
Submitted to:
Lococo 2011

c© C. Artho et al.
This work is licensed under the
Creative Commons Attribution License.

Sources of Inter-package Conflicts in Debian

Cyrille Artho Kuniyasu Suzaki
Research Center for Information Security

AIST, Tsukuba, Japan
c.artho@aist.go.jp k.suzaki@aist.go.jp

Roberto Di Cosmo Stefano Zacchiroli
Laboratoire PPS

Université Paris Diderot – Paris 7, France
roberto@dicosmo.org zack@pps.jussieu.fr

Inter-package conflicts require the presence of two or more packages in a particular configuration,
and thus tend to be harder to detect and localize than conventional (intra-package) defects. Hundreds
of such inter-package conflicts go undetected by the normal testing and distribution process until
they are later reported by a user. The reason for this is that current meta-data is not fine-grained
and accurate enough to cover all common types of conflicts. A case study of inter-package conflicts
in Debian has shown that with more detailed package meta-data, at least one third of all package
conflicts could be prevented relatively easily, while another one third could be found by targeted
testing of packages that share common resources or characteristics. This paper reports the case study
and proposes ideas to detect inter-package conflicts in the future.

1 Introduction

1.1 Package-based software distributions

Modern software distributions are organized into packages. A software package is a self-contained unit
that can be installed or removed independently of other packages, as long as dependencies are met. A
package manager controls such administrative tasks; compared to unmanaged installations, the bene-
fits of a package-based approach are the ability to automatically install, upgrade, and remove packages
without the need to remember installation locations or which files are affected by a change.

In real software, this ideal state is not easy to achieve, due to dependencies between software pack-
ages, and interactions between software belonging to different packages. Dependencies arise because
some packages provide lower-level functionality used by others. Interactions occur on shared resources,
such as files, and because packages may provide components that can be combined into a larger system
(such as client and server packages communicating together).

Dependencies restrict the ability to freely install, remove, or upgrade packages. If a package a
depends on another package b, a package manager automatically requires b to be installed when a is
requested to be installed. Furthermore, package b cannot be removed as long as a is still in use. Finally,
upgrades of one package often require a simultaneous upgrade of related packages. In addition to this,
there is a notion of conflicting packages: two packages may use the same resource or provide the same
service in a way that is incompatible with each other, so only one of these two packages may reside on a
system at any given time.

In package-based software distributions, so-called package meta-data describes dependencies and
relations between packages. Most Free Open Source Software (FOSS) systems are managed in that way.
Meta-data contains information about dependencies of packages, and conflicts between them. At the time

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Inter-package Conflicts in Debian

of writing, meta-data covers relations between packages on a package level; dependencies and conflicts
are indicated by package, not by the actual resources a package provides or depends on. So-called virtual
packages are sometimes used as place-holders for actual resources or services provided by a package,
but they do not constitute an accurate, fine-grained description of those resources, which may be files,
network ports, or system services.

1.2 Inter-package conflicts

Inter-package conflicts occur if the combination of multiple packages results in a defect that is absent
otherwise. Package meta-data may indicate such conflicts, which prevents conflicting combinations of
packages from being installed. However, inter-package conflicts may still arise in practice. The reasons
for such conflicts are manifold: Packages are not simply bundles of files, but include pre-installation
and post-installation scripts. These scripts are unrestricted, Turing-complete programs running with full
system (root) access. It is impossible in general to capture the full side effects of these scripts with a
formal description. The same problem arises of course as well for executing the software provided by
these packages. Therefore, a complete logical analysis of package behavior is not possible. Nonetheless,
as this paper shows, steps can be taken towards covering certain types of common conflicts that are not
automatically verifiable with current tools.

Another problem arises from the fact that meta-data is provided manually, by package maintainers.
It is therefore a challenge to keep such meta-data up to date and accurate. This challenge becomes
especially daunting in the presence of a huge number of software packages in distributions such as
Debian GNU/Linux, where the number of packages available currently exceeds 30,000 [12].

As a consequence of this, bug reports referring to conflicts between packages are becoming frequent.
This paper investigates the sources of the conflicts and tries to answer the following questions:

• What are the reasons why inter-package conflicts arise?

• Are there common categories of inter-package conflicts?

• Can these problems be addressed by using existing tools, or is there a need to augment existing
tools, or create new ones?

• Is the package meta-data currently being used, accurate and sufficient? Is there a need to automat-
ically verify such meta-data for accuracy, or is there a need to use additional meta-data for a more
accurate notion of package conflicts? In other words, are most or all possible package conflicts
covered by meta-data?

This paper is organized as follows: Section 2 describes related work. Section 3 shows a case study on
inter-package conflicts in Debian, with a detailed evaluation of different kinds of package conflicts. Sec-
tion 4 discusses the results and proposes possible strategies for remedying problems found, and Section 5
concludes and outlines future work.

2 Related Work

2.1 Software packaging

Software packages are a well-known example of the component models that have originated from the
field of component-based software engineering (CBSE) [15, 3]. Packages fit very well within com-
mon component definitions, but the raise in their popularity—started with the advent of FOSS package

C. Artho et al. 3

managers such as the FreeBSD porting system [13], APT [9], Yum, etc.—has highlighted very specific
challenges related to their deployment [6]. Some of those challenges are being addressed relying on
package meta-data and their formalization.

Seminal work by Mancinelli et. al [8] has shown how to encode the installability problem for software
packages as a SAT problem, established the (NP-Hard) complexity of the problem, and shown applica-
tions of the encoding to improve the quality of package repositories by avoiding non installable packages.
Based on the same formalization, various quality metrics have been established, such as strong depen-
dency and sensitivity [1] (to evaluate the “importance” of a package in a given repository) and strong
conflicts [5] (to pinpoint packages which might hinder the installation of several other packages). In
the same vein, package meta-data have also been used to predict future (non) installability of software
packages [2]. The abundance of studies that rely on package meta-data testifies the importance of the
correctness of those meta-data.

On the other hand, studies on package meta-data correctness like this one, seem to be scarce. At the
same time, a few testing can be found in the realm of Quality Assurance (QA) of FOSS distributions to
discover symptoms that might then lead, a human, to discover errors in package meta-data. To name one,
the “file overwrite” [16] initiative by Treinen helps in discovering undeclared conflicts among packages
in the Debian distribution.

2.2 Alternatives to globally managed software packaging

As an alternative to globally managed software packages that are organized in a fine-grained hierarchy,
self-contained packages including all sub-components, sometimes called bundles, are sometimes used.
Such bundles include the application and all libraries it depends on, linked statically [11]. This con-
trasts to FOSS distributions where libraries are shared, and generally required to be shipped as separate
packages—see for instance [7], “convenience copies of code”—in order to ease the deployment of (secu-
rity) upgrades. In a system using bundled software, all applications using the library in question need to
be updated separately. This usually entails a longer period during which a system is vulnerable, because
some software bundles may be provided by third parties.

An advantage of self-contained software bundles is the ease of testing and deployment, as system-
specific configurations and libraries have only limited impact on the software bundle. However, statically
linking all libraries used by a bundle requires much disk space. If many applications include the same
statically-linked libraries, these libraries are duplicated within the same system. Deduplication addresses
this problem [4, 14]. Memory and storage deduplication merge same-contents chunks on block level,
and reduce the consumption of physical memory. By sharing identical chunks of storage, logical-level
redundancies caused by static linking are resolved on the physical level.

3 Evaluation of Inter-package Conflicts

3.1 Methodology

The evaluation of existing inter-package conflicts in Debian was carried out on a snapshot of the Ultimate
Debian Database (UDD) [10]. This database contains key data of all active (open) bugs at that time, such
as bug ID, title, and the package involved. The snapshot used was taken on January 23 2011, and
contained 79936 bugs.

This database is too large to be analyzed manually, so the selection of bugs was first narrowed down
by a keyword search. We chose three keywords to search for: “break”, “conflict”, “overwrite”. The first

4 Inter-package Conflicts in Debian

Keyword Matches Refined matches
break 575 161
conflict 252 85
overwrite 102 44

Table 1: Number of matches per keyword in Debian database.

two words are generic descriptions of inter-package conflicts and often appear in the form “a breaks b”
or “a conflicts with “b”. The last keyword describes one of the most common inter-package problems,
where one package overwrite a resource needed by another package.

Table 1 gives an overview of all the matches in the search. A total of 929 bugs match the initial
search; some of the matches contain more than one keyword and therefore are duplicates. Our aim is not
to get an exact number of how many inter-package conflicts there are in total; rather, we want to know
what types of conflicts occur more often than others, relative to the total number.

We then narrow the search to eliminate bug reports that describe problems that relate to one package
alone, rather than a conflict between two packages. For example, “overwrite” could appear in a bug report
related to overwriting text in a text editor. Indeed, an initial manual evaluation showed that about half of
all bug reports found in the initial search were not related to inter-package conflicts. To make the results
more accurate, the search is refined to include only bug reports out of the initial selection, where the title
contains the name of another package. This may filter out more bug reports than necessary (decreasing
recall, in search terms), but makes the results much more precise. To avoid excluding too many packages,
(version) numbers of packages are not included in this filter, even if the package name itself contains a
version number. A manual check showed that this filter was actually a good approximation of a manual
selection of true inter-package conflicts.

As shown in Table 1, the refined selection contains 290 matches, 241 of which are distinct bug
reports. Further manual post-processing of that list removes another 51 items, where the title indicates
clearly that those are not inter-package conflicts. This leaves 190 bug reports where, judging from the
title of the report, a possible inter-package conflict is reported.

A subset of these bug reports was evaluated in a first sample, to come up with a categorization of bug
reports that would not be too coarse (giving only a few rough classes of bugs) and not be overly fine-
grained either (putting most bugs into a category of their own). After that, all bug reports are classified
according to these criteria, or eliminated as not being inter-package conflicts, although the title would
suggest so (in the list of 190 reports).

3.2 Results

The 190 cases of which the bug report titles suggested an inter-package conflict, were analyzed manually.
This requires the full information available on each bug, which is not contained in the summary database
(UDD) used in the first step. The 190 bug reports in question were downloaded from the web page
at http://www.debian.org/Bugs/. 51 bug reports out of 190 contain no inter-package conflict, but
rather a conflict that is not reproducible, or a conflict within a single package which is either misclassified
or contains a misleading title. This leaves 139 genuine inter-package conflicts, which are classified into
five broad categories:

1. Conflicts on files and similar shared resources (such as devices or C library function names).
Whenever a conflict occurs directly on a file (or device), the conflict is caught at installation time

http://www.debian.org/Bugs/

C. Artho et al. 5

by apt-get, the package manager for Debian. This handling is safe, but unsatisfactory: if a
list of files used was provided beforehand, then an enhanced package manager could prevent an
installation attempt that is bound to fail. On the other hand, other types of conflicts, such as name
clashes in libraries, may not be detected until an application is used at run-time.

2. Conflicts on shared data, configuration information, or the information flow between programs.
Configuration information is often found in /etc, while shared data may be located elsewhere.
Information flow refers to function calls or communication via pipes or a network. There are two
basic cases where conflicts occur on data or communication: (1) An installation action of a pack-
age changes the configuration such that either the syntax of a configuration file is broken (made
unreadable for the parser used by another tool), or the semantics create a conflict. (2) A change
in the data format between versions of an application, which requires updating other components;
the lack of an appropriate newer version of other components, or the lack of a declaration of such,
causes a conflict. In both cases (1) and (2), the conflict only becomes evident at run-time.

3. Uncommon, previously untested combinations of packages, cause a conflict. In some cases, a
package a using another package b makes a previously undetected fault in b evident; it is possible
that other use cases for b could produce the same problem, so the failure can (at least in theory)
be reproduced using b alone. In other cases, the combination of a and b is necessary for those
packages to fail, and either package would work fine without the conflicting package being present.
Nine cases fit this description, where the reason of a conflict could not be attributed to cases listed
above.

4. Package evolution issues. When a software distribution evolves, packages may be renamed or split
up into multiple packages, or several packages may be merged into one. This may require updating
meta-data in other packages for the distribution to remain consistent. Furthermore, version changes
with a package may also require meta-data changes due to possible incompatibilities mentioned
above. Unfortunately, meta-data changes are not automated, and are primarily the responsibility
of the maintainer of a given package. This causes a potential for meta-data to be outdated and not
reflect a correct state anymore.

5. The last category represents cases where two packages are incorrectly classified as conflicting,
although there is no conflict, at least not for the current version of these packages.

Table 2 and Figure 1 show an overview of the classification into these five categories. Larger cat-
egories were split up into smaller groups to get a more detailed picture. While human error in the
classification is possible, the results are overall quite clear for larger categories. Some trends are evident:

1. Resource conflicts are common, representing more than one third of all conflicts. 22 out of 48
such conflicts are on files and caught by the package manager at installation time; other similar
conflicts may not be caught until a package is actually used.

2. Conflicts on configuration, and to a lesser degree, the format of shared data, are equally com-
mon. 17 cases were found where syntactic problems caused a conflict between packages; the most
common reason is the automatic modification of configuration files by installation scripts. These
installation scripts are likely tested for common configurations, but may not behave as expected
for less common settings. Unintended semantic changes in configuration files occurred 14 times
during installation, and four times after installation, so this is also a significant problem. It is com-
pounded by the fact that many files have to be customized by the user before a package can be
used, and the formatting of a configuration file may see subtle changes that are correctly dealt with
by the packaged software itself, but not by the installation scripts that manage the package.

6 Inter-package Conflicts in Debian

File name/
access 35%

File format/API/
configuration 34%

Rare combination 16%

Package
evolution 10%

Spurious
conflict 6%

Classification of inter-package conflicts

Figure 1: Overview of sources of inter-package conflicts.

C. Artho et al. 7

of conflicts Conflict type
48 access to files and similar shared resources

22 package provides same file as other package
4 package installers modify or delete file used by other package
2 file missing that is supposed to be provided by other package
3 packages modify/disable same shared resource or package
3 file permission conflict on shared file
4 file/directory name conflict (for names including version number etc.)
9 clashing C library symbols/function names/device names
1 package removal script corrupts system

47 file/API/data/configuration format
17 update/installation breaks configuration or file format
14 package breaks on uncommon or user-defined configuration/setting

4 package use (post-install) overwrites/breaks configuration files
9 API change between different package version breaks other package
3 kernel package not compatible with given version of other package

22 rare (previously untested) combination of packages
13 defect in one package made visible by installation/use of other package

9 uncommon combination of packages makes one or more packages always fails
14 package evolution (split/merge/change) or faulty meta-data results in conflict

9 incorrect/outdated dependency meta-data (requires/conflicts)
5 package renaming/split/merge results in incorrect meta-data of other package

8 spurious “conflicts” declaration prevents compatible packages from being used

Table 2: Overview of all package conflicts found in the Debian bug database.

3. Other problems between packages that are usually not installed together represent one out of six
inter-package conflicts. The huge number of available packages makes it impossible to test all
combinations (or even just all pairwise possible combinations) of packages together, so a conflict
often goes undetected until reported by a user.

4. Conflicts on meta-data level, often caused by package evolution, contribute about 10 %.

5. Incorrect (or outdated) information on conflicting packages sometimes occurs as well, which does
not create a package conflict per se, but instead prevents two packages from being used together.

4 Discussion

The previous section has given a categorization of inter-package conflicts based on empirical data. We
now propose possible solutions that can potentially cover some or all instances of each class of conflicts.

1. Conflicts on files are not directly covered by existing meta-data, although they may be implied
by package-level conflicts. Work is in progress to systematically test package installations against
overwriting files provided by another package [16]. As an alternative to this, file diversions enable
a package to install files at a different location; work is in progress to automate this.1

This case study shows that while the majority of such conflicts occurs at file level, file permissions
(and ownership) rather than just file names, and possible file/directory renaming actions during

1http://wiki.debian.org/SummerOfCode2011/DeclarativeDiversions, retrieved June 2011

http://wiki.debian.org/SummerOfCode2011/DeclarativeDiversions

8 Inter-package Conflicts in Debian

package upgrades, should also be considered. Finally, coverage of similar resources such as net-
work ports and C function names would further augment the ability of such tools to detect conflicts
proactively.
More detailed meta-data will require much more space than existing (rather compact) package
meta-data. We propose that such extra meta-data is generated and used only by developers and
package maintainers. As it covers possible conflicts proactively, at development time, extra meta-
data does not have to be included in the final distribution. We think that most or all of such
resource-related meta-data can be extracted automatically from test runs, therefore requiring no
extra effort from package maintainers.

2. Conflicts on configuration files, file formats and API versions are also common, and clearly demon-
strate the need of systematic testing against such conflicts. In the light of testing against overwrit-
ing files [16], inter-package tests should also be automatically run against conflicts on shared data.
This is much more difficult to automate, and only feasible for packages that include automatic
regression tests.
The problem is that regression tests are used by developers and package maintainers, but not by
end users who install and use these packages. Because of this, regression tests are currently not
covered by package meta-data. This makes them inaccessible to today’s package management
tools, and pretty much precludes the automated discovery of such intricate conflicts. However,
at a lower level, many source-level distributions have a “make test” or “make check” build target
that automatically performs such tests. In the future, such information could be provided in pack-
age meta-data, for package maintainers. Furthermore, on a basic level, certain problems may be
found just by executing a program and checking whether its return value indicates an error, or by
attempting to start and stop a system service cleanly.

3. The fact that rare combinations of packages may cause problems is not surprising, given the large
number of packages available. An exhaustive testing of package combinations is not feasible, but
heuristic-based testing of sets of packages may be. A possible approach may be to install larger
subsets of packages, and to narrow down the set of conflicting packages by a systematic search
such as delta debugging [17].

4. Package evolution often brings with it an invalidation of package meta-data. About one tenth
of inter-package conflicts occurred directly due to invalid meta-data after larger package modifi-
cations (such as splitting a package into two packages). This shows that meta-data needs to be
verified for consistency and accuracy. Especially when given a situation with “known good” meta-
data (before the modification), automatic verification of the new meta-data is feasible if packages
can be tested automatically.
As with other issues described above, meta-data does not cover the requirements of packages in
enough detail. For example, take a package a that is split up into a′ and a′′, because some parts
of a are not used by many packages. If a package b depends on a in the old configuration, it
is possible that b depends on a′, a′′, or both packages, in the new configuration. If some of the
resources provided by these packages are loaded dynamically by b (at run-time), then verification
of the actual software is required to determine the correct new dependency.

5. Spurious (or outdated) declarations of inter-package conflicts can be responded to, by automated
testing of packages that supposedly conflict. As mentioned above, work is in progress to detect
file-level conflicts, but other types of conflicts require more detailed meta-data, or mechanisms to
better support the automatic testing of the execution of the software that packages provide.

C. Artho et al. 9

5 Conclusions and Future Work

Conflicts between software packages occur due to a variety of reasons. Conflicts on shared resources and
configuration files are particularly common. The underlying problem is that package behavior at instal-
lation, use, and de-installation time is unrestricted, so a complete formal description of package behavior
cannot be achieved. However, steps can be taken towards increasing the expressiveness and accuracy of
package meta-data, by adding meta-data that is intended for package developers and maintainers.

In our case study, we categorize a large number of inter-package conflicts, and propose possible
solutions to common categories of conflicts. Our study uses a single snapshot of bugs between packages
reported in Debian GNU/Linux. Future work includes studying the evolution of packages, and bugs
reported, in more depth by investigating multiple snapshots over time. Furthermore, other software
distributions such as Fedora may also be considered.

As a conclusion from our initial case study, we found that ongoing and future projects can reduce
inter-package conflicts most efficiently by (a) identifying and testing combinations of packages that may
conflict, (b) generating and using extra meta-data, and (c) checking the validity of (manually provided)
meta-data. Such meta-data should cover files including file meta-data in particular, and as a next step,
other system resources such as network ports, shared (global) configuration data, and communication
between components. Another aspect currently omitted in meta-data is information about regression tests
that already exist in many packages, but are inaccessible on a package level because they are not declared
or available in a uniform way. An enhanced set of meta-data for testers and distribution maintainers could
cover such testing-related information.

References
[1] Pietro Abate, Jaap Boender, Roberto Di Cosmo & Stefano Zacchiroli (2009): Strong Dependencies between

Software Components. In: ESEM 2009, IEEE, pp. 89–99.

[2] Pietro Abate & Roberto Di Cosmo (2011): Predicting upgrade failures using dependency analysis. In: 27th
International Conference on Data Engineering, IEEE, pp. 145–150.

[3] Alan W. Brown & Kurt C. Wallnau (1998): The Current State of CBSE. IEEE Software 15, pp. 37–46.

[4] Christian Collberg, John H. Hartman, Sridivya Babu & Sharath K. Udupa (2005): Slinky: Static linking
reloaded. In: Proc. USENIX 2005 Annual Technical Conference, USENIX, Anaheim, USA, pp. 309–322.

[5] Roberto Di Cosmo & Jaap Boender (2010): Using strong conflicts to detect quality issues in component-
based complex systems. In: 3rd India software engineering conference, ISEC ’10, ACM, pp. 163–172.

[6] Roberto Di Cosmo, Paulo Trezentos & Stefano Zacchiroli (2008): Package Upgrades in FOSS Distributions:
Details and Challenges. In: International Workshop on Hot Topics in Software Upgrades, HotSWUp ’08,
ACM, New York, NY, USA, pp. 7:1–7:5.

[7] Ian Jackson & Christian Schwarz (2008): Debian Policy Manual. http://www.debian.org/doc/
debian-policy/.

[8] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jérôme Vouillon, Berke Durak, Xavier Leroy & Ralf
Treinen (2006): Managing the Complexity of Large Free and Open Source Package-Based Software Distri-
butions. In: ASE 2006, IEEE, pp. 199–208.

[9] Gustavo Noronha Silva (2008): APT HOWTO. http://www.debian.org/doc/manuals/apt-howto/.

[10] Lucas Nussbaum & Stefano Zacchiroli (2010): The Ultimate Debian Database: Consolidating Bazaar Meta-
data for Quality Assurance and Data Mining. In: 7th IEEE Working Conference on Mining Software Repos-
itories (MSR’2010), Cape Town, South Africa.

[11] L. Presser & J.R. White (1972): Linkers and loaders. Computing Surveys (CSUR) 4(3), pp. 149–167.

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/apt-howto/

10 Inter-package Conflicts in Debian

[12] The Debian Project: Software packages in [Debian] “sid”. http://packages.debian.org/sid/
allpackages. Retrieved June 2011.

[13] Murray Stokely (2004): The FreeBSD Handbook, 3 edition. FreeBSD Mall.
[14] Kuniyasu Suzaki, Toshiki Yagi, Kengo Iijima, Nguyen Anh Quynh, Cyrille Artho & Yoshihito Watanebe

(2010): Moving from Logical Sharing of Guest OS to Physical Sharing of Deduplication on Virtual Machine.
In: Proc. 5th USENIX Workshop on Hot Topics in Security (HotSec 2010), USENIX, Washington D.C.,
USA.

[15] Clemens Szyperski (1998): Component Software. Beyond Object-Oriented Programming. Addison-Wesley.
[16] Ralf Treinen (2011): EDOS-Debcheck: File Overwrite Errors. http://edos.debian.net/

file-overwrites/. Retrieved June 2011.
[17] A. Zeller & R. Hildebrandt (2002): Simplifying and Isolating Failure-Inducing Input. Software Engineering

28(2), pp. 183–200.

http://packages.debian.org/sid/allpackages
http://packages.debian.org/sid/allpackages
http://edos.debian.net/file-overwrites/
http://edos.debian.net/file-overwrites/

	Introduction
	Package-based software distributions
	Inter-package conflicts

	Related Work
	Software packaging
	Alternatives to globally managed software packaging

	Evaluation of Inter-package Conflicts
	Methodology
	Results

	Discussion
	Conclusions and Future Work

