
Ultra-Large-Scale Repository Analysis
via Graph Compression

Paolo Boldi
Università degli Studi di Milano

Milan, Italy
paolo.boldi@unimi.it

Antoine Pietri
Inria

Paris, France
antoine.pietri@inria.fr

Sebastiano Vigna
Università degli Studi di Milano

Milan, Italy
sebastiano.vigna@unimi.it

Stefano Zacchiroli
University Paris Diderot and Inria

Paris, France
zack@irif.fr

Abstract—We consider the problem of mining the development
history—as captured by modern version control systems—of
ultra-large-scale software archives (e.g., tens of millions software
repositories corresponding).

We show that graph compression techniques can be applied
to the problem, dramatically reducing the hardware resources
needed to mine similarly-sized corpus. As a concrete use case
we compress the full Software Heritage archive, consisting of
5 billion unique source code files and 1 billion unique com-
mits, harvested from more than 80 million software projects—
encompassing a full mirror of GitHub.

The resulting compressed graph fits in less than 100 GB of
RAM, corresponding to a hardware cost of less than 300 U.S. dol-
lars. We show that the compressed in-memory representation of
the full corpus can be accessed with excellent performances, with
edge lookup times close to memory random access. As a sample
exploitation experiment we show that the compressed graph can
be used to conduct clone detection at this scale, benefiting from
main memory access speed.

Index Terms—mining software repositories, source code, ver-
sion control systems, development history, software evolution,
graph compression

I. INTRODUCTION

Software evolution and clone detection have been very
prolific research areas in software engineering over the past
decades [23], [28]. Empirical methods, and software repository
mining in particular, have been popular techniques used in
those fields [20], [21]. An important factor behind these ad-
vances has been the increased availability of large collections
of openly available software development artifacts such as
source code and distributed version control system (DVCS)
repositories. Such wealth of source code and development his-
tory data is the byproduct of, respectively, the popularization
of free/open source software (FOSS) and the advent of social
coding on collaborative development platforms [11], [17].

The scale at which it is nowadays possible to analyze public
software development is exciting in terms of research outcome
potential. GitHub alone hosts more than 100M repositories,
GitLab.com several millions, plus a long tail of on-premise
GitLab instances. Seminal work [30] on the evolution of the
global corpus of public code shows that the amount of publicly
available original code has been doubling every 24–30 months
and is accelerating.

In addition to public software development, private large-
scale collaborative software development is also on the rise

in the corporate sector, due to the advent of inner source [9],
[32]. Analyzing those private software collections—possibly
in combination with the entire corpus of public code—has
become nowadays a legitimate industrial need.

Most state-of-the-art approaches for analyzing this wealth
of development artifacts mostly rely on classic “big data”
approaches, partitioning the corpus over several machines
and applying distributed algorithms. Alternatively, but less
satisfactorily, sampling is used, incurring the risks of selection
bias and over-generalized findings.

In this paper we evaluate the feasibility of a less resource-
hungry approach to the analysis of the development history of
very large software collections. Specifically, we will answer
the following research question:
RQ: is it possible to efficiently perform software devel-
opment history analyses at ultra large scale, on a single,
relatively cheap machine?

As the question is partly quantitative and some terms in it
are still vague, we further narrow it down as follows:

• with development history we mean the information usu-
ally captured by state-of-the-art DVCS [31], with com-
mits as the finest available granularity;

• with ultra large scale we mean a scale similar to the
known extent of all publicly developed software—to
the best of our knowledge the best approximation of
this is the Software Heritage archive [1], [14], whose
dataset [26] will constitute our main benchmark;

• with cheap machine we mean commodity hardware, ei-
ther desktop- or server-grade, that can be easily acquired
by researchers with a moderate investment of a few
thousand U.S. dollars.

In the following we will answer this research question in the
affirmative, by applying lossless graph compression techniques
to the underlying Merkle DAG [24] structure of modern
DVCS. As a concrete use case we will compress the full
development history of all publicly developed source code as
captured by Software Heritage, consisting of 5 billion unique
source code files and 1 billion unique commits, harvested from
more than 80 million software projects.

As size benchmark, we show that the resulting compressed
VCS graph, containing the development history of the entire
corpus, can be loaded in ≈94 GiB of RAM, for an impressive

compression ratio of 4.9 bits/arc—as opposed to 8 bytes(!)
per arc that a naive in-memory representation of the graph
using adjacency lists would require. At current market rates the
graph can hence be fit in RAM on commodity hardware with
an investment of less than 300 U.S. dollar for main memory.

As a speed benchmark, we measure the time required to
visit the entire graph, obtaining a visit time of less than 2
hours and a processing throughput of almost 2 million nodes
per second using a single thread. We also measure the average
time required to lookup successors of a given node, obtaining
timings of 80 nanoseconds per arc, close to current DRAM
random access times (50–60 ns).

To show the applicability of the proposed approach to repos-
itory analysis we use the compressed graph to conduct two
classic experiments in software clone detection: we measure
(1) how often identical file contents are found in different
commits, and (2) how often identical commits are found in
different repositories. Our experiences show the advantages of
having the development history of the entire corpus in main
memory as opposed to on secondary memory.

Replication package: A replication package for this paper
is available from Zenodo [4].

II. BACKGROUND

A. Graph compression

Many datasets are shaped into a graph structure that contains
a wealth of information about the data itself, and many data
mining tasks can be accomplished from this information alone
(e.g., detecting outlier elements, identifying interest groups,
estimating measures of importance and so on). Often, such
tasks can be solved through suitable graph algorithms which
typically assume that the graph is stored into main memory.
However, this assumption is far from trivial to realize in many
real-world cases, including the case of interest for the present
paper, where many billions of nodes and arcs might exist.
Finding effective techniques to store and access large graphs
that can be applied fruitfully to these situations is one of the
central algorithmic issues in the field of modern data mining.

A (lossless) compressed data structure for a graph must
provide very fast access to the graph (let us say, slower but
comparable to the access time required by its uncompressed
representation in main memory) without decompressing it.
While this definition is not formal, it excludes methods in
which the successors of a node are not accessible unless, for
instance, a large part of the graph is decompressed.

Different compressed data structures for graphs offer differ-
ent trade-offs between compression time (the time required to
produce a compressed representation from an uncompressed
one) and compression ratio (the ratio between the size of
the compressed data structure and its uncompressed coun-
terpart, typically measured in bits per arc). One should also
decide whether the data structure should be static or dynamic
(whether it allows for changes), whether it is aimed at directed
or undirected graphs (or both), and which access primitives
the structure allows for. In most cases, these aspects can
only be evaluated experimentally on a certain number of

TABLE I
NAIVE GRAPH REPRESENTATION USING ADJACENCY LISTS.

Node Outdegree Successors
· · · · · · · · ·
15 11 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041
17 0
18 5 13, 15, 16, 17, 50
· · · · · · · · ·

TABLE II
COMPACT GRAPH REPRESENTATION USING GAPS AND COPY LISTS.

Node Outd. Ref. Copy list Extra nodes
· · · · · · · · · · · · · · ·
15 11 0 3,1,0,0,0,0,3,0,178,111,718
16 10 -1 01110011010 6, 293, 0, 2723
17 0
18 5 -3 11110000000 32
· · · · · · · · · · · · · · ·

datasets, although in some rare circumstances it is possible
to provide worst-case lower bounds under some assumption
on the network structure (e.g., assuming some probabilistic
or deterministic graph model, and evaluating the compression
performances on that model).

A common large, real-world graph that has been studied and
compressed in the past is the graph of the Web (or web graph),
consisting of one node per page and one arc per hyperlink
between pages. A pioneering attempt at compressing the web
graph is the LINK Database [27]. Suppose that nodes are
ordered lexicographically by URL (i.e., node i is the node
representing the i-th URL in lexicographic order); then the
following two properties are true:

• Locality: Most arcs are between nodes that are close to
each other in the order, because most links are intra-site,
and URLs from the same site share a long prefix, which
makes them close in lexicographic order. Locality can be
exploited using gap compression: if node x has successors
y1, y2, . . . , yk, gap compression stores for x the com-
pressed successor list y1−x, y2−y1−1, . . . , yk−yk−1−1;
by locality, most values in this list will be small, and can
be stored efficiently using variable-length encodings.

• Similarity: nodes that are close to each other in the
order tend to have similar sets of neighbours. Similarity
can be exploited by using reference compression: some
successor lists are represented as a difference with respect
to the successor list of a previous nearby node.

In Table I we show a sample of lists of successors of a graph,
and in Table II we show the same lists in which reference
compression (in the form of a bit mask) copies successors from
a previous list (identified by the “Ref.” column) following the
information contained in a copy list, and then the remaining
nodes (possibly all successors, if no reference compression is
used) are gap-compressed.

B. The WebGraph framework

Some years later, building on the same approach, the
WebGraph framework [6] attained using the BV scheme a web

graph compression of less than 3 bits/arc (and even less than
2 for the transposed graph) with a random-access successor
enumeration time of a few hundreds of nanoseconds per arc
(and much faster than that for sequential access).

The techniques described above are strongly sensitive to
node order: this is not a big issue when applied to web graphs,
because the lexicographic ordering of URLs is available, but
makes it difficult to apply the same techniques to networks
(e.g., social networks and, as we will see, version control
system graphs) that do not have similarly meaningful canonical
node identifiers.

A surprisingly effective ordering is simply that of enu-
merating nodes following a visit: in particular, a breadth-first
visit [3] numbers nodes in such a way that might enable gap
and reference compression to provide excellent results.

In this paper we will use the WebGraph open source
implementation as technology to perform graph compression
on a large corpus of VCS histories. We will also show that BFS
visits are indeed an effective reordering strategy to achieve
high compression on such corpus.

III. DATA MODEL

Analyzing software development histories requires dealing
with the different data models that modern version control
systems (VCS) implement [31]. While the differences among
those data models are significant—and particularly so between
“old school” VCSs like CVS and Subversion and modern
distributed version control systems (DVCS) like Git and
Mercurial—the latter are much more general and expressive
and can faithfully represent development histories originally
recorded in the former.

In this section we briefly present a generic VCS data
model, with the same expressivity of modern DVCS data
models, which we will use as input for the ultra-large-scale
development history analyses that we aim to enable on limited
resources using graph compression.

One peculiarity of modern collaborative software develop-
ment is that source code artifacts are massively duplicated
across repositories, commits and directories. That is the reason
why most DVCS uses Merkle DAG [24] structures as the basis
for their data models; we will do the same for our data model.

As a consequence of using Merkle structures, all represented
software development artifacts are natively de-duplicated
within and across projects—no source code file will be stored
twice, no commit will be stored twice, etc. Also, every artifact
gets attributed a persistent, cryptographically-strong hash as
its intrinsic identifier, usually a SHA1. This approach has two
main advantages:

• It considerably reduces the overall size of storing software
development artifacts, thanks to deduplication.

• It enables tracking artifacts across the entire dataset, as
identical artifacts found in multiple repositories will be
represented as unique nodes in the graph, with ancestry
relationships materializing their provenance.

Merkle DAG

origin

snapshot

*

*

release**

revision

*

*

1

*

*

*

directory

1

* *

*

*

*

content

*

*

Fig. 1. Topology and cardinality diagram of a generic version control system
graph, augmented with hosting URL nodes (origins).

The software artifacts that we support tracking in the pro-
posed data model are those commonly found in state-of-the-
art DVCS. The relationships among them and the topology of
the induced graph with the respective cardinalities are shown
in Fig. 1. A toy, yet fully detailed instantiation of the data
model is shown in Fig. 2, in UML notation. These artifacts
are organized in five different logical layers, discussed below.

Contents: are the leaves of the graph and represent source
code files as byte sequences. File metadata (e.g., file names
or access permissions) are not considered an intrinsic part of
file contents and are only stored as part of directories.

Directories: materialize source code trees. Each directory
is an associative list mapping local path names (e.g., "foo.c"
or "src/") to contents, directories (the recursive case of sub-
directories), or in rare cases revisions (to represent, e.g., Git
submodules or Subversion externals).

Revisions: (generally known as “commits”) are time-
indexed captures of the root directory of the source code of
a given project. Each revision points to that root directory as
well as an ordered list of parent revisions; a revision having
more than one parent representing a merge commit.

Releases: (known as “tags” in some VCS) are revisions
labelled with a specific, often human-meaningful name, to
indicate their noteworthiness (e.g., v3.11).

VCS data models generally stop here. As we aim to analyze
large collections composed of many repositories, we add an
extra layer that allows to capture the full state of a given
repository at a given point in time. This is useful to relate
together different repositories used to collaborate on a single

Fig. 2. Data model instantiation example, containing 7 file contents, 6 directories, 6 commits, and 3 snapshot artifacts, crawled during 3 visits of a single
Git repository, 2 of which witnessed the same repository status.

project (as it is common in pull-request-based development
models [17]). The additional artifacts we support are hence:

Snapshots: are point-in-time captures of the full state
of a repository, as an associative list mapping branch names
(e.g., master or bug-42) to releases or revisions objects.
Snapshots are part of the Merkle DAG and allow to de-
duplicate in it the full state of different repositories that
happen to contain exactly the same development histories (e.g.,
unmodified forks of the same project created on GitHub).

Origins: are the URLs at which a given
repository snapshot has been observed. They
correspond to the hosting URLs of repositories (e.g.,
https://github.com/user/repo) but are more
general as they point to all the repository snapshots that have
been observed over time at a given repository hosting place.

IV. VERSION CONTROL SYSTEM COMPRESSION

We now set to establish whether graph compression is
a suitable approach for enabling ultra-large-scale repository
analysis on modest hardware resources. To that end we will
conduct a case study by (1) obtain a suitably large dataset, (2)
compress it using graph compression techniques, and (3) use
the compressed result to conduct repository analysis. In this
section we describe the dataset and compression results; in the
next we will exploit the obtained compressed representation.

A. Case study: compressing the Software Heritage archive

As dataset we have chosen the largest publicly available
archive of software source code and development history
that we know of—the Software Heritage archive [1]. At the

TABLE III
CORPUS STATISTICS AS A GRAPH. FOR THE SAKE OF BREVITY THE ARCS
TABLE ONLY REPORTS ABOUT THE MOST SIGNIFICANT ARC TYPES; THE

TOTAL ACCOUNTS FOR ALL ARCS.

Nodes
origins 88 M
snapshots 57 M
releases 9.9 M
revisions 1.1 B
directories 4.9 B
contents 5.5 B
Total nodes 12 B

Arcs
origin → snapshot 195 M
snapshot → revision 616 M
snapshot → release 215 M
release → revision 9.9 M
revision → revision 1.2 B
revision → directory 1.1 B
directory → directory 48 B
directory → revisiony 482 M
directory → content 112 B
Total arcs 165 B

time of writing the project declares on its website1 to have
archived the development history of more than 90 million
software projects, encompassing full mirrors of GitHub and
GitLab.com, historical archives of Google Code and Gitorious,
as well as repositories of popular package managers such as
NPM, PyPI, and Debian.

The project makes archive dumps available as research
datasets [26]. We have retrieved the most recent dump (dated
2018-09-25) which is, to the best of our knowledge, the
largest publicly accessible collection of version control system
histories. The dataset is available for download2 and can be
used to independently reproduce the experiments described in

1https://www.softwareheritage.org
2https://docs.softwareheritage.org/devel/swh-dataset/

https://www.softwareheritage.org
https://docs.softwareheritage.org/devel/swh-dataset/

this paper. Table III shows statistics about the corpus size.
As Software Heritage also uses a common data model to

archive different VCSs, the corpus data model matches the
Merkle DAG structure described in Section III. The dataset is
hence fully deduplicated by construction, so all node and arc
counts in Table III are about unique entities—it hence contains
5B unique file contents, 49B different links from revisions to
their parent revisions, etc.

B. Compression scope and metadata

Different analyses will need to access different information
stored in VCS. A study of commit messages will not care
about file contents, whereas one on code merges will need the
revision graph. When you consider keeping the entire dataset
in main memory for performance reasons, there is an inherent
trade-off between access time and RAM requirements. A line
has to be drawn to separate the data that benefits the most from
fast RAM access, from the metadata that can be left on-disk
without becoming a bottleneck.

The major bottleneck when performing development history
analyses with on-disk data is generally the access to the neigh-
bors of a given node during graph traversal. Since knowledge
of node neighbors is necessary to advance in the iteration steps,
these disk accesses cannot be deferred to a later processing
stage. It is therefore very beneficial to keep as much graph
structure and neighboring data as possible in memory to speed
up the visits.

On the other hand, once a visit has been performed, the
metadata of the visited nodes can be retrieved in a post-
processing phase for subsequent analysis. As this metadata
does not need to be sent back to the graph traversal routine for
it to proceed, access latency of node metadata does not matter
as much as it does for the graph topology. Node metadata
can thus be retrieved in an asynchronous fashion without
significantly impacting analysis time.

The scope of our compression experiment will hence pri-
marily focus on compressing and storing in memory the graph
structure, with the expectation that usage patterns will match
the above scenarios—in-memory visits, then asynchronous
retrieval and analysis of node metadata.

As sole exception we will also keep in memory node types,
i.e., whether a node is a content, directory, revision, etc. That
can be done very efficiently using a type map implemented as
a bit array indexed by integer node identifiers and requiring
only 3 bits per node (as there are 6 node types in total), or
4 GB of RAM for the entire graph. The reason to make this
exception is that node type filtering is useful in many use cases
to determine at runtime what kind of objects graph traversals
should be looking at.

C. Compression pipeline

To compress the dataset we use the WebGraph framework
to realize the compression pipeline shown in Fig. 3. The
pipeline input is a simple graph representation (Merkle DAG
in figure) as a pair of textual nodes and arcs file. The nodes file
consists of one node label per line; the arcs file consists of one

source/destination pair of node labels per line. At this stage
node labels are textual and dataset-specific; in our case each
label is a Software Heritage persistent identifier (PID) [13].
Then, the following steps are executed in order:3

a) MPH: Generate a minimal perfect hash function [16]
that maps input node labels to the set {0, . . . , N − 1} con-
secutive integers, where N is the number of input nodes.
The resulting MPH function will be used in the following to
quickly associate an integer to node labels without incurring
the risk of collisions.

b) BV compress: Compress the adjacency matrix of
the graph using gap compression and the other techniques
described in Section II, but without relying on a sensible
ordering of nodes yet. The output of this step is a BV graph [6].

c) BFS: As discussed in Section II, finding a node
ordering that, by permuting rows, maximizes various locality
properties on the graph adjacency matrix is key to achieve
good compression. Differently from web graphs, version con-
trol system graphs do not sport ready-to-use ordering heuristics
(such as the URL of each page) that are compression friendly.
In fact, given native VCS node identifiers are generally based
on cryptographic checksums (e.g., SHA1), the links from one
node to the next will tend to jump randomly from one identifier
to another in the space of all possible identifiers.

Experimentally we have verified that a breadth-first visit
of the corpus graph, starting from graph roots (origin nodes)
and traversing down toward leaves (file contents) achieve
good compression results (compared to other orderings, e.g.,
LLP [5]). The BFS step of the compression pipeline hence
performs such a visit on the entire BV graph.

d) Permute: Once the BFS ordering of nodes is known,
this step will reorder nodes (as well as rows in the compressed
adjacency matrix, performing all needed adaptations) accord-
ing to BFS order. The result of this step is a compressed graph.

e) Transpose: Strictly speaking, the graph structure of
the input dataset can be traversed only in one direction—from
origins roots towards file content leaves. It is not uncommon
for repository mining use cases to need to traverse the graph in
the opposite direction though. For instance, looking up where
a given file (or directory, or commit, etc.) has been found
requires such backward visits.

As backward visits corresponds to forward visits on the
transposed input graph, one can optionally generate a com-
pressed representation of the transposed input graph and
use it in addition (or alternatively) to the compressed graph
obtained thus far. WebGraph supports generating the com-
pressed representation of the transposed graph directly from
the compressed (forward) graph. If desired, the Transpose step
in the compression pipeline will take care of this.

D. Compression results

Compressing the full corpus is a resource-intensive en-
deavor. The wall time breakdown to perform the various steps

3we refer to the WebGraph documentation on how to practically run them:
http://webgraph.di.unimi.it/

http://webgraph.di.unimi.it/

MPH

BV compress

BFS

Permute
Compressed

graph
(forward)

Transpose
Compressed

graph
(backward)

Merkle
DAG

Fig. 3. Graph compression pipeline. Individual compression steps are denoted with boxes; notable compression input/output artifacts as free text. The last
transposition step is optional and only needed to visit the graph backwards.

TABLE IV
COMPRESSION TIME BREAKDOWN

Step Wall time (hours)
MPH 2
BV Compress 84
BFS 19
Permute 18
Transpose 15
Total 138 (≈6 days)

TABLE V
COMPRESSION RESULTS. COMPRESSION RATIOS ARE W.R.T. THE

INFORMATION-THEORETICAL LOWER BOUND FOR GRAPHS WITH THE
SAME DENSITY.

Forward (original) graph
total size 91 GiB
bits per arc 4.91
compression ratio 15.8%

Backward (transposed) graph
total size 83 GiB
bits per arc 4.49
compression ratio 14.4%

on the initial dataset is given in Table IV, totaling less than 6
days of compression time.

Timings have been taken on a server equipped with 24 CPUs
and 750 GB of RAM. Note however, that such huge amount of
RAM is not actually needed for compression; minimum RAM
requirements correspond to the resources needed to load the
final compressed graph in memory. The only step that used
more than 100 GB of RAM was the BFS visit, which used
a memory mapping to access the BV graph on disk using
RAM as cache. Recent results on BFS memory efficiency [19]
further confirm that the BFS step is not an impediment on the
general applicability of the approach.

We also stress that even if significantly more resources
were needed for compression than for exploitation of the
compressed result, that would be an acceptable trade-off as:
(1) compression can be done once and reused many times
(possibly by other research groups), and (2) compression
resources can be rented one-off, e.g., on public clouds.

Compression results are shown in Table V. Besides the
raw datum of less than 5 bits per arc, which shows that
the compression is very useful in practice, the compression
ratio (≈15%) with respect to the information-theoretical lower
bound of log

(
n
m

)
for a graph with n nodes and m arcs

is about three times the one typical for web graphs, which
are highly redundant, but significantly better than the typical
values for social networks, which are above 50%. Moreover,
as it often happens in networks generated by human activity,
the transposed graph shows better compression performance
because the indegree distribution has a fatter tail than the

TABLE VI
FULL GRAPH VISIT BENCHMARKS FOR A SINGLE-THREADED BFS VISIT

Forward (original) graph
wall time 1h48m
throughput 1.81 M nodes/s

(553 ns/node)

Backward (transposed) graph
wall time 3h17m
throughput 988 M nodes/s

(1.01µs/node)

TABLE VII
ARC LOOKUP BENCHMARKS FOR 1 BILLION RANDOM NODES

Forward (original) graph
visited arcs 13 644 656 586
throughput 12 018 223 arcs/s

(83 ns/arc)

Backward (transposed) graph
visited arcs 13 625 228 259
throughput 9 453 613 arcs/s

(106 ns/arc)

outdegree distribution, resulting in nodes with very dense
predecessor lists.

Practically speaking, either direction of the input corpus can
be fit in less than 100 GB of RAM, even including the 4 GB
type map discussed above. Such an amount of memory can
be easily installed on either powerful workstations or cheap
server-grade hardware—at current market rates,4 100 GB of
main memory costs less than 300 U.S. dollars. Fitting both
graph directions on workstation deployments might be more
challenging, but it is not always needed (e.g., one can load one
graph direction depending on experimental needs) and still fit
cheap server-grade deployments by today standards.

The main takeaway of this section is that, yes, from a size
perspective, graph compression allows to fit the structure of
enormous VCS datasets in memory on a single machine with
limited hardware resources.

V. EXPLOITATION

We now move to the speed perspective to experimentally
assess how effectively the obtained compressed representation
of ultra-large-scale repository collections can be leveraged to
perform repository mining experiments. We first perform a few
domain-agnostic benchmarks (e.g., graph visits, arc traversal
time) and then perform a domain-specific experiment.

A. Graph traversal

In the worst case of any given mining experiment, one will
have to traverse the full corpus to obtain some insights. Hence
it is important to know the baseline of how long it will take to
do so. Table VI shows the results of benchmarking complete
graph visits in breadth-first order (BFS), with no parallelism

4https://jcmit.net/memoryprice.htm, accessed 2019-10-18

https://jcmit.net/memoryprice.htm

(single thread) for both the original and transposed graphs.
Timings have been measured on a server equipped with 3 GHz
Intel Xeon Gold 6154 CPUs (only one of which has been used
for the visits), with enough RAM to load either graph direction
in memory without swapping to disk.

Results show that the in-memory approach delivers impres-
sive performances. A full visit of the forward graph takes
less than 2 hours with a throughput nearing 2 million nodes
per second, or about 500 nanoseconds per node. Visiting
the transposed graph is slower due to the already discussed
differences in indegree v. outdegree distributions, but still very
fast in absolute terms: the full transposed graph can be visited
in little more than 3 hours with a throughput nearing 1 million
nodes/second (1 µs/node).

Table VII shows the results of benchmarking random access
to nodes and edges in the graph. A random sample of 1 billion
nodes (8.3% of the entire graph) has been taken, enumerating
for every node all of its successors. Results show that having
the graph in memory pays back also in terms of random
lookup time, with minimal overhead due to the compressed
representation. On the original graph looking up the successor
of a node takes 83 nanoseconds on average, close to the 50–
60 ns estimates for current DRAM random access memory.
Arc lookup on the transposed graph is slower, as already
observed for full graph visits.

B. Source code artifact multiplication

As the goal is to benchmark the potential of the proposed
approach for ultra-large-scale repository analysis we focus on
a domain-specific experiment which needs to intensely crawl
VCS histories in the studied corpus. Specifically, we will
replicate the experiments of [30] to quantitatively assess the
multiplication factor of source code artifacts in the corpus. We
will measure:

1) The multiplication of source code file contents across
commits (content→revision multiplication in the follow-
ing), i.e., how much the same unmodified file content
re-appears in different commits, no matter where (which
origins) the commits come from. This measure correlates
with and is a requirement for Type 1 (exact) clone
detection, both within and across repositories.

2) The multiplication of commits across origins
(revision→origin multiplication), i.e., how often
the same commit re-appears in different repositories.
The fact that the same commit re-appear at different
origins is partly the result of collaborative social coding,
but can also hint at the migration of development from
one platform to another.

In the given data model, content→revision multiplication
can be measured by iterating on all nodes of type content, then
performing a visit on the transposed graph that only follows
arcs leading to revision nodes—i.e., excluding (the transposed
of) arcs snapshot→revision, release→revision, and origin→
snapshot—and finally counting the number of revision leaves
reached with the visit. Results can then be visualized as a
distribution of the “popularity” of contents across commits.

Note that, even if the compressed graph representation does
not natively store type information for arcs, we can use the
type map discussed in Section IV to stop the visit when it is
no longer possible to reach additional revision nodes.

The approach for determining revision→origin multiplica-
tion is similar. The only difference is that visits will start from
commit nodes and stop at origin nodes (graph roots), which
can then be counted and visualized as before.

The chosen approaches are naive from an algorithmic point
of view—the same edges will be traversed over and over again
for different input nodes, resulting in a time complexity of
O(V ·E), which is generally considered impractical on graphs
of this scale. Having already established the overall efficiency
of full graph visits, we chose these approaches for the sake of
simplicity and explainability.

More time-efficient approaches are possible and would be
equally well supported by the graph paradigm. For instance,
one could propagate ancestry information during the visit,
obtaining linear-time algorithms at the price of extra memory
requirements (or extra memory mapping). Our main point is
that the entire corpus itself can be fit in relatively little memory
and accessed with excellent performances; other algorithmic
considerations will vary according to the needs of the planned
mining task, as they always do.

C. Results

Fig. 4 shows the multiplication factor distribution for
content→revision, measured on a random sample of 953 M
contents. Looking at the cumulative distribution (top line) the
average multiplication factor appears to be very high. There
are more than 100 million contents (≈20% of the sample)
that are duplicated more than one thousand times in different
commits; 10 million contents (1%) re-occur in more than ten
thousand commits; and 1 million contents (0.1%) in more than
a hundred thousand commits.

As we didn’t partition by origin, these results do not say
whether this multiplication is due to the long life of unmodified
source code files in long-lived code bases, or instead due to
reuse of the same unmodified files across different repositories.
It would be easy to modify the experiment to follow edges up
to origin nodes to determine that.

Fig. 5 shows analogous results for the revision→origin
layer, on a random sample of 8.5 M revisions. To interpret
them it is important to realize how it happens that the same
commit (i.e., with an identical SHA1 identifier) is found in
different repositories. The main reasons is the distributed na-
ture of modern version control systems, whose repositories are
massively represented in the corpus under analysis. Developers
that work together using Git will have individual repositories
that communicate by exchanging SHA1-identical commits.
Furthermore the pull request development model [17] popu-
larized by GitHub natively creates new repositories (hosted at
different origin URLs) that initially contains all of the commits
(unmodified) of the originally “forked” repository.

The cumulative distribution of Fig. 5 measure the amount of
re-distribution of the same commits via different repositories

Fig. 4. Content→revision multiplication, i.e., how often file contents (Y axis)
re-occur unmodified in different commits (X axis), based on a random sample
of 953 M contents (17% of all contents).

Fig. 5. Revision→origin multiplication, i.e., how often commits (Y axis) re-
occur in different repositories (X axis), based on a random sample of 8.5 M
revision (0.77% of all revisions).

in our corpus. 5 million commits (60% of the sample) can
be found in a single repository only, but multiplication grows
quickly from there: 100 thousand commits (1%) can be found
in 1000 repositories or more and 10 thousand commits (0.01%)
can be found in 10 thousand repositories or more. Develop-
ment really is distributed these days as well as resilient to the
disappearance of a single point of source code distribution.

To better appreciate the graph-intensive nature of realizing
the above two experiments in practice, we have also measured
visit sizes. Fig. 6 and 7 show the results in terms of visited
nodes; results in terms of visited edges have been omitted for
brevity, but they exhibit nearly identical patterns.

Content→revision visits traverse significantly more nodes
(and edges) than revision→origin visits. This is expected due
to the respective sizes of the traversed subgraphs (see Table III)
and it is a dominant factor over the fact that, on average, the
filesystem layer of the graph (content ∪ directory nodes) has
shorter graph paths than the revision layer (VCS repositories

Fig. 6. Visit size, as the number of visited nodes, for measuring
content→revision multiplication on the same sample of Fig. 4.

Fig. 7. Visit size, as the number of visited nodes, for measuring
revision→origin multiplication on the same sample of Fig. 5.

of large software projects such as the Linux kernel can have
commit chains nearing 1 M commits in length).

In terms of timings, the presented results have been obtained
on multi-core machines with, respectively, 20 x 2.40 GHz
CPUs (for content→revision) and 36 x 3.00 GHz CPUs (for
revision→origin), letting the experiments run for about 2.5
days. In spite of the naive O(V · E) algorithmic approaches
chosen, such short running times have allowed to process very
large subgraphs.

The take-home messages for this section are that: (1) graphs
are suitable data models for conducting version control system
analyses, including code duplication experiments; and (2)
compressed graphs allow to perform such analysis at ultra-
large-scale with impressive graph traversal performances.

VI. DISCUSSION

Both size-wise and performance-wise the results of applying
graph compression to VCS graphs to support their ultra-large-
scale analysis appear to be more than satisfactory. VCS graphs
compress well both in absolute terms and in comparison with

other large graphs compressed in the past (e.g., web graphs).
Graph visit performances are consistent with main memory
access time and can support visit-intense VCS analysis needs
well on limited resources. That notwithstanding we are not
claiming that graph compression is a silver bullet for VCS
analysis. We discuss in this section limitations and trade-offs
that apply to the proposed approach.

A. Graph design

As mentioned in Section IV-B there exists a clear space/time
trade-off between what fits in main memory and what should
be left on secondary storage. Our choice—graph structure +
node types in memory, everything else in secondary storage—
will enable speeding up many use cases, under the assumption
that VCS traversal is a common performance bottleneck of
large-scale analyses.

Other choices are possible, valid, and can still be supported
by graph compression, allowing to fit more information in
RAM than what would be possible otherwise. We discuss a
few possible scenarios below.

One might decorate graph nodes with additional metadata
to be used during traversals and should hence be looked up
efficiently. For instance, commit nodes might be equipped with
in-RAM timestamps (either absolute, or relative, as in logical
clocks) to direct visits to choose the earliest occurrence of what
is being sought. Graph compression will be useful nonetheless,
and the induced re-labeling of nodes to integers often enables
storing additional metadata in memory in very compact ways,
as we did for the type map. Attaching metadata to graph arcs
is more tricky, but limited support for doing so is offered by
WebGraph5 and other state-of-the-art frameworks.

Graph semantics is another variable that can be played with.
In the presented case study graph leaves are unmodified file
contents, allowing to track bit-identical clones. One might
use instead checksums of normalized source code files (e.g.,
removing spaces), obtaining the canonical definition of Type
1 clones, or parse source code files to ASTs and associate
intrinsic identifiers to them (for Type 2 clones).

Graph granularity can also be increased, e.g., by adding
nodes corresponding to individual lines of codes (normalized
or otherwise). Doing so would enable tracking SLOC cloning
and migrations at an unprecedented scale. It will also signifi-
cantly increase the graph size, by a factor close to the average
length of source code files (in SLOCs). The resulting graph
will be huge, but as graph compression techniques are used
in production on web graphs (with nodes in the trillions), we
are confident they can scale up to SLOC analysis needs.

B. Limitations

A limitation of using static graph compression over classic
information systems to store the data to be analyzed is
that compression is not incremental w.r.t. the arrival of new
artifacts (commits, files, etc.), due to the need of reorder-
ing nodes and updating the compressed representations of

5via the webgraph.labelling package

adjacency lists. Considering that popular VCS repositories
receive hundreds of new commits a day, the already mentioned
exponential growth of original publicly available code, and
the observed multi-day compression times—this means that
analyzed data will be chronically out-of-date w.r.t. reality.

This limitation is not problematic for research use cases,
where datasets are generally frozen before conducting an
experiment; but it might be problematic for other needs, like
live-monitoring of interconnected private/public code bases.
This is not a novel problem for other fields in which graph
compression is applied, such as web search and social network
analysis. Some compression techniques (e.g., k2-trees [7])
lend themselves more or less naturally to be adapted to the
dynamic case, but with a definite degradation in compression
performances. A common mitigation technique that can be
applied to all static compressors is to use dynamic, updatable
overlay graphs on top of the compressed one. Overlays will be
more memory-hungry, but they are ephemeral: periodically the
underlying compressed graphs will be recompressed to regain
storage-efficiency.

It is also theoretically possible to exploit knowledge of
the graph topology to leave “gaps” in the node ordering
that can be used as room for adding new nodes of a given
type dynamically to the compressed graph representation. We
intend to explore this possibility in future work.

VII. RELATED WORK

A. Large-scale mining approaches

Other large-scale repository mining approaches have been
proposed in the past. Boa [15] has pioneered the idea of
a mutualized infrastructure hosting both data and compute
resources to perform large-scale analyses on source code
artifacts such as those discussed in this paper. Our notion
of “ultra-large-scale” is different, with a case study 100x
larger by several metrics (projects, files, commits, etc.). The
compute approach is also different, with Boa relying on
distributed clusters (Hadoop) and our approach relying on
a single machine. Direct performance comparisons are not
possible as we have not replicated their experiments, but
our results hint at a very significant speedup when the main
bottleneck is history traversal. It would be interesting—and
it seems entirely possible—to realize an infrastructure like
Boa, based on a compressed VCS representation like the one
proposed in this paper.

World of Code (WoC) [22] is a recent attempt at a mutual-
ized infrastructure for large-scale VCS analyses. While limited
to GitHub—contrary to our case study that also encompasses
GitLab and major package repositories—the target scale of
WoC is similar to ours. The compute approach is different,
with WoC relying on distributed databases running and ours
on a single machine. The advantage of WoC is that it maintains
pre-computed mappings, e.g., from files and directories to the
places they come from, choosing a different spot than ours in
the classic space/time trade-off. The approach proposed here
looks more appealing in terms of cost and ease of deployment.
But the two approaches are complementary: WoC might

benefit from an additional compressed graph representation
that would shine when users need to explore on the fly (and as
quickly as possible) artifact relationships that are not available
as pre-computed mappings.

Large-scale VCS analyses have been conducted in the past,
usually at much smaller scale than ours. An exception is [30],
which developed a compressed representation for software
provenance tracking and used it to conduct the multiplication
experiments that we have replicated in Section V-B. Both
approaches can be applied to conduct analyses on commodity
hardware, but the compression trade-offs are different: special-
ized, lossy, and incremental in [30]; general purpose, lossless,
but not incremental here.

LISA [2] is a framework for reducing artifact redundancy
when analyzing VCS-stored source code. It is more fine-
grained than our case study, reaching down to abstract syntax
tree nodes. As such it could deduplicate more, but at the price
of requiring a proper parser, which is not always available and
might fail on syntactically incorrect files that one might still
want to analyze. Also, we deal with all kinds of VCS artifacts
while LISA is specific to source code files.

Large-scale experiments on development activities not cap-
tured by VCS histories (e.g., pull requests, code reviews, bug
tracking, etc.) have also been conducted. They generally rely
on dedicated activity databases, such as GHTorrent or GitHub
Archive [18], [29]. Differences from the proposed approach
are significant both in terms of scope (we focus on VCS
histories, them on other activities) and needed resources.

B. Graph compression techniques

The problem of finding compression-friendly node order-
ings was studied from a theoretical viewpoint in [10], where
the authors show that the problem of determining the optimal
renumbering of nodes is NP-hard, but propose a heuristic
(called “shingle ordering”) for the problem, based on a fin-
gerprint of the out-neighborhoods.

A set of different approaches is based on clustering: layered
labelled propagation [5] is a reordering technique which
combines the information from a number of clusterings to
reorder the nodes. More recently, [12] extended the theoretical
model of [10] and designed a novel ordering technique, called
recursive graph bisection, that yields in several cases the most
competitive compression ratios. The basic idea is to divide
recursively the graph in two clusters of the same size so to
minimize an objective function that estimates the compress-
ibility of the overall graph when nodes in the first cluster have
smaller identifiers than nodes in the second cluster.

To the best of our knowledge, the first two techniques would
not scale to the case of interest for this paper. Recursive
bisection might have some margin of benefit over a BFS, but
at the price of a significantly slower computation. We plan to
study this problem in the future.

A complementary approach to storing adjacency lists is
that of k2-trees [8]. In this case, one aims at representing
compactly the adjacency matrix of the graph (as opposed to its
adjacency lists), exploiting its sparseness. However, k2-trees

do not scale beyond a few dozen million vertices. They are
hence inapplicable to the target scale of this paper.

Since successor lists are increasing integers, one can use
succinct data structures [25] to store them. A succinct data
structure does not compress data, it represents it using the
minimum possible number of bits instead. Succinct approaches
are particularly useful when the graph has no evident structure
(as in that case reference compression does not really help) and
when reordering the nodes is not possible (as the compression
obtained is agnostic with respect to the distribution of gaps
and to similarity). We hence did not consider these approached
relevant to the case at hand.

VIII. CONCLUSION

The amount of freely available source code development
artifacts has reached mind-blowing amounts, with GitHub
alone surpassing 100 million repositories. That constitutes a
treasure trove for empirical software engineering, but also a
chore, due to the resources needed to efficiently mine the full
extent of this global software commons. As an alternative to
common “big data” approaches we have proposed in this paper
to apply graph compression techniques to reduce the memory
fingerprint of ultra-large-scale version control systems (VCS)
repository analyses.

We have shown that the largest available collection of VCS
repositories—namely Software Heritage, having archived 80
million repositories totaling 1 billion commits and 5 billion
source code files—can be compressed down to and then loaded
into less than 100 GB of RAM. At current market rates that
corresponds to a RAM investments of just a few hundreds
U.S. dollars.

In addition to being very compact, such a compressed in-
memory representation is also very efficient: the entire corpus
can be visited as a graph in less than 2 hours, with a arc lookup
time of 80 nanoseconds. Those performances and the graph
visit paradigm have enabled us to conduct classic code-clone
detection experiments on significant subsets of the corpus in a
couple of days of computation and in spite of having chosen
very naive O(V · E) algorithmic approaches.

We conclude that graph compression has a huge potential in
enabling unprecedented scale analyses of software repositories
or, alternatively, in dramatically reducing the cost of analyses
that are already possible today but can be performed with
significantly fewer resources tomorrow.

As future work we plan, on the one hand, to experiment
with variations in the graph nature, such as increasing leaf
granularity to individual lines of code. On the other hand we
intend to work on mitigating the main limitation of graph
compression, i.e., its lack of incrementality, by developing
compressed graph representations that leave room available
for the addition of future nodes and edges, trading off some
size efficiency for increased flexibility.

ACKNOWLEDGMENTS

The authors thank Thibault Allançon for his internship work
on swh-graph and Guillaume Rousseau for suggesting the
multiplication experiments and comments on the paper.

REFERENCES

[1] Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchi-
roli. Building the universal archive of source code. Commun. ACM,
61(10):29–31, September 2018.

[2] Carol V. Alexandru, Sebastiano Panichella, Sebastian Proksch, and
Harald C. Gall. Redundancy-free analysis of multi-revision software
artifacts. Empirical Software Engineering, 24(1):332–380, 2019.

[3] Alberto Apostolico and Guido Drovandi. Graph compression by BFS.
Algorithms, 2(3):1031–1044, 2009.

[4] Paolo Boldi, Antoine Pietri, Sebastiano Vigna, and Stefano Zac-
chiroli. Replication package: Ultra-large-scale repository analysis
via graph compression. Zenodo https://zenodo.org/record/3574459,
doi:10.5281/zenodo.3574459, 2019. Persistent Software Heritage identi-
fier [13] of the main software component used in the paper (swh.graph):
swh:1:rel:132327bf1601eb890e28e96353bd61141923d9e1.

[5] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna.
Layered label propagation: A multiresolution coordinate-free ordering
for compressing social networks. In Sadagopan Srinivasan, Krithi
Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi
Kumar, editors, Proceedings of the 20th international conference on
World Wide Web, pages 587–596. ACM, 2011.

[6] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I:
Compression techniques. In Proc. of the Thirteenth International World
Wide Web Conference (WWW 2004), pages 595–601, Manhattan, USA,
2004. ACM Press.

[7] Nieves R. Brisaboa, Ana Cerdeira-Pena, Guillermo de Bernardo, and
Gonzalo Navarro. Compressed representation of dynamic binary rela-
tions with applications. Information Systems, 69:106–123, 2017.

[8] Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. Compact
representation of Web graphs with extended functionality. Information
Systems, 39(1):152–174, 2014.

[9] Maximilian Capraro and Dirk Riehle. Inner source definition, benefits,
and challenges. ACM Computing Surveys (CSUR), 49(4):67, 2017.

[10] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher,
Alessandro Panconesi, and Prabhakar Raghavan. On compressing social
networks. In KDD ’09: Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 219–228, New York, NY, USA, 2009. ACM.

[11] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social
coding in github: transparency and collaboration in an open software
repository. In Proceedings of the ACM 2012 conference on computer
supported cooperative work, pages 1277–1286. ACM, 2012.

[12] Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano,
Sergey Pupyrev, and Alon Shalita. Compressing graphs and indexes with
recursive graph bisection. In Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 1535–1544, New York, NY, USA, 2016. ACM.

[13] Roberto Di Cosmo, Morane Gruenpeter, and Stefano Zacchiroli. Iden-
tifiers for digital objects: the case of software source code preservation.
In Proceedings of the 15th International Conference on Digital Preser-
vation, iPRES 2018, Boston, USA, September 2018. Available from
https://hal.archives-ouvertes.fr/hal-01865790.

[14] Roberto Di Cosmo and Stefano Zacchiroli. Software heritage: Why
and how to preserve software source code. In Proceedings of the
14th International Conference on Digital Preservation, iPRES 2017,
September 2017.

[15] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen.
Boa: A language and infrastructure for analyzing ultra-large-scale soft-
ware repositories. In Proceedings of the 2013 International Conference
on Software Engineering, pages 422–431. IEEE Press, 2013.

[16] Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. Fast
scalable construction of (minimal perfect hash) functions. In Andrew V.
Goldberg and Alexander S. Kulikov, editors, Experimental Algorithms:
15th International Symposium, SEA 2016, St. Petersburg, Russia, June
5-8, 2016, Proceedings, number 9685 in Lecture Notes in Computer
Science, pages 339–352. Springer, 2016.

[17] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An ex-
ploratory study of the pull-based software development model. In Pro-
ceedings of the 36th International Conference on Software Engineering,
pages 345–355. ACM, 2014.

[18] Georgios Gousios and Diomidis Spinellis. Ghtorrent: Github’s data from
a firehose. In Michele Lanza, Massimiliano Di Penta, and Tao Xie,

editors, 9th IEEE Working Conference of Mining Software Repositories,
MSR, pages 12–21. IEEE Computer Society, 2012.

[19] Torben Hagerup. Fast breadth-first search in still less space. In
International Workshop on Graph-Theoretic Concepts in Computer
Science, pages 93–105. Springer, 2019.

[20] Ahmed E. Hassan. The road ahead for mining software repositories.
In Frontiers of Software Maintenance, 2008. FoSM 2008., pages 48–57.
IEEE, 2008.

[21] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey
and taxonomy of approaches for mining software repositories in the
context of software evolution. Journal of software maintenance and
evolution: Research and practice, 19(2):77–131, 2007.

[22] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris
Mockus. World of code: an infrastructure for mining the universe of open
source vcs data. In Proceedings of the 16th International Conference
on Mining Software Repositories, pages 143–154. IEEE Press, 2019.

[23] Tom Mens. Introduction and roadmap: History and challenges of
software evolution. In Software evolution, pages 1–11. Springer, 2008.

[24] Ralph C. Merkle. A digital signature based on a conventional encryp-
tion function. In Carl Pomerance, editor, Advances in Cryptology -
CRYPTO’87, A Conference on the Theory and Applications of Cryp-
tographic Techniques, Proceedings, volume 293 of Lecture Notes in
Computer Science, pages 369–378. Springer, 1987.

[25] Gonzalo Navarro. Compact data structures: A practical approach.
Cambridge University Press, 2016.

[26] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. The Software
Heritage graph dataset: public software development under one roof.
In Margaret-Anne D. Storey, Bram Adams, and Sonia Haiduc, editors,
Proceedings of the 16th International Conference on Mining Software
Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada., pages
138–142. IEEE / ACM, 2019.

[27] Keith Randall, Raymie Stata, Rajiv Wickremesinghe, and Janet L.
Wiener. The LINK database: Fast access to graphs of the Web. Research
Report 175, Compaq Systems Research Center, Palo Alto, CA, 2001.

[28] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. Software clone
detection: A systematic review. Information and Software Technology,
55(7):1165–1199, 2013.

[29] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar De-
vanbu. A large scale study of programming languages and code quality
in github. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 155–165.
ACM, 2014.

[30] Guillaume Rousseau, Roberto Di Cosmo, and Stefano Zacchiroli.
Growth and duplication of public source code over time: Prove-
nance tracking at scale. Technical report, Inria, 2019. https://hal.
archives-ouvertes.fr/hal-02158292.

[31] Diomidis Spinellis. Version control systems. IEEE Software, 22(5):108–
109, 2005.

[32] Klaas-Jan Stol and Brian Fitzgerald. Inner source–adopting open source
development practices in organizations: a tutorial. IEEE Software,
32(4):60–67, 2014.

https://zenodo.org/record/3574459
https://doi.org/10.5281/zenodo.3574459
https://archive.softwareheritage.org/browse/swh:1:rel:132327bf1601eb890e28e96353bd61141923d9e1
https://hal.archives-ouvertes.fr/hal-01865790
https://hal.archives-ouvertes.fr/hal-02158292
https://hal.archives-ouvertes.fr/hal-02158292

	Introduction
	Background
	Graph compression
	The WebGraph framework

	Data model
	Version Control System Compression
	Case study: compressing the Software Heritage archive
	Compression scope and metadata
	Compression pipeline
	Compression results

	Exploitation
	Graph traversal
	Source code artifact multiplication
	Results

	Discussion
	Graph design
	Limitations

	Related work
	Large-scale mining approaches
	Graph compression techniques

	Conclusion
	References

