where n can be quite large, this approach is not viable.

An alternative approach is to let the user specify high-level criteria that capture what
she considers important in a solution: she may be concerned about the packages that are
changed, the packages that are not up to date, the packages that get remowved, or even
“the number of installed security fixes”, or “the overall installed size”. On top of CUDF
semantics, we can build an extensible dictionary of well-defined criteria like the above
and then let the user inform the solvers that the required solution should maximize, or
minimize, a given criterion.

It is quite natural for the user to combine several of these criteria: to compare two

solutions s and s’ whose criteria have values (ci,...,¢,) and (c,...,c,), the user will

ren

prefer s over s’ if all criteria of s are better or equal than s’ (i.e. s is Pareto-better then s’).
Unfortunately, when one has more than one criterion, there may be many incomparable
Pareto-optimal solutions; this is the core problem of multicriteria optimization which has
been extensively studied in the optimization research community [34]. Many different
approaches have been proposed to aggregate multiple criteria, the most common being:
Lexicographic. The criteria are ordered by importance, and compared lexicographi-
cally: (c1,...,cn) is better than (cf,...,c;,) iff there exists a i s.t. for all j < i c; =]
and ¢; > c}; for example, a security upgrade may be considered more important than
any other criterion, and put first in the order.
Weighted sum. The criteria are aggregated into a single measure using user-specified
weights k;: (c1,...,¢,)is better than (¢f,...,¢,) iff Y ;. kici > D1 <, <, kic}; this may
be useful when trying to balance different criteria for which no clear order is established.

More sophisticated approaches exists, like lexzimin and leximaz [13], and an extensive
literature is devoted to them. According to the use case, the best aggregation function
may vary widely. Our own proposal for a high level user preferences formalism is simple

yet expressive:

1. define a dictionary of useful criteria c;;

2. define a dictionary of aggregation functions lex, weightedsum, leximin, etc.

3. write the user preference as an expression op(kici, ..., knc,) where k; can be one of
{+, —} to indicate maximization or minimization of the criterion (for aggregation
functions like lex, leximin and leximaz), or an integer (for aggregation functions
like weightedsum).

Formally we define the criteria as in Table 1, where I is the initial installation and S
is a proposed new installation. We write V(X, name) the set of versions in which name
(the name of a component) is installed in X, where X may be I or S. That set may
be empty (name is not installed), contain one element (name is installed in exactly that
version), or even contain multiple elements in case a component is installed in multiple
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Table 1: Optimization criteria

removed(I,S)  ={name | V(I,name) # 0 and V(S,name) = 0}
new(I,S) ={name | V(I,name) = ) and V(S,name) # 0}
changed(I,S)  ={name | V(I,name) # V(S,name)}
notuptodate(I, S)={name | V (S, name) #

and does not contain the most recent version of name in S}
unsatrec(I,S)  ={(name,v,c) — v is an element of V (S, name)

and (name, v) recommends ..., c, ...

and c is not satisfied by S}

versions.® Using this formalism, it is quite easy to define a paranoid preference as
paranoid = lex(—removed, —changed)

The solution scoring best under this criterion will be the one with the minimum number
of removed functionalities, and then with the minimum number of changes. A trendy
preference is also easy to write

trendy = lex(—removed, —notuptodate, —unsatrec, —new)

Currently, each criterion and aggregation function must be specifically encoded for
a given solver technology, but work on a generic system which will be able to produce
these encodings automatically is ongoing [38].

6. Experimental results: the Mancoosi International Solver Competition

The DSL and formalism presented in the previous two sections have been used to
run a dependency solving competition called MISC, for Mancoosi International Solver
Competition. The variety of solving techniques implemented by participants, as well as
the popularity of FOSS distributions from which package manager entrants come, give,
in the authors opinion, a reasonable guarantee of the generality of the following results,
that come from MISC 2010, the first edition of the competition:

1. The proposed languages and formalisms are expressive enough to encode both real
upgrade scenarios coming from users of popular FOSS distributions and synthetic
problems of increasing complexity.

2. The proposed languages and formalisms are unbiased enough to allow constraint
solvers, based on a wide range of techniques, to attack upgrade problem instances.
Dependency solving can therefore be outsourced to external solvers, as depicted in
Figure 3.

3. The complexity of real upgrade problem instances grows with the number of com-
ponent repositories, as well as the complexity of the optimization criteria.

8The CUDF component model is not flat but allows to encode both flat and non-flat models [3].
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4. Dependency solving abilities of package managers used in popular FOSS distri-
butions fall short of state-of-the-art constraint solvers, both in terms of solution
quality and completeness.

In this section we present and discuss MISC 2010 results, as evidence of the above claims.

6.1. Competition details

MISC 2010 has been run in June 2010. Its results have been presented at the LoCoCo
workshop, in the context of FLoC (Federated Logic Conference) 2010. All competition
data (formal rules, problem instances, results, etc.) are available at http://www.mancoosi.
org/misc-2010/ and allow to independently re-run the competition.

Each participant had to face several problem instances. For each instance, the solver
received a full CUDF document as input and must produce a CUDF-encoded solution
(i.e. a CUDF document without a request stanza). Solvers could participate in either
one or both of two tracks—trendy and paranoid, as defined in Section 5—and strove
to optimize their solutions accordingly. Problem instances were classified in categories:
synthetic problems (categories: easy, difficult, impossible), instances of the problem 1-
in-3 SAT (category cudf set), and real instances collected from Debian users (category
debian-dudf) using the mancoosi-contest utility [24] which plugs into package managers
for Debian-based distributions to store upgrade problems in CUDF format.

Synthetic problems have been generated from a real Debian installation by varying
a number of parameters such as the number of components in the universe, the number
of installed components, and the number of components requested to install /remove/up-
grade (i.e. request size). The size of requests ranges from 10 (for easy) to 20 (impossible)
and components appearing therein are possibly equipped with version constraints.

For the difficult and impossible categories, the initial state has been made on pur-
pose inconsistent by marking random components as installed, ensuring their context
requirements were not satisfied, to simulate a badly broken user installation.

The following solvers took part in the competition:

solver author/affiliation technique/solver
apt-pbo [39] Trezentos / Caixa Magica Pseudo Boolean Optimization
aspcud Matheis / University of Potsdam Answer Set Programming
inesc [4] Lynce et. al / INESC-ID Max-SAT

p2cudf [4] Le Berre and Rapicault / Univ. Artois Pseudo Boolean Optimization
/ Satdj (www.sat4dj.org)

unsa [26] Michel et. al / Univ. Sophia-Antipolis =~ Mixed Integer Linear Programming
/ CPLEX (www.cplex.com)

No solver has been provided by the authors, who acted solely as competition orga-
nizers. We added two extra participants—apt-get and aptitude—by wrapping with a
CUDF-compatibility layer the solvers of package managers used in Debian-based FOSS
distributions. As they do not allow to specify preferences, the purpose of the experiment
was to check how hard-coded optimizations score with respect to competition criteria.
The solver ucl from Gutierrez et. al from Univ. Louvain that took part to the Misc
competition it is not presented here as its results were not relevant.
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MISC 2010 results are given in Table 2. The clear winner in both tracks is unsa,
followed by p2cudf for the trendy track and inesc for the paranoid track. It is important
to notice that the solvers perform differently on different problem sets: for example,
p2cudf shows better results than the others in the category debian-dudf, and it will be
surely interesting to analyse, in future work, the structural differences among the different
problem sets.

6.2. Discussion

CUDF acceptance. The actual run has been preceded by a discussion period among
organizers and participants. During this period, solver authors could expose their doubts
about CUDF semantics and competition rules, as well as submit solver prototypes for the
only purpose of testing their CUDF-based interface with the competition infrastructure.

Solver authors have not reported any perceived bias, of either CUDF or the opti-
mization criteria, towards specific solving techniques. The acceptance of the proposed
languages and formalisms among participants has hence been very good, although self-
selection bias is possible. The main discussion topics revolved around parsing issues and
misconceptions about how upgrades “should” work. Interestingly, while CUDF seman-
tics is rigorous and has proven to be very stable thus far, solver authors used to specific
component platforms tend to believe upgrade should work as they are “used to”, even if
the semantics of upgrades in their platform of origin (e.g. RPM) is ambiguous and dele-
gated to implementation details of specific package managers. This aspect has reinforced
our conviction that an interface format equipped with a rigorous semantics is the way to
go in order to drive the attention of constraint solving communities to upgrade problem
issues.

How complexity grows in practice. MISC 2010 results clearly show that the number
of criteria in the optimization function is an important source of complexity: the trendy
and paranoid tracks are run on the same problem sets, whereas trendy (which has more
parameters than paranoid) is consistently more difficult to handle for all solvers.

We have also run all competition entrants on a separate set of problems, specifically
designed to test the impact of having several repositories available, a scenario that hap-
pens quite often in practice. The corresponding categories have been built as follows: in
a base universe, corresponding to the Debian distribution sarge (currently also known
as oldstable), a fixed request and a fixed set of installed components is generated, ensur-
ing it is satisfiable (meaning that the request has at least a solution, independently of
the optimization criteria). The very same upgrade problem is then replicated in larger
universes, by adding more recent Debian repositories: etch,lenny, squeeze, and sid.

Table 3 show the performance of the solvers on these categories. It is immediate
to notice how the time needed to answer the same request grows very quickly when
increasing the number of available component repositories. This is explained by the fact
that using multiple repositories greatly increases the number of components available in
multiple versions and, in turn, the number of conflicts in a flat component model.

Performance of FOSS package managers. Table 3 permits to assess the relative
performances of competition entrants and package managers from popular FOSS dis-
tributions. Package manager solvers exhibit decent performances on machines equipped
with a single component repository, which is often the case for freshly installed machines.
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Figure 6: Solver results with increasing number of repositories (trendy)

This matches end-user experience that package manager performance on newly installed
machines is quite good.

However, problems on machines that were installed from an old distribution and that
use a mixture of component repositories, turn out to be very challenging. In Figure 6 we
see clearly that, while apt-get and aptitude behave well with one repository, they become
unreliable from two repositories on, and are no longer able to solve the large majority
of problems at all. This corresponds to the end-user experience that installation and
upgrades become less reliable on FOSS machines after a year or so: this corresponds
more or less to the release cycle of several mainstream distributions, and end-users find
themselves on machines where the package manager needs to handle more than one
repository, the original one from which the machine was installed, and the newly released
one.

Looking at the time distribution of the same experimental data in Figure 7 (for the
trendy criterion) we observe a similar pattern. While state-of-the-art package managers
abort or time-out, solvers like unsa or inesc are still able to cope with complex problems in
less than 60 seconds. It is important to notice that in this context, a solution is “optimal”
only with respect to solutions given by other solvers. Therefore even if a solver does not
provide the best solution, it is still important to take it into consideration in the overall
evaluation.

The data for the paranoid criterion in Table 3 shows the same overall behaviour, with
significantly shorter execution times, indicating that the number of combined criteria
in the user preferences is another significant factor in the complexity of the upgrade
problems (paranoid involves 2 criteria, while trendy involves 4).
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Figure 7: Solver performances with increasing number of repositories (trendy)

7. Related work

Software evolution management has many facets; in this paper we have focused on
the area of post-development management. In particular we have studied how to improve
software upgrade planning in package managers which are equipped with automatic de-
pendency solving, given that such utilities are common place in component-intensive soft-
ware platforms. The problem of dealing with inter-component relationships was known
well-before the advent of such package managers, though. Seminal work in the area of
software configuration management (e.g. [8, 27]) has established the “provide/require”
paradigm to reason about component interconnection, with a varying degree of granu-
larity and expressiveness [30]. Those and subsequent works have also detailed formal
properties able to grasp, and practically verify, the compatibility of (new versions of)
components within a given deployment context.

The explicit notion of inter-component conflicts is not part of those seminal propos-
als. In the technology camp such a notion has been popularised by the advent of early
component managers (e.g. the FreeBSD porting system [35], RPM, and dpkg). Together
with conflicts, early package managers have brought to users the folklore problem known
as “dependency hell”; i.e. the difficulty of satisfying at the same time all component
dependencies and conflicts, sometimes stumbling upon the (apparent) impossibility of
doing so. The next technology leap has brought package managers equipped with auto-
matic dependency solving abilities (e.g. APT [28], Yum, Urpmi, etc.). Such systems have
not only solved most of the issues brought by the dependency hell, but also addressed
several of the concerns related to software distribution (see [16] for an introduction on the
subject), even though they have done so in a centralized rather than federated way [15].
Where the state of the art in package managers is still lacking though, as we have shown,
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is in their actual dependency solving ability. Improvement in that area is badly needed
to properly plan upgrades in component-intensive software platforms.

Turning to formal encodings of the upgrade problem, an early SAT-encoding and
complexity analysis for the upgrade problem, limited to the component models of FOSS
distributions, has been provided by some of the authors in [12, 23] and has popularised
the use of SAT technology in package managers. Results and encoding detailed in the
present paper are more general and detail the minimum requirements for any component
model to exhibit similar complexity behaviors.

The OPIUM prototype used in 2006 a SAT solver with an ad-hoc, hard coded op-
timization in line with the paranoid criterion [40]; SUSE’s libzypp incorporated a SAT
solver in 2007; the Eclipse P2 system comes with the Sat4J solver since 2007 [18]. This
trend seems to continue steadily: a very recent entrant is apt-pbo, introduced in the
Caixa Mégica distribution in early 2010 [39]. None of those systems have offered the
ability to outsource dependency solving and optimization to an external solver.

The language we have proposed to encode user preferences is more flexible than those
of OPTUM and similar experiences: we provide a core ontology of criteria and combinators
to join them together. Even though user criteria must currently be specifically encoded
for any given solver, we have looked at ways to automate the encoding. Moreover instead
of leaving to the user the task of defining specific criteria, they could be asked for high
level preferences and then use a goal-based model to “compile” those desiderata to the
target criterion language. The work of Liaskos et al. [22], even if not directly related
to our domain, goes in the direction of making complex systems easily configurable by
deducing low-level options from high-level user specifications.

Several alternative encodings of the upgrade problem have been proposed: SAT [23,
40, 18], Pseudo Boolean Optimization [39], Partial Weighted Max SAT [4], Mixed Integer
Linear Programming [26], as well as some others championed by entrants in the MISC
2010 competition (see Section 6).

Jenson [17] proposes a component model without explicit (or implicit) component
conflicts and does not handle component removal in neither requests nor solutions. As
a consequence, such a degenerate upgrade problem is way simpler than what we have
modeled in this paper and can be solved in polynomial time, even though the number of
solutions may be huge. Dependency solving as SAT with optimization has been reviewed
in [18] where it was also observed that much of the complexity stems from multiple
versions of components and the constraints they entail.

The need of dealing properly with dependencies in CBSE have been observed be-
fore [21, 41]. Vieira et. al have argued that dependencies should be treated as a first
class problem in CBSE [41] and have established requirements for that. While we fo-
cus on static deploy-time dependencies, which have become popular in the meantime,
we observe that CUDF fulfills all their requirements of “being based on uniform design
principles following some kind of standardization” and offer dependency metadata which
are “expressive, intuitive, and concise [in] representation”. We agree with the authors
and believe that the proposed formalisms are a significant step forward in treating de-
pendencies as a first class problem in CBSE.
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8. Conclusions

Dependency solving is difficult. This is hardly a surprise for anyone maintaining soft-
ware installations, especially when they are made of thousands of components evolving
rapidly and independently. The phenomenon requires nevertheless a detailed analysis to
pinpoint the origin of the complexity. We found that, for common component models
and platforms, the complexity is due to inter-component conflicts, either explicitly de-
clared as component metadata or implicitly assumed between different versions of the
same components. This theoretical result is confirmed by experimentation on both real
and synthetic upgrade problem instances: dependency solving becomes harder as com-
ponent repositories are added, thus increasing the number of available versions of the
same components. Complexity also increases with the complexity of user preferences
(i.e. optimization criteria). This explains why shortcomings of state-of-the-art depen-
dency solvers are often not observed on freshly installed machines, but pop up as soon
as one tries to do upgrades among distribution major releases, or else to mix and match
components from different releases.

Better tools to support evolution of component-based systems are needed. Design,
development, integration, and deployment of these new tools will only be made possible if
we treat dependency solving as a separate concern of evolution management, i.e. as a first
class research problem in its own right. To that end, we need rigorous abstractions to be
put at the interface between component managers and solvers engineered by independent
research communities, which enjoy the challenges posed by concrete upgrade problems.
We have introduced some of those abstractions—CUDF and a companion user preference
language—and we have reported the results of MISC, an international solver competition
based on these abstraction, which confirm their adequateness.

On top of the proposed abstractions, it is easy to imagine a generic component man-
ager front-end, which implements the architecture of Figure 3 and can then be targeted,
adding back-ends, to specific component platforms. We have developed one such pro-
totype, called MPM [2], targeting Debian-based FOSS distributions. Any solver imple-
menting the interface of MISC 2010 can be plugged into MPM and used to plan package
upgrades; upgrade deployment will then be delegated to legacy distribution tools. As an
example, a trivial solution to the upgrade problem discussed in Figure 2 can be found
by MPM using the inesc solver submitted to the paranoid track:

remove: gnome-utils gnome-desktop-environment gnome
install: baobab=2.4.2-1.1+bl

in such a solution the (virtual) packages gnome-utils, gnome-desktop-environment,
and gnome are still removed, whereas all other packages forming the GNOME desktop
are not, saving the (possibly newbie) user from losing her user-friendly work environment.
This is a consequence of the paranoid criterion and of a dependency solver able to find
a high-quality solution with respect to such desiderata.

As this example shows, one-size—fits-all solvers are not the way to go, especially when
solvers are developed in house without reusing existing knowledge and results. Rather, we
need highly customizable upgrade planners able to satisfy diverse user needs. Decoupling
solvers from package managers is a necessary intermediate step that makes it possible to
experiment with independent solvers, and to outsource dependency solving to evolution
planners living far away from component managers.
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As evidence of the pertinence of our approach, the experimental version 0.8.16 exp5
of apt, a mainstream package manager for the Debian distribution, implements a CUDF
interface to call the solvers issued from the MISC competition.
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Appendix A. CUDF syntax

Owerall structure.

cudf ::=preamble? universe request

Flow elements.

ssep::=(comment|‘\n’) * ‘\n’ (comment|‘\n’)*
comment::=‘#’ line
line::=["\n] * ‘\n’

Document parts.

preamble::=‘preamble: ’ line stanza ssep

universe::=packagex

package::=‘package: ’ pkgname stanza ssep
request::=‘request: ’ line stanza commentsx

Stanzas.

stanza:=(property ‘\n’ | comment)x*
property::=propname ‘: °’ value
propname::=ident
value::=bool | enum | int | nat | posint | string | pkgname | ident | typedecl
| vpkg | veqpkg | vpkgformula | vpkglist | vegpkglist

Values: CUDF types.
bool::=‘true’ | ‘false’
int:=(+’|“=)? [0-9]+
string:=["\r\nlx*
vpkg::=pkgname (sp + vconstr)?
vpkgformula::=andfla | ‘true!’ | ‘false!’
vpkglist:: =2 | vpkg (sp * ¢, sp * vpkg)x*
enum::=ident
pkgname::=[A-Za-z0-9+./0 () %-1+
ident::=[a-z] [a-z0-9-]*
nat:=*‘+’[0-9]+
posint::=‘+’ [0-9] x [1-9] [0-9] %
vegpkg::=pkgname (sp + wveqconstr)?
vegpkglist::=< | vegpkg (sp * ¢,’ sp* veqpkg)x
typedecl::=*7 | typedecll (sp* ©,’ sp = typedecll)x
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Value: gory details.

veonstr::=reop sp + ver

veqeconstr::=°=’ sp + wver
relop::=‘=2 | ‘1= | ‘>=2 | >7 | ‘<=7 | ‘<
spu= 7| ‘\t?

ver::=posint
andfla::=orfla (spx ¢, sp* orfla)x
orfla::=atomfla (spx <1’ sp x atomfla)*
atomfla::=vpkg
typedecll :=ident sp x “:’ sp* typeexpr(sp* = spx ‘[’ valuex 1?)?7
typeexpr::=typename | ‘enum’ spx ‘[’ ident (*,’ sp* ident)x 1’

[

[4

typename::=‘bool’ | ‘int’ | ‘nat’ | ‘posint’ | ‘string’ | ‘pkgname’
| “ident’ | ‘vpkg’ | ‘veqpkg’ | ‘vpkgformula’ | ‘vpkglist’
| ‘veqpkglist’

Appendix B. CUDF semantics

Appendiz B.1. CUDF types

We start by defining the domains of CUDF types, which are used in the definition of
the semantics later on.

Definition 1 (CUDF type domains).

e V(posint) is the set of positive natural numbers

V(ident) is a set of distinguished labels (intuitively, there is one such label for each
lezically valid CUDF identifier)

e V(bool) is the set {true, false}

e V(vpkgformula) is the smallest set F' such that:
true € F (truth)
false e F (untruth)
V(vpkg) C F' (package predicate)
\/izl,‘..,n a; €F ai,...,a, atoms € F (disjunctions)

Nizi..ndi € Fdi,...,d, disjunctions € F' (conjunctions)

V(vpkglist) is the smallest set L such that:

el (empty lists)
p:l e L peV(vpkg),l € L (package concatenations)

e V(veqpkglist) is the smallest set L' C V(vpkglist) such that:

el (empty lists)
p:l e L' peV(veqpkg),l € L' (package concatenations)
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Appendiz B.2. CUDF formal semantics

CUDF semantics is defined in a style similar to [23], however, we now have to deal
with an abstract semantics that is closer to “real” problem descriptions, and that contains
artifacts like features. This induces some complications for the definition of the semantics.
In [23] this and similar problems were avoided by a pre-processing step that expands many
of the notions that we wish to keep in the CUDF format.

Appendiz B.3. Abstract syntax and semantic domains

The abstract syntax and the semantics is defined using the value domains defined in
Appendix B.1. In addition, we give the following definitions:

Definition 2.

o CONSTRAINTS is the set of version constraints, consisting of the value T and all
pairs (relop,v) where relop is one of =,#,<,>,<,> and v € V(posint).

e KEEPVALUES is the set of the possible values of the keep property of package in-
formation items, that is: {version, package, feature,none}

The abstract syntax of a CUDF document is a pair consisting of a package description
(as defined in Definition 3) and a request (see Definition 5).

Definition 3 (Package description). A package description is a partial function

V(ident) x V(posint) ~»
V(bool) x KEEPVALUES x V(vpkgformula) x V(vpkglist) x V(vegqpkglist)

The set of all package descriptions is noted DESCR. If ¢ is a package description then
we write Dom(¢) for its domain. If ¢(p,n) = (i,k,d, c,p) then we also write

p,n).tnstalled =1

p,n).keep =k

p,n).conflicts =c

¢(p, ).
¢(p, ).
¢(p,n).depends = d
¢(p,n).
¢(p,n).

p,n).provides = p

It is natural to define a package description as a function since we can have at most one
package description for a given pair of package name and version in a CUDF document.
The function is generally only partial since we clearly do not require to have a package
description for any possible pair of package name and version.

We define the removal operation of a particular versioned package from a package
description. This operation will be needed later in Definition 14 to define the semantics
of package conflicts in case a package conflicts with itself or a feature provided by the
same package.
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Definition 4 (Package removal). Let ¢ be a package description, p € V(ident) and
n € V(posint). The package description ¢ — (p,n) is defined by

Dom(¢ - (pa n)) = Dom(gi)) - {(pa n)}
(d) - (p7 n))(q,m) = ¢(qam) fO’I’ all (qvm) € Dom(qﬁ - (p7 ’I’L))

Definition 5 (Request). A request is a triple (I;,1,,1q) with 1;,1,,1lq € V(vpkglist).

In a triple (I;,l.,1q), I; is the list of packages to be installed, I, the list of packages
to be updated, and I, the list of packages to be deleted.

Appendiz B.4. Installations
Definition 6 (Installation). An installation is a function fromV(ident) to P(V(posint)).

The idea behind this definition is that the function describing an installation asso-
ciates the set of versions that are installed to any possible package name. This set is
empty when no version of the package is installed.

We can extract an installation from any package description as follows:

Definition 7 (Current installation). Let ¢ be a package description, the current package
installation of ¢
ig:V(ident) — P(V(posint))

is defined by
ig(p) = {n € V(posint) | (p,n) € Dom(d) and ¢(p,n).installed = true}

A package can declare zero or more features that it provides. The function fy defined
below associates to any package name (here intended to be a the name of a virtual
package) the set of version numbers with which this virtual package is provided by some
of the packages installed by ¢:

Definition 8 (Current features). Let ¢ be a package description, the current features of

¢
fo:V(ident) — P(V(posint))

is defined by

fo(p) ={n € V(posint)| exists ¢ € Dom(i,) exists m € i4(q) such that
(((=,n),p) € &(q,m).provides or (T,p) € ¢(q, m).provides)}
The second case in the definition above expresses the fact that providing a feature
without a version number means providing that feature at any possible version.
In order to define the semantics of a CUDF document, we will frequently need to

merge two installations. This will mainly be used for merging an installation of packages
with an installation of provided features. The merging operation is formalized as follows:

Definition 9 (Merging). Let f, g:V(ident) — P(V(posint)) be two installations. Their
merge fUg:V(ident) — P(V(posint)) is defined as

(fug)p)=fp)Uglp)  for anyp € V(ident)
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Appendiz B.5. Consistent package descriptions

We define what it means for an installation to satisfy a constraint:

Definition 10 (Constraint satisfaction). The satisfaction relation between a natural
number n and a constraint ¢ € CONSTRAINTS, noted n = ¢, is defined as follows:

nET for any n nE(<v) iffn<wv
nE(=v) iffn=v nkE(>,v) iffn>wv
nE(#v) iffn#v nkE(<v) iffn<wv

nkE (>v) iffn>wv

Now we can define what it implies for a package installation to satisfy some formula:

Definition 11 (Formula satisfaction). The satisfaction relation between an installation
I and a formula p, noted I |= p, is defined by induction on the structure of p:

o [ = (c,p) where, c € CONSTRAINTS and p € V(ident), iff there exists an n € I(p)
such that n = c.

e IE A NGy iff TE & foralll <i<n.
e I =1 V...V ¢, iff there is an i with 1 < i <n and I | ¢;.
We can now lift the satisfaction relation to sets of packages:

Definition 12. Let I be an installation, and | € V(vpkglist). Then I =1 if for any
(c,p) € there exists n € I(p) with n = c.

Note that, given that V(veqpkglist) C V(vpkglist), this also defines the satisfac-
tion relation for elements of V(veqpkglist). Also note that one could transform any
[ € V(vpkglist) into a formula I, € V(vpkgformula), by constructing the conjunction
of all the elements of [. The semantics of [ is the same as the semantics of the formula
l/\.

Definition 13 (Disjointness). The disjointness relation between an installation I and a
set 1 € V(vpkglist) of packages possibly with version constraints, is defined as: T || 1 if
for any (c,p) € 1 and all n € I(p) we have that n = c.

Definition 14. A package description ¢ is consistent if for every package p € V(ident)
and n € iy(p) we have that

1. iU fs = ¢(p,n).depends
2. igp—(pn) U fo—(pn) || &(p,n).conflicts

In the above definition, the first clause corresponds to the Abundance property of
[23]: all the dependency relations of all installed packages must be satisfied. The second
clause corresponds to the Peace property of [23]. In addition, we now have to take
special care of packages that conflict with themselves, or that provide a feature and at
the same time conflict with that feature: we only require that there be no conflict with
any other installed package and with any feature provided by some other package (see
also Section Appendix B.7).
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Appendiz B.6. Semantics of requests

The semantics of a request is defined as a relation between package descriptions. The
idea is that two package descriptions ¢; and ¢ are in the relation defined by the request
r if there exists a transformation from ¢; to ¢o that satisfies 7.7

First we define the notion of a successor of a package description:

Definition 15 (Successor relation). A package description ¢o is called a successor of a
package description ¢1, noted ¢1 — ¢2, if

1. Dom(¢1) = Dom(¢ps)
2. For all p € V(ident) and n € V(posint): if ¢p1(p,n) = (i1, k1,d1,c1,p1) and
¢2(p,n) = (i2, ko, da, c2,p2) then ki = ks, di = da, c1 = c2, and p1 = p».
3. For all p € V(ident)
o for alln € ig, (p): if 1(p,n).keep = version then n € ig4,(p).
e if there is an n € iy, (p) with ¢1(p,n).keep = package then iy, (p) # 0

o foralln € iy, (p): if p1(p,n).keep = feature theniy,Ufs, = ¢1(p,n).provides

The first and the second item of the above definitions indicate that a successor of a
package description ¢ may differ from ¢ only in the status of packages. The third item
refines this even further depending on keep values:

e If we have a keep status of version for an installed package p and version n then
we have to keep that package and version.

o If we have a keep status of package for some installed version of a package p then
the successor must have at least one version of that package installed.

e If we have a keep status of feature for some installed version n of a package p
then the successor must provide all the features that where provided by version n
of package p.

Definition 16 (Request semantics). Let r = (I;,ly,lq) be a request. The semantics of r
is a relation ~C DESCR x DESCR defined by ¢1 ~ oo if

L ¢1— ¢2

¢2 1S consistent

iy U f¢2 ': li

igy U ffi)z ” lq

gy U foo = lu, and for all p such that (c,p) € l, we have that (ig, U fe,)(p) = {n}
(i.e., is a singleton set) where n >n' for alln’ € (ig, U fs,)(p).

oUW

9The definition of optimization criteria will is outside the scope of this document; see Section 5 of
the “Dependency Solving: a Separate Concern in Software Evolution Management” manuscript.
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Appendiz B.7. Comments on the semantics

Installing multiple versions of the same package. The semantics allows a priori to in-
stall multiple versions of the same package. This coincides with the semantics found in
RPM-like FOSS distributions (which a priori do not forbid to install multiple versions
of the same package), but is in opposition to the semantics found in Debian-like FOSS
distributions (which allow for one version of any package to be installed at most).

In many practical cases the distinction between a priori allowing or not for multiple
versions of a package makes little difference. In the RPM world multiple versions of
the same package are very often in a conflict by their features or shipped files. If both
versions of the same package provide the same feature and also conflict with that feature
then the RPM semantics, as the CUDF semantics, does not allow to install both at the
same time. Only packages that have been designed to have distinct versions provide
distinct features (in particular, files with distinct paths) can in practice be installed in
the RPM world in several different versions at a time. This typically applies to operating
system packages. In order to have a meta-installer with Debian semantics work correctly
on such a package description, it is sufficient to rename the packages, and to create a
new package, say p — n, for a package p and version n when p can be installed in several
versions.

On the other hand, a meta-installer with RPM semantics will produce solutions on a
package description that would not be found by a meta-installer with Debian semantics
since it is free to install several version of the same package. The uniqueness restriction
of Debian can easily be made explicit in the package description by adding a to each

[1yeel)

package description stanza, say for package name “p”, a serialized property “conflicts

p’.

Upgrading packages. Even though the semantics allows for multiple installed versions of
the same package, the notion of “upgrade” (at least for what concerns this specification)
is intimately tied to a single installed version of a given package.

Hence, for an upgrade request to be fulfilled for a package p, exactly one version of p
must be installed in the resulting package status. Additionally, to preserve the “upgrade”
intuition, the resulting installed version must be greater or equal than the greatest version
of p which was previously installed. Both these conditions are expressed by point (5) of
Definition 16. Note that a strictly greater version of what was previously installed can
be requested by specifying a suitable “>” predicate as part of the upgrade property.

Upgrading virtual packages. Virtual packages, or features, can be with or without version
specification. The fact that the lack of version specifications is interpreted as providing
all possible versions of a given feature (see Definition 8) interacts with the semantic of
upgrades when virtual packages are mentioned within upgrade. In particular, upgrades
are de facto possible only for versioned virtual packages.'?

10The reason is that upgraded (virtual) packages must correspond to singleton sets in the resulting
package status, whereas non-versioned virtual packages will provide infinite sets. Similarly, if in the
initial package status a virtual package is non-versioned, it will provide an infinite version sets, whose
maximum cannot be matched by any singleton set in the resulting package status.
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