
Chapter 2
The Software Heritage Open Science
Ecosystem

Roberto Di Cosmo and Stefano Zacchiroli

Abstract Software Heritage is the largest public archive of software source code
and associated development history, as captured by modern version control systems.
As of July 2023, it has archived more than 16 billion unique source code files coming
from more than 250 million collaborative development projects. In this chapter, we
describe the Software Heritage ecosystem, focusing on research and open science
use cases.

On the one hand, Software Heritage supports empirical research on software
by materializing in a single Merkle direct acyclic graph the development history
of public code. This giant graph of source code artifacts (files, directories, and
commits) can be used –and has been used– to study repository forks, open source
contributors, vulnerability propagation, software provenance tracking, source code
indexing, and more.

On the other hand, Software Heritage ensures availability and guarantees
integrity of the source code of software artifacts used in any field that relies on
software to conduct experiments, contributing to making research reproducible.
The source code used in scientific experiments can be archived –e.g., via integration
with open-access repositories – referenced using persistent identifiers that allow
downstream integrity checks and linked to/from other scholarly digital artifacts.

R. Di Cosmo (�)
Inria and Université Paris Cité, Paris, France
e-mail: roberto@dicosmo.org

S. Zacchiroli
LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
e-mail: stefano.zacchiroli@telecom-paris.fr

© The Author(s) 2023
T. Mens et al. (eds.), Software Ecosystems,
https://doi.org/10.1007/978-3-031-36060-2_2

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36060-2protect unhbox voidb@x penalty @M hskip z@skip T1	extunderscore discretionary {-}{}{}penalty @M hskip z@skip 2&domain=pdf

 885
52970 a 885 52970 a

mailto:roberto@dicosmo.org
mailto:roberto@dicosmo.org

 885 56845 a 885 56845 a

mailto:stefano.zacchiroli@telecom-paris.fr
mailto:stefano.zacchiroli@telecom-paris.fr
mailto:stefano.zacchiroli@telecom-paris.fr
mailto:stefano.zacchiroli@telecom-paris.fr
https://doi.org/10.1007/978-3-031-36060-2_2
https://doi.org/10.1007/978-3-031-36060-2_2
https://doi.org/10.1007/978-3-031-36060-2_2
https://doi.org/10.1007/978-3-031-36060-2_2
https://doi.org/10.1007/978-3-031-36060-2_2
https://doi.org/10.1007/978-3-031-36060-2_2
https://doi.org/10.1007/978-3-031-36060-2_2
https://doi.org/10.1007/978-3-031-36060-2_2
https://doi.org/10.1007/978-3-031-36060-2_2
https://doi.org/10.1007/978-3-031-36060-2_2
https://doi.org/10.1007/978-3-031-36060-2_2

34 R. Di Cosmo and S. Zacchiroli

2.1 The Software Heritage Archive

Software Heritage [1, 12] is a nonprofit initiative started by Inria in partnership with
UNESCO to build a long-term universal archive specifically designed for software
source code, capable of storing source code files and directories, together with their
full development histories.

Software Heritage’s mission is to collect, preserve, and make easily accessible
the source code of all publicly available software, addressing the needs of a plurality
of stakeholders, ranging from cultural heritage to public administrations and from
research to industry.

The key principles that underpin this initiative are described in detail in two
articles written for a broader audience in the early years of the project [1, 12]. One
of these principles was to avoid any a priori selection of the contents of the archive,
to avoid the risk of missing relevant source code, whose value will only become
apparent later on. Hence, one of the strategies enacted for collecting source code to
archive is the large-scale automated crawling of major software development forges
and distributions, as shown in Fig. 2.1.

As a consequence of this automated harvesting, there is no guarantee that the
content of the archive only contains quality source code or only code that builds
properly: curation of the contents will need to happen at a later stage, via human
or automated processes that build a view of the archive for specific needs. It may
also happen that the archive ends up containing content that needs to be removed,
and this required the creation of a process to handle take down requests following
current legal regulations.1

The sustainability plan is based on several pillars. The first one is the support
of Inria, a national research institution that is involved for the long term. A second
one is the fact that Software Heritage provides a common infrastructure catering
to the needs of a variety of stakeholders, ranging from industry to academia and
from cultural heritage to public administrations. As a consequence, funding comes
from a diverse group of sponsors, ranging from IT companies to public institutions.
Finally, an extra layer of archival security is provided by a network of independent
international mirrors that maintain each a full copy of the archive.2

We recall here a few key properties that set Software Heritage apart from other
scholarly infrastructures:

• Software Heritage proactively archives all software, making it possible to store
and reference any piece of publicly available software relevant to a research
result, independently from any specific field of endeavor, and even when the
author(s) did not take any step to have it archived [1, 12];

1 See https://www.softwareheritage.org/legal/content-policy/ for details.
2 More details can be found at https://www.softwareheritage.org/support/sponsors and https://
www.softwareheritage.org/mirrors.

https://www.softwareheritage.org/legal/content-policy/
https://www.softwareheritage.org/legal/content-policy/
https://www.softwareheritage.org/legal/content-policy/
https://www.softwareheritage.org/legal/content-policy/
https://www.softwareheritage.org/legal/content-policy/
https://www.softwareheritage.org/legal/content-policy/
https://www.softwareheritage.org/legal/content-policy/
https://www.softwareheritage.org/support/sponsors
https://www.softwareheritage.org/support/sponsors
https://www.softwareheritage.org/support/sponsors
https://www.softwareheritage.org/support/sponsors
https://www.softwareheritage.org/support/sponsors
https://www.softwareheritage.org/support/sponsors
https://www.softwareheritage.org/mirrors
https://www.softwareheritage.org/mirrors
https://www.softwareheritage.org/mirrors
https://www.softwareheritage.org/mirrors
https://www.softwareheritage.org/mirrors

2 The Software Heritage Open Science Ecosystem 35

G
it

lo

ad
er

M
er

cu
ri

al

lo
ad

er

D
eb

ia
n

so
ur

ce

pa
ck

ag
e

lo
ad

er

ta
r

lo
ad

er

. . .

S
o
ft

w
a
r
e
 H

e
r
it

a
g

e
 A

r
c
h

iv
e

M
e
r
k
le

 D
A

G
 +

 b
lo

b
 s

to
r
a
g

e

L
o
a
d

in
g

&
 d

e
d

u
p

li
c
a
ti

o
n

ds
c ds

c hg
 hg

hg

gi
t

gi
t gi

t
gi

t

sv
n

sv
n

sv
n

ta
r zi

p

s
o
ft

w
a
r
e

o
r
ig

in
s

Pa
ck

ag
e

re
po

s

Fo
rg

es

G
it

H
ub

lis

te
r

G
it

La
b

lis
te

r

D
eb

ia
n

lis
te

r Py
Pi

lis

te
r

. . .
D

is
tr

os

...

S
c
h

e
d

u
li
n

g

L
is

ti
n

g

(f
u

ll
/i

n
c
r
e
m

e
n

ta
l)

F
ig
. 2

.1

So

ft
w
ar
e
H
er
ita
ge
 d
at
a
flo

w
: c
ra
w
lin

g
(o
n
th
e
le
ft
)
an
d
ar
ch
iv
al
 (
ri
gh
t)

36 R. Di Cosmo and S. Zacchiroli

• Software Heritage stores source code with its development history in a uniform
data structure, a Merkle Directed Acyclic Graph (DAG) [32], which allows to
provide uniform, intrinsic identifiers for tens of billions archived software arti-
facts, independently of the version control system (VCS) or package distribution
technology used by software developers [15].

Relevance for Software Ecosystems Software Heritage relates to software ecosys-
tems, according to the seminal definition of Messerschmitt et al. [33] in two main
ways. On the one hand, software products are associated with source code artifacts
that are versioned and stored in VCSs. For Free/Open Source Software (FOSS),
and more generally public code, those artifacts are distributed publicly and can be
mined to pursue various goals. Software Heritage collects and preserves observable
artifacts that originate from open-source ecosystems, enabling others to access and
exploit them in the foreseeable future.

On the other hand, Software Heritage provides the means to foster the sharing
of even more of those artifacts in the specific case of open scientific practices—
what we refer to as the “open science ecosystem” in this chapter. Contrary to
software-only ecosystems, the open science ecosystem encompasses a variety of
software and non-software artifacts (e.g., data, publications); Software Heritage
has contributed to this ecosystem the missing piece of long-term archival and
referencing of scientifically relevant software source code artifacts.

2.1.1 Data Model

Modern software development produces multiple kinds of source code artifacts
(e.g., source code files, directories, commits), which are usually stored and tracked
in version control systems, distributed as packages in various formats, or otherwise.

When designing a software source code archive that stores source code with its
version control history coming from a disparate set of platforms, there are different
design options available. One option is to keep a verbatim copy of all the harvested
content, which makes it easy to immediately reuse the package or version control
tool. However, this approach can result in storage explosion: as a consequence of
both social coding practices on collaborative development platforms and the liberal
licensing terms of open-source software, those source code artifacts end up being
massively duplicated across code hosting and distribution platforms.

Choosing a data structure that minimizes duplication is better for long-term
preservation and the ability to identify easily code reuse and duplication.

This is the choice made by Software Heritage. Its data model is a Direct Acyclic
Graph (DAG) that leverages classical ideas from content addressable storage and
Merkle trees [32], which we recall briefly here.

As shown in Fig. 2.2, the Software Heritage DAG is organized in five logical
layers, which we describe below from bottom to top.

2 The Software Heritage Open Science Ecosystem 37

Merkle DAG

origins

snapshots

releases

revisions

directories

contents

Fig. 2.2 Data model of the Software Heritage archive: a directed acyclic graph (DAG) linking
together deduplicated software artifacts shared across the entire body of (archived) public code

Contents (or “blobs”) form the graph’s leaves and contain the raw content of
source code files, not including their filenames (which are context-dependent and
stored only as part of directory entries).

Directories are associative lists mapping names to directory entries and asso-
ciated metadata (e.g., permissions). Each entry can point to content objects (“file
entries”), revisions (“revision entries,” e.g., to represent git submodules or subver-
sion externals), or other directories (“directory entries”).

Revisions (or “commits”) are point-in-time representations of the entire source
tree of a development project. Each revision points to the root directory of the project
source tree and a list of its parent revisions (if any).

Releases (or “tags”) are revisions that have been marked by developers as
noteworthy with a specific, usually mnemonic, name (e.g., a version number like
“4.2”). Each release points to a revision and might include additional metadata such
as a changelog message, digital signature, etc.

Snapshots are point-in-time captures of the full state of a project development
repository. While revisions capture the state of a single development line (or
“branch”), snapshots capture the state of all branches in a repository and allow
to reconstruct the full state of a repository that has been deleted or modified
destructively (e.g., rewriting its history with tools like “git rebase”).

Origins represent the places where artifacts have been encountered in the wild
(e.g., a public Git repository) and link those places to snapshot nodes and associated
metadata (e.g., the timestamp at which crawling happened), allowing to start archive
traversals pointing into the Merkle DAG.

The Software Heritage archive is hence a giant graph containing nodes corre-
sponding to all these artifacts and links between them as graph edges.

38 R. Di Cosmo and S. Zacchiroli

01
 J
an

 2
01

5
01

 J
an

 2
01

6
01

 J
an

 2
01

7
01

 J
an

 2
01

8
01

 J
an

 2
01

9
01

 J
an

 2
02

0
01

 J
an

 2
02

1
01

 J
an

 2
02

2
01

 J
an

 2
02

3
01

 J
an

 2
02

4

0.00

2.00B

4.00B

6.00B

8.00B

10.0B

12.0B

14.0B

16.0B

18.0B

01
 J
an

 2
01

5
01

 J
an

 2
01

6
01

 J
an

 2
01

7
01

 J
an

 2
01

8
01

 J
an

 2
01

9
01

 J
an

 2
02

0
01

 J
an

 2
02

1
01

 J
an

 2
02

2
01

 J
an

 2
02

3
01

 J
an

 2
02

4

0.00

500M

1.00B

1.50B

2.00B

2.50B

3.00B

3.50B

01
 J
an

 2
01

5
01

 J
an

 2
01

6
01

 J
an

 2
01

7
01

 J
an

 2
01

8
01

 J
an

 2
01

9
01

 J
an

 2
02

0
01

 J
an

 2
02

1
01

 J
an

 2
02

2
01

 J
an

 2
02

3
01

 J
an

 2
02

4

0.00
20.0M
40.0M
60.0M
80.0M
100M
120M
140M
160M
180M
200M
220M
240M
260M

Fig. 2.3 Evolution of the Software Heritage archive over time (July 2023)

What makes this DAG capable of deduplicating identical content is the fact that
each node is identified by a cryptographic hash that concisely represent its contents,
and that is used in the SWHID identifier detailed in the next section. For the blobs
that are the leaves of the graph, this identifier is just a hash of the blob itself, so
even if the same file content can be present in multiple projects, its identifier will
be the same, and it will be stored in the archive only once, like in classical content
addressable storage [39]. For internal nodes, the identifier is computed from the
aggregation of the identifiers of its children, following the construction originally
introduced by Ralph Merkle [32]: as a consequence, if the same directory, possibly
containing thousands of files, is duplicated across multiple projects, its identifier
will stay the same, and it will be stored only once in the archive. The same goes for
revision, releases, and snapshots.

In terms of size, the archive grows steadily over time as new source code artifacts
get added to it, as shown in Fig. 2.3. As of July 2023, the Software Heritage archive
contained over 16 billion unique source code files, harvested from more than 250
million software origins.3

2.1.2 Software Heritage Persistent Identifiers (SWHIDs)

As part of the archival process, a Software Heritage Persistent Identifier (SWHID), is
computed for each source code artifact added to the archive and can be used later to
reference, look up, and retrieve it from the archive. The general syntax of SWHIDs
is shown in Fig. 2.4.4

3 See https://archive.softwareheritage.org for these and other up-to-date statistics.
4 See https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html for the full
specification of SWHIDs.

https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

2 The Software Heritage Open Science Ecosystem 39

Fig. 2.4 Schema of the Software Heritage identifiers (SWHID)

SWHIDs are URIs [5] with a simple syntax. Core SWHIDs start with the
“swh” URI scheme; the colon (:) is used as separator between the logical parts of
identifiers; the schema version (currently 1) is the current version of this identifier
schema, then follows the type of source code artifacts identified, and finally comes
a hex-encoded (using lowercase ASCII characters) cryptographic signature of this
object, computed in a standard way, as detailed in [13, 15].

Core SWHIDs can then be complemented by qualifiers that carry contextual
extrinsic information about the referenced source code artifact:

origin: the software origin where an object has been found or observed in the
wild, as a URI;

visit: persistent identifier of a snapshot corresponding to a specific visit of a
repository containing the designated object;

anchor: a designated node in the Merkle DAG relative to which a path to the
object is specified;

path: the absolute file path, from the root directory associated with the anchor
node, to the object;

lines: line number(s) of interest, usually pointing within a source code file.

The combination of core SWHIDs and qualifiers provides a powerful means of
referring in a research article all source code artefacts of interest.

By keeping all the development history in a single global Merkle DAG, Software
Heritage offers unique opportunities for massive analysis of the software devel-
opment landscape. By archiving and referencing all the publicly available source
code, the archive also constitutes the ideal place to preserve research software
artifacts and offers powerful mechanisms to enhance research articles with precise
references to relevant fragments of source code and contributes an essential building
block to the software pillar of Open Science.

40 R. Di Cosmo and S. Zacchiroli

2.2 Large Open Datasets for Empirical Software Engineering

The availability of large amounts of source code that came with the growing
adoption of open source and collaborative development has attracted the interest
of software engineering researchers since the beginning of the 2000s and opened
the way to large-scale empirical software engineering studies and a dedicated
conference, Mining Software Repositories.

Several shared concerns emerged over time in this area, and we recall here some
of the ones that are relevant for the discussion in this chapter.

One issue is the significant overhead involved in the systematic extraction
of relevant data from the publicly available repositories and their analysis for
testing research hypotheses. Building a very large-scale dataset containing massive
amounts of source code with its version control history is a complex undertaking and
requires significant resources, as shown in seminal work by Mockus in 2009 [34].
The lack of a common infrastructure spawned a proliferation of ad hoc pipelines for
collecting and organizing source code with its version control history, a duplication
of efforts that were subtracted to the time available to perform the intended research
and hindered their reusability. A few initiatives were born with the intention of
improving this unsatisfactory state of affairs: Boa [17] provides selected datasets
(the largest and most recent one at the time of writing consists of about eight million
GitHub repositories sampled in October 2019) and a dedicated domain specific
language to perform efficient queries on them, while World of Code [31] collects
git repositories on a large scale and maintains dedicated data structures that ease
their analysis.

The complexity of addressing the variety of existing code hosting platforms and
version control systems resulted in focusing only on subsets of the most popular
ones, in particular the GitHub forge and the git version control system, which raises
another issue: the risk of introducing bias in the results. In empirical sciences,
selection bias [24] is the bias that originates from performing an experiment on a
non-representative subset of the entire population under study. It is a methodological
issue that can lead to threats to the external validity of experiments, i.e., incorrectly
concluding that the obtained results are valid for the entire population, whereas
they might only apply to the selected subset. In empirical software engineering,
a common pattern that could result in selection bias is performing experiments on
software artifacts coming from a relatively small set of development projects. It can
be mitigated by ensuring that the project set is representative of the larger set of
projects of interest, but doing so could be challenging.

Finally, there is the issue of enabling reproducibility of large-scale experiments—
i.e., the ability to replicate the findings of a previous scientific experiment, by the
same or a different team of scientists, reusing varying amounts of the artifacts used

2 The Software Heritage Open Science Ecosystem 41

in the original experiment [29].5 Large-scale empirical experiments in software
engineering might easily require shipping hundreds of GiB up to a few TiB of source
code artifacts as part of replication packages, whereas current scientific platform for
data self archival usually cap at tens of GiB.6

The comprehensiveness of the Software Heritage archive, which makes available
the largest public corpus of source code artifacts in a single logical place, helps with
all these issues:

• reduces the opportunity cost of conducting large-scale experiments by offering
at regular intervals as open datasets full dumps of the archive content

• contributes to mitigate selection bias and the associated external validity threats
by providing a corpus that strives to be comprehensive for researchers conducting
empirical software engineering experiments targeting large project populations.

• the persistence offered by an independent digital archive, run by a nonprofit
open organization, eases the process of ensuring the reproducibility of large-scale
experiments, avoiding the need to re-archive the same open-source code artifacts
in multiple papers, a wasteful practice that should be avoided if possible. Using
Software Heritage is enough to thoroughly document in replication packages
the SWHIDs (see Sect. 2.1.2) of all source code artifacts7 used in an empirical
experiment to enable other scientists to reproduce the experiments later on [11].

Table 2.1 summarizes the above points, comparing with a few other infrastruc-
tures designed specifically for software engineering studies.

In the rest of this section, we briefly describe the datasets that Software Heritage
curates and maintains to the benefit of other researchers in the field of empirical
software engineering.

Before detailing the available datasets, we recall that building and maintaining
the Software Heritage infrastructure that is instrumental to build them is a multi-
million dollar undertaking. We are making significant efforts to reduce the burden
on the prospective users, by providing dumps at regular intervals that help with
reproducibility and making them directly available on public clouds like AWS.
Researchers can then either run their queries directly on the cloud, paying only the
compute time, or download them for exploiting them on their own infrastructure.

To give an idea of the associated costs for researchers, SQL queries on the
graph datasets described in Sect. 2.2.1.1 can be performed using Amazon Athena
for approximately 5$ per Terabyte scanned at the time of writing. For example, an

5 For the sake of conciseness, we do not differentiate here between repeatability, reproducibil-
ity, and replicability; we refer instead the interested reader to the ACM terminology avail-
able at https://www.acm.org/publications/policies/artifact-review-and-badging-current. To vary-
ing degrees, Software Heritage helps with all of them, specifically when it comes to mitigating
the risk of losing availability to source code artifacts.
6 For comparison: the total size of source code archived at Software Heritage is . ≈1 PiB at the time
of writing.
7 As it will become clear in Sect. 2.1.2, in most cases, it will be sufficient to list the SWHIDs of the
releases or repository snapshots.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

42 R. Di Cosmo and S. Zacchiroli

Table 2.1 Comparison of infrastructures for performing empirical software engineering research

SQL query to get the 4 topmost commit verb stems from over two billion revisions
scans approximately 100 Gigabytes of data and provides the user with the answer
in less than a minute, for a total cost of approximately 50 cents, a minimal fraction
of the cost one would incur to set up an on-premise solution.

When SQL queries are not enough (typically when a graph traversal is needed),
the cost of a cloud solution may quickly become significant, and it may become
more interesting to set up an on-premise solution. The full compressed graph dataset
can be exploited using medium range server grade machines that are accessible for
less than 10,000 dollars.

2.2.1 The Software Heritage Datasets

The entire content of the Software Heritage archive is publicly available to
researchers interested in conducting empirical experiments on it. At the simplest
level, the content of the archive can be browsed interactively using the Web user
interface at https://archive.softwareheritage.org/ and accessed programmatically
using the Web API documented at https://archive.softwareheritage.org/api/. These
access paths, however, are not really suitable for large-scale experiments due
to protocol overheads and rate limitations enforced to avoid depleting archive
resources. To address this, several curated datasets are regularly extracted from the
archive and made available to researchers in ways suitable for mass analysis.

Criteria

Infrastructure
SWH SWH graph Boa World of Code

on S3 (on premise)

host organisation non profit foundation research project research project

purpose archival & research

scope all platforms GitHub, SourceForce Git hosting

dataset open closed closed

access free on demand on demand

query language SQL Athena graph API custom DSL custom API

cost 5$/TB 10K$ setup free free

dataset update frequency 6 months ≈ yearly ≈ yearly

reproducibility
named dataset named dataset named dataset

SWHID list

https://archive.softwareheritage.org/
https://archive.softwareheritage.org/
https://archive.softwareheritage.org/
https://archive.softwareheritage.org/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/

2 The Software Heritage Open Science Ecosystem 43

2.2.1.1 The Software Heritage Graph Dataset

Consider the data model discussed in Sect. 2.1.1. The entire archive graph is
exported periodically as the Software Heritage Graph Dataset [38]. Note the word
“graph” in there, which characterizes this particular dataset and denotes that only the
graph is included in the dataset, up to the content of its leave nodes, excluded (for
size reasons). This dataset is suitable for analyzing source code metadata, including
commit information, filenames, software provenance, code reuse, etc., but not for
textual analyses of archived source code, as that is stored in graph leaves (see the
blob dataset below for how to analyze actual code).

The data model of the graph dataset is a relational representation of the archive
Merkle DAG, with one “table” for each type of node: blobs, directories, commits,
releases, and snapshots. Each table entry is associated with several attributes, such
as multiple checksums for blobs, filenames and attributes for directories, commit
messages and timestamps for commits, etc. The full schema is documented at
https://docs.softwareheritage.org/devel/swh-dataset/graph/schema.html.

In practical terms, the dataset is distributed as a set of Apache ORC files for
each table, suitable for loading into scale-out columnar-oriented data processing
frameworks such as Spark and Hadoop. The ORC files can be downloaded from
the public Amazon S3 bucket s3://softwareheritage/graph/. At the time of writing,
the most recent dataset export has timestamp 2022-12-07, so, for example, the first
ORC files of the commit table are:

The current version of the dataset contains metadata for 13 billion source code
files, ten billion directories, 2.7 billion commits, 35 million releases, and 200 million
VCS snapshots, coming from 189 M software origins. The total size of the dataset
is 11 TiB, which makes it unpractical for use on personal machines, as opposed to
research clusters. For that reason, hosted versions of the dataset are also available
on Amazon Athena and Azure Databricks. The former can be queried using the
Presto distributed SQL engine without having to download the dataset locally. For
example, the following query will return the most common first word stems used in
commit messages across more than 2.7 billion commits in just a few seconds:

1 $ aws s3 ls --no-sign-request
↪→ s3://softwareheritage/graph/2022-12-07/orc/revision/

2 2022-12-13 17:41:44 3099338621 revision-[..]-f9492019c788.orc
3 2022-12-13 17:32:42 4714929458 revision-[..]-42da526d2964.orc
4 2022-12-13 17:57:00 3095895911 revision-[..]-9c46b558269d.orc
5 [..]

Listing 2.1 Simple SQL query to get the 4 topmost commit verb stems
1 SELECT count(*) as c,word FROM (
2 SELECT word_stem(lower(split_part(trim(from_utf8(message)), ’ ’, 1)))

↪→ as word
3 from revision WHERE length(message) < 1000000)
4 WHERE word != ’’
5 GROUP BY word ORDER BY c DESC LIMIT 4

https://docs.softwareheritage.org/devel/swh-dataset/graph/schema.html
https://docs.softwareheritage.org/devel/swh-dataset/graph/schema.html
https://docs.softwareheritage.org/devel/swh-dataset/graph/schema.html
https://docs.softwareheritage.org/devel/swh-dataset/graph/schema.html
https://docs.softwareheritage.org/devel/swh-dataset/graph/schema.html
https://docs.softwareheritage.org/devel/swh-dataset/graph/schema.html
https://docs.softwareheritage.org/devel/swh-dataset/graph/schema.html
https://docs.softwareheritage.org/devel/swh-dataset/graph/schema.html
https://docs.softwareheritage.org/devel/swh-dataset/graph/schema.html
https://docs.softwareheritage.org/devel/swh-dataset/graph/schema.html

 11633 25022 a 11633 25022 a

44 R. Di Cosmo and S. Zacchiroli

For the curious reader, the (unsurprising) results of the query look like this:

Count Word

294 369 196 updat

178 738 450 merg

152 441 261 add

113 924 516 fix

More complex queries and examples can be found in previous work [38]. For
more details about using the graph dataset, we refer the reader to its technical
documentation at https://docs.softwareheritage.org/devel/swh-dataset/graph/.

In addition to the research highlights presented later in this chapter, the Software
Heritage graph dataset has been used as subject of study for the 2020 edition of the
MSR (Mining Software Repositories) mining challenge, where students and young
researchers in software repository mining have used it to solve the most interesting
mining problems they could think of. To facilitate their task “teaser” datasets –data
samples with exactly the same shape of the full dataset, but much smaller– have
also been produced and can be used by researchers to understand how the dataset
works before attacking its full scale. For example, the popular-3k-python teaser
contains a subset of 2.197 popular repositories tagged as implemented in Python
and being popular according to various metrics (e.g., GitHub stars, PyPI download
statistics, etc.). The gitlab-all teaser corresponds to all public repositories on
www.gitlab.comgitlab.com (as of December 2020), an often neglected ecosystem of
Git repositories, which is interesting to study to avoid (or compare against) GitHub-
specific biases.

2.2.1.2 Accessing Source Code Files

All source code files archived by Software Heritage are spread across
multiple copies and also mirrored to the public Amazon S3 bucket www.s3://
softwareheritage/content/s3://softwareheritage/content/. From there, individual
files can be retrieved, possibly massively and in parallel, based on their SHA1
checksums. Starting from SWHIDs, one can obtain SHA1 checksums using the
content table of the graph dataset and then access the associated content as
follows:

https://docs.softwareheritage.org/devel/swh-dataset/graph/
https://docs.softwareheritage.org/devel/swh-dataset/graph/
https://docs.softwareheritage.org/devel/swh-dataset/graph/
https://docs.softwareheritage.org/devel/swh-dataset/graph/
https://docs.softwareheritage.org/devel/swh-dataset/graph/
https://docs.softwareheritage.org/devel/swh-dataset/graph/
https://docs.softwareheritage.org/devel/swh-dataset/graph/
https://docs.softwareheritage.org/devel/swh-dataset/graph/
www.gitlab.com
www.gitlab.com
www.gitlab.com
www.s3://softwareheritage/content/
www.s3://softwareheritage/content/
www.s3://softwareheritage/content/
www.s3://softwareheritage/content/

2 The Software Heritage Open Science Ecosystem 45

1 $ aws s3 cp s3://softwareheritage/content/\
2 8624bcdae55baeef00cd11d5dfcfa60f68710a02 .
3 download: s3://softwareheritage/content/8624b[..] to ./8624b[..]
4

5 $ zcat 8624bcdae55baeef00cd11d5dfcfa60f68710a02 | sha1sum
6 8624bcdae55baeef00cd11d5dfcfa60f68710a02 -
7

8 $ zcat 8624bcdae55baeef00cd11d5dfcfa60f68710a02 | head
9 GNU GENERAL PUBLIC LICENSE
10 Version 3, 29 June 2007
11 [..]

8

2.2.1.3 License Dataset

In addition to datasets that correspond to the actual content of the archive, i.e., source
code artifacts as encountered among public code, it is also possible to curate derived
datasets extracted from Software Heritage for the specific use cases or fields of
endeavors.

As of today one notable example of such a derived dataset is the license
blob dataset, available at https://annex.softwareheritage.org/public/dataset/license-
blobs/ and described in [51]. It consists of the largest known dataset of the
complete texts of free/open-source software (FOSS) license variants. To assemble
it, the authors collected from the Software Heritage archive all versions of files
whose names are commonly used to convey licensing terms to software users and
developers, e.g., COPYRIGHT, LICENSE, etc. (the exact pattern is documented as part
of the dataset replication package).

The dataset consists of 6.5 million unique license files that can be used to conduct
empirical studies on open-source licensing, training of automated license classifiers,
natural language processing (NLP) analyses of legal texts, as well as historical and
phylogenetic studies on FOSS licensing. Additional metadata about shipped license
files are also provided, making the dataset ready to use in various empirical software
engineering contexts. Metadata include file length measures, detected MIME type,

8 See https://www.softwareheritage.org/mirrors/ for details, including storage requirements. At the
time of writing, a full mirror of the archive requires about 1 PiB of raw storage.

Note that individual files are gzip-compressed to further reduce storage size.
The general empirical analysis workflow involves three simple steps: identify

the source code files of interest using the metadata available in the graph dataset,
obtain their checksum identifiers, and then retrieve them in batch and in parallel
from public cloud providers. This process scales well up to many million files to
be analyzed. For even larger-scale experiments, e.g., analyzing all source code files
archived at Software Heritage, research institutions may consider setting up a local
mirror of the archive.

https://annex.softwareheritage.org/public/dataset/license-blobs/
https://annex.softwareheritage.org/public/dataset/license-blobs/
https://annex.softwareheritage.org/public/dataset/license-blobs/
https://annex.softwareheritage.org/public/dataset/license-blobs/
https://annex.softwareheritage.org/public/dataset/license-blobs/
https://annex.softwareheritage.org/public/dataset/license-blobs/
https://annex.softwareheritage.org/public/dataset/license-blobs/
https://annex.softwareheritage.org/public/dataset/license-blobs/
https://www.softwareheritage.org/mirrors/
https://www.softwareheritage.org/mirrors/
https://www.softwareheritage.org/mirrors/
https://www.softwareheritage.org/mirrors/
https://www.softwareheritage.org/mirrors/

46 R. Di Cosmo and S. Zacchiroli

detected SPDX [45] license (using ScanCode [35], a state-of-the-art tool for license
detection), example origin (e.g., GitHub repository), and oldest public commit in
which the license appeared. The dataset is released as open data as an archive
file containing all deduplicated license files, plus several portable CSV files for
metadata, referencing files via cryptographic checksums.

2.3 Research Highlights

The datasets discussed in the previous section have been used to tackle research
problems in empirical software engineering and neighboring fields. In this section,
we provide brief highlights on the most interesting of them.

2.3.1 Enabling Artifact Access and (Large-Scale) Analysis

Applied research in various fields has been conducted to ease access to such a huge
amount of data as the Software Heritage archive for empirical researchers. This
kind of research is not, strictly speaking, research enabled by the availability of the
archive to solve software engineering problems but rather research motivated by the
practical need of empowering fellow scholars to do so empirically.

As a first example, SwhFS (Software Heritage File System) [2] is a virtual
filesystem developed using the Linux FUSE (Filesystem in User SpacE) framework
that can “mount,” in the UNIX tradition, selected parts of the archive as if they were
available locally as part of your filesystem. For example, starting from a known
SWHID, one can, for instance:

1 $ mkdir swhfs
2 $ swh fs mount swhfs/ # mount the archive
3 $ cd swhfs/
4

5 $ cat archive/swh:1:cnt:c839dea9e8e6f0528b468214348fee8669b305b2
6 #include <stdio.h>
7

8 int main(void) {
9 printf("Hello, World!\n");
10 }
11

12 $ cd archive/swh:1:dir:1fee702c7e6d14395bbf\
13 5ac3598e73bcbf97b030
14 $ ls | wc -l
15 127
16 $ grep -i antenna THE_LUNAR_LANDING.s | cut -f 5
17 # IS THE LR ANTENNA IN POSITION 1 YET
18 # BRANCH IF ANTENNA ALREADY IN POSITION 1

2 The Software Heritage Open Science Ecosystem 47

In the second example, we are grepping through the code of Apollo 11 guidance
computer code, searching for reference to antennas.

SwhFS allows to bridge the gap between classic UNIX-like mining tools, which
are often relied upon in the fields of empirical software engineering and software
repository mining, as well as by the Software Heritage APIs. However, it is not
suitable for very-large-scale mining, due to the fact that seemingly local archive
access pass through the public Internet (with caching, but still not suitable for large
experiments).

swh-graph [7] is a way to enable such large-scale experiments. The main idea
behind its approach is to adapt and apply graph compression techniques, commonly
used for graphs such as the Web or social network, to the Merkle DAG graph that
underpins the Software Heritage archive. The main research question addressed by
swh-graph is:

Is it possible to efficiently perform software development history analyses at ultra-large
scale, on a single, relatively cheap machine?

The answer is affirmative. As of today, the entire structure of the Software Heritage
graph (. ≈25 billion nodes . + 350 billion edges) can be loaded in memory on a single
machine equipped with . ≈ 200GiB of RAM (roughly: 100GiB for the direct graph +
100GiB for its transposed version, which is useful in many research use cases such
as source code provenance analysis). While significant and not suitable for personal
machines, such requirements are perfectly fine for server-grade hardware on the
market, with an investment of a few thousand US dollars in RAM. Once loaded, the
entire graph can be visited in full in just a few hours and a single path visit from
end to end can be performed in tens of nanoseconds per edge, close to the cost of a
single memory access per edge.

In practical terms, this allows to answer queries such as “where does this
file/directory/commit come from” or “list the entire content of this repositories”
in fractions of seconds (depending just on the size of the answer, in most cases)
fully in memory, without having to rely on a DBMS or even just disk accesses.
The price to pay for this is that (1) the compressed graph representation loaded in
memory is derived from the main archive and not incremental (it should periodically
be recreated) and (2) only the graph structure and selected metadata fit in RAM;
others reside on disk (although using compressed representations as well [37]) and
need to be memory mapped for efficient access to frequently accessed information.

Finally, the archive also provides interesting use cases for database research.
Recently, Wellenzohn et al. [48] has used it to develop a novel type of content-and-
structure (CAS) index, capable of indexing over time the evolution of properties
associated to specific graph nodes, e.g., a file content residing at a given place in a
repository changing over time together with its metadata (last modified timestamp,
author, etc.). While these indexes existed before, their deployment and efficient pre-
population were still unexplored at this scale.

48 R. Di Cosmo and S. Zacchiroli

2.3.2 Software Provenance and Evolution

The peculiar structure –a fully deduplicated Merkle DAG– and comprehensiveness
of the Software Heritage archive provides a powerful observation point and tool
on the evolution and provenance of public source code artifacts. In particular, it is
possible, on the one hand, to navigate the Merkle DAG backward, starting from any
artifact of interest (source code file, directory, commit, etc.), to obtain the full list
of all places (e.g., different repositories) where it has ever been distributed from.
This area is referred to as software provenance and, in its simplest form, deals with
determining the original (i.e., earliest) distribution place of a given artifact. More
generally, being able to identify all places that have ever distributed it provides a
way to measure software impact, track out of date copies or clones, and more.

Rousseau et al. [42] used the Software Heritage archive in a study that made
two relevant contributions in this area. First, exploiting the fact that commits
are deduplicated and timestamped, they verified that the growth of public code
as a whole, at least as it is observable from the lenses of Software Heritage, is
exponential: the amount of original commits (i.e., commits never observed before
throughout the archive, no matter the origin repository) in public source code
doubles every . ≈ 30 months and has been doing so for the past 20 years. If, on the
other hand, we look at original source code blobs (i.e., files whose content has never
been observed before throughout the archive, up to that point in time), the overall
trends remain the same, and only the speed changes: the amount of original public
source code blobs doubles every . ≈ 22 months. These are remarkable findings for
software evolution, which had never been verified before at this macro-level.

Second, the authors showed how to model software provenance compactly, so
that it can be represented (space-)efficiently at the scale of Software Heritage and
can be used to address software audit use cases, which are commonplace in open-
source compliance scenarios, merger and acquisition audits, etc.

2.3.3 Software Forks

The same characteristics that enable studying the evolution and provenance of public
code artifacts can be leveraged to study the global ecosystem of software forks. In
particular, the fact that commits are fully deduplicated allows to detect forks –both
collaborative ones, such as those created on social coding platforms to submit pull
requests, and hostile ones used to bring the project in a different direction– even
when they are not created on the same platform. It is possible to detect the fork of a
project originally created on GitHub and living on GitLab.com, or vice versa, based
on the fact that the respective repositories share a common commit history.

This is important as a methodological point for empirical researchers, because
by relying only on platform metadata (e.g., the fact that a repository has been
created by clicking on a “fork” button on the GitHub user interface), researchers

2 The Software Heritage Open Science Ecosystem 49

risk overlooking other relevant forks. In previous work, Zacchiroli [51] provided a
classification of the type of forks based on whether they are explicitly tracked as
being forks of one another on a coding platform (Type 1 forks), they share at least
one commit (Type 2), or they share a common root directory at some point in their
histories (Type 3). He empirically verified that between .3.8% and .16%, forks could
be overlooked by considering only type 1 forks, possibly inducing a significant
threat to validity for empirical analyses of forks that strive to be comprehensive.

Along the same lines, Bhattacharjee et al. [6] (participants in the MSR 2020
mining challenge) focus their analyses on “cross-platform” forks between GitHub
and GitLab.com, identifying several cases in which interesting development activity
can be found on GitLab even for projects initially mirrored from GitHub.

2.3.4 Diversity, Equity, and Inclusion

Diversity, equity, and inclusion studies (DE&I) are hot research topics in the area
of human aspects of software engineering. Free/open-source software artifacts, as
archived by Software Heritage, provides a wealth of data for analyzing evolutionary
DE&I trends, in particular in the very long term and at the largest scale attempted
thus far.

A recent study by Zacchiroli [50] has used Software Heritage to explore the trend
of gender diversity over a time period of 50 years. He conducted a longitudinal
study of the population of contributors to publicly available software source
code, analyzing 1.6 billion commits corresponding to the development history of
120 million projects, contributed by 33 million distinct authors over a period of
50 years. At this scale, authors cannot be interviewed to ask their gender, nor
cross-checking with large-enough complementary dataset was possible. Instead,
automated detection based on census data from around the world and the gender-
guesser tool (benchmarked for accuracy and popular in the field) was used. Results
show that while the amount of commits by female authors remains very low overall
(male authors have contributed more than 92% of public code commits over the
50 years leading to 2019), there is evidence of a stable long-term increase in their
proportion over all contributions (with the ratio of commits by female authors
growing steadily over 15 years, reaching in 2019 for the first time 10% of all
contributions to public code).

Follow-up studies have added the spatial dimension investigating the geographic
gap in addition to the gender one. Rossi et al. [40] have developed techniques
to detect the geographic origin of authors of Software Heritage commit, using
as signals the time-zone offset and the author names (compared against census
date from around the world). Results over 50 years of development history show
evidence of the early dominance of North America in open-source software, later
joined by Europe. After that period, the geographic diversity in public code has
been constantly increasing, with more and more contributions coming from Central
and South Asia (comprising India), Russia, Africa, and Central and South America.

50 R. Di Cosmo and S. Zacchiroli

Finally, Rossi et al. [41] put together the temporal and spatial dimension using the
Software Heritage archive to investigate whether the ratio of women participation
over time shows notable differences around the world, at the granularity of 20
macro-regions. The main result is that the increased trend of women participation is
indeed a worldwide phenomenon, with the exception of specific regions of Asia
where the increase is either slowed or completely flat. An incidental finding is
also worth noting: the positive trend of increased women participation observed
up to 2019 has been reversed by the COVID-19 pandemic, with the ratio of both
contributions by and active female authors decreasing sharply starting at about that
time.

These studies show how social aspects of software engineering can benefit from
large-scale empirical studies and how they can be enabled by comprehensive, public
archives of public code artifacts.

2.4 Building the Software Pillar of Open Science

Software plays a key role in scientific research, and it can be a tool, a result, and a
research object. [. . .] France will support the development and preservation of source code –
inseparable from the support of humanity’s technical and scientific knowledge – and it will,
from this position, continue its support for the Software Heritage universal archive. So as
to create an ecosystem that connects code, data and publications, the collaboration between
the national open archive HAL, the national research data platform Recherche Data Gouv,
the scientific publishing sector and Software Heritage will be strengthened.

Second french national plan for open science, July 2021 [22]

Software is an essential research output, and its source code implements and
describes data generation and collection, data visualization, data analysis, data
transformation, and data processing with a level of precision that is not met by
scholarly articles alone. Publicly accessible software source code allows a better
understanding of the process that leads to research results, and open-source software
allows researchers to build upon the results obtained by others, provided proper
mechanisms are put in place to make sure that software source code is preserved
and that it is referenced in a persistent way.

There is a growing general awareness of its importance for supporting the
research process [9, 25, 46]. Many research communities focus on the issue
of scientific reproducibility and strongly encourage making the source code of
the artefact available by archiving it in publicly accessible long-term archives;
some have even put in place mechanisms to assess research software, like the
Artefact Evaluation process introduced in the ESEC-FSE 2011 conference and now
widely adopted by many computer science conferences [10] and the ACM Artifact
Review and Badging program.9 Others raise the complementary issues of making

9 https://www.acm.org/publications/policies/artifact-review-badging.

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

2 The Software Heritage Open Science Ecosystem 51

it easier to discover existing research software and giving academic credit to its
authors [26, 30, 44].

These important issues are similar in spirit to those that led to the now-popular
FAIR data movement [49], and as a first step, it is important to clearly identify the
different concerns that come into play when addressing software, and in particular
its source code, as a research output. They can be classified as follows:

Archival: software artifacts must be properly archived, to ensure we can retrieve
them at a later time;

Reference: software artifacts must be properly referenced to ensure we can
identify the exact code, among many potentially archived copies, used for
reproducing a specific experiment;

Description: software artifacts must be equipped with proper metadata to make
it easy to find them in a catalog or through a search engine;

Citation: research software must be properly cited in research articles in order to
give credit to the people that contributed to it.

These are not only different concerns but also separate ones. Establishing proper
credit for contributors via citations or providing proper metadata to describe the
artifacts requires a curation process [3, 8, 14] and is way more complex than
simply providing stable, intrinsic identifiers to reference a precise version of a
software source code for reproducibility purposes [4, 15, 26]. Also, as remarked
in [4, 25], research software is often a thin layer on top of a large number of software
dependencies that are developed and maintained outside of academia, so the usual
approach based on institutional archives is not sufficient to cover all the software
that is relevant for reproducibility of research.

In this section, we focus on the first two concerns, archival and reference, that
can be addressed fully by leveraging the Software Heritage archive, but we also
describe how Software Heritage contributes through its ecosystem to the two other
concerns.

2.4.1 Software in the Scholarly Ecosystem

Presenting results in journal or conference articles has always been part of the
research activity. The growing trend, however, is to include software to support or
demonstrate such results. This activity can be a significant part of academic work
and must be properly taken into account when researchers are evaluated [4, 44].

Software source code developed by researchers is only a thin layer on top of the
complex web of software components, most of them developed outside of academia,
which are necessary to produce scientific results: as an example, Fig. 2.5 shows the
many components that are needed by the popular matplotlib library [27].

As a consequence, scholarly infrastructures that support software source code
written in academia must go the extra mile to ensure they adopt standards and
provide mechanisms that are compatible with the ones used by tens of millions

52 R. Di Cosmo and S. Zacchiroli

p
y
th
o
n
3
-m

at
p
lo
tl
ib

p
y
th
o
n
3
-d
at
eu
ti
l

p
y
th
o
n
3
-s
ix

p
y
th
o
n
3
:a
n
y

p
y
th
o
n
-m

at
p
lo
tl
ib
-d
at
a

p
y
th
o
n
3
-p
y
p
ar
si
n
g

li
b
js
-j
q
u
er
y

li
b
js
-j
q
u
er
y
-u
i

p
y
th
o
n
3
-n
u
m
p
y

p
y
th
o
n
3

p
y
th
o
n
3
-n
u
m
p
y
-a
b
i9

p
y
th
o
n
3
-c
y
cl
er

p
y
th
o
n
3
-k
iw
is
o
lv
er

li
b
fr
ee
ty
p
e6

li
b
p
n
g
1
6
-1
6

p
y
th
o
n
3
-p
il

p
y
th
o
n
3
-t
k

tz
d
at
a

[p
y
th
o
n
3
]
[p
y
th
o
n
3
]

{
d
eb
co
n
f}

d
eb
co
n
f-
2
.0

[d
eb
co
n
f]

{
cd
eb
co
n
f}

fo
n
ts
-l
y
x

tt
f-
b
it
st
re
am

-v
er
a jq
u
er
y

ja
v
as
cr
ip
t-
co
m
m
o
n

p
y
th
o
n
3
.7
:a
n
y

li
b
b
la
s3

li
b
b
la
s.
so
.3

li
b
la
p
ac
k
3

li
b
la
p
ac
k
.s
o
.3

p
y
th
o
n
3
-p
k
g
-r
es
o
u
rc
es
 p
y
th
o
n
3
-m

in
im

al

p
y
th
o
n
3
.7

li
b
p
y
th
o
n
3
-s
td
li
b

p
y
th
o
n
3
.7
-m

in
im

al

{
d
p
k
g
}

in
st
al
l-
in
fo

li
b
p
y
th
o
n
3
.7
-m

in
im

al
li
b
ex
p
at
1

li
b
ss
l1
.1

li
b
p
y
th
o
n
3
.7
-s
td
li
b

m
im

e-
su
p
p
o
rt

li
b
b
z2
-1
.0

li
b
lz
m
a5

li
b
d
b
5
.3

li
b
ff
i6

li
b
m
p
d
ec
2

li
b
n
cu
rs
es
w
6

li
b
ti
n
fo
6

li
b
re
ad
li
n
e7

li
b
sq
li
te
3
-0

li
b
u
u
id
1

b
zi
p
2

fi
le

x
z-
u
ti
ls

li
b
m
ag
ic
1

li
b
m
ag
ic
-m

g
c

x
z-
lz
m
a

li
b
g
p
m
2

re
ad
li
n
e-
co
m
m
o
n

li
b
re
ad
li
n
e-
co
m
m
o
n

u
u
id
-r
u
n
ti
m
e

ad
d
u
se
r

li
b
sm

ar
tc
o
ls
1

li
b
sy
st
em

d
0

p
as
sw

d
li
b
g
cr
y
p
t2
0

li
b
lz
4
-1

li
b
g
p
g
-e
rr
o
r0

li
b
g
p
g
-e
rr
o
r-
l1
0
n

[p
y
th
o
n
3
.7
]
[p
y
th
o
n
3
.7
]

li
b
g
fo
rt
ra
n
5

li
b
q
u
ad
m
at
h
0

..
.-6
-

g
cc
-9
-b
as
e

..
.

-3
-

[m
im

e-
su
p
p
o
rt
]
p
y
th
o
n
3
-p
il
.i
m
ag
et
k

li
b
im

ag
eq
u
an
t0

li
b
jp
eg
6
2
-t
u
rb
o

li
b
lc
m
s2
-2

li
b
ti
ff
5

li
b
w
eb
p
6

li
b
w
eb
p
d
em

u
x
2

li
b
w
eb
p
m
u
x
3

p
y
th
o
n
3
-o
le
fi
le

b
lt

tk
8
.6
-b
lt
2
.5

li
b
tc
l8
.6

li
b
tk
8
.6

b
lt
4
.2

b
lt
8
.0

b
lt
8
.0
-u
n
o
ff

li
b
fo
n
tc
o
n
fi
g
1

li
b
x
ex
t6

li
b
x
ft
2

li
b
x
ss
1

li
b
x
re
n
d
er
1

x
1
1
-c
o
m
m
o
n

li
b
jp
eg
6
2

li
b
jb
ig
0

li
b
zs
td
1

F
ig
. 2

.5

D
ir
ec
t
an
d
in
di
re
ct
 d
ep
en
de
nc
ie
s
fo
r
a
sp
ec
ifi
c
py
th
on
 p
ac
ka
ge
 (
m
at
pl
ot
lib

).
 I
n
bl
ue
 a
re
 t
he
 P
yt
ho
n
de
pe
nd
en
ci
es
;
in
 r
ed
 a
re
 t
he
 “
tr
ue
”
sy
st
em

de
pe
nd
en
ci
es
 in

cu
rr
ed
 b
y
py
th
on
 (
e.
g.
, t
he
 l
i
b
c
 o
r
l
i
b
j
p
e
g
6
2
);
 in

 g
re
en
 a
re
 s
om

e
de
pe
nd
en
ci
es
 tr
ig
ge
re
d
by
 th

e
pa
ck
ag
e
m
an
ag
em

en
t s
ys
te
m
 b
ut
 w
hi
ch
 a
re

ve
ry
 li
ke
ly
 n
ot
 u
se
d
by
 p
yt
ho
n
(e
.g
.,
a
d
d
u
s
e
r
 o
r
d
p
k
g
)

2 The Software Heritage Open Science Ecosystem 53

of non-academic software developers worldwide. They also need to ensure that the
large amount of software components that are developed outside academia, but are
relevant for research activities, are properly taken into account.

Over the recent years, there have been a number of initiatives to add support
for software artifacts in the scholarly world, which fall short of satisfying these
requirements. They can be roughly classified in two categories:

overlays on public forges provide links from articles to the source code reposi-
tory of the associated software artifact as found on a public code hosting platform
(forge); typical examples are websites like https://paperswithcode.com/, http://
www.replicabilitystamp.org/, and the Code and data links recently introduced in
ArXiv.org.

deposits in academic repositories take snapshots of a given state of the source
code, usually in the form of a .zip or .tar file, and store it in the repository
exactly like an article or a dataset, with an associated publisher identifier; a
typical example in computer science is the ACM Digital Library, but there are
a number of general academic repositories where software artefacts have been
deposited, like FigShare and Zenodo.

The approaches in the first category rely on code hosting platforms that do
not guarantee persistence of the software artifact: the author of a project may
alter, rename, or remove it, and we have seen that code hosting platforms can be
discontinued or decide to remove large amount of projects.10

The approaches in the second category do take into account persistence, as they
archive software snapshots, but they lose the version control history and do not
provide the granularity needed to reference the internal components of a software
artifact (directories, files, snippets).

And none of the initiatives in these categories provide a means to properly archive
and reference the numerous external dependencies of software artefacts.

This is where Software Heritage comes into play for Open Science, by providing
an archive designed for software that provides persistence, preserves the version
control history, supports granularity in the identification of software artefacts and
their components, and harvests all publicly available source code.

The differences described above are summarized in Table 2.2, where we only
consider infrastructures in the second category described above, as they are the
only one assuming the mission to archive their contents. We also take into account
additional features found in academic repositories, like the possibility of depositing
content with an embargo period, which is not possible on Software Heritage, and
the existence of a curation process to obtain qualified metadata, which is currently
out of scope of Software Heritage.

10 Google Code and Gitorious.org were shut down in 2015, Bitbucket removed support for the
Mercurial VCS in 2020, and in 2022, Gitlab.com considered removing all projects inactive for
more than a year.

https://paperswithcode.com/
https://paperswithcode.com/
https://paperswithcode.com/
http://www.replicabilitystamp.org/
http://www.replicabilitystamp.org/
http://www.replicabilitystamp.org/
http://www.replicabilitystamp.org/

54 R. Di Cosmo and S. Zacchiroli

Table 2.2 Comparison of infrastructures for archiving research software. The various granular-
ities of identifiers are abbreviated with the same convention used in SWHIDs (snp for snapshot,
etc.), plus the abbreviation frg that stands for the ability to identify a code fragment

Criteria

Infrastructure
Software Heritage ACM DL HAL Figshare Zenodo

identifier
extrinsic

intrinsic extrinsic + intrinsic extrinsic extrinsic

(via SWH)

granularity
snp, rel, rev

dir, cnt, frg dir dir dir rel, dir

archival
harvest

deposit deposit deposit deposit deposit

save code now

history full VCS no no no releases

browse code yes no no no no

scope universal discipline academic academic academic

embargo no no yes yes yes

curation no yes yes no no

integration

BitBucket,

SourceForge,

GitHub, SWH GitHub

Gitea, Gitlab,

HAL, etc.

2.4.2 Extending the Scholarly Ecosystem Architecture to
Software

In the framework of the European Open Science Cloud initiative (EOSC), a working
group has been tasked in 2019 to bring together representatives from a broad
spectrum of scholarly infrastructures to study these issues and propose concrete
ways to address theme. The result, known as the EOSC Scholarly Infrastructures
for Research Software (SIRS) report [16], was published in 2020 and provides
a detailed analysis of the existing infrastructures, their relationships, and the
workflows that are needed to properly support software as a research result on par
with publications and data.

Figure 2.6 presents the main categories of identified actors:

Scholarly repositories: services that have as one of their primary goals the long-
term preservation of the digital content that they collect.

Academic publishers: organizations that prepare submitted research texts, possi-
bly with associated source code and data, to produce a publication and manage
the dissemination, promotion, and archival process. Software and data can be part
of the main publication or assets given as supplementary materials depending on
the policy of the journal.

2 The Software Heritage Open Science Ecosystem 55

Fig. 2.6 Overview of the high-level architecture of scholarly infrastructures for research software,
as described in the EOSC SIRS report

Aggregators: services that collect information about digital content from a variety
of sources with the primary goal of increasing its discoverability and possibly
adding value to this information via processes like curation, abstraction, classifi-
cation, and linking.

These actors have a long history of collaboration around research articles, with
well-defined workflows and collaborations. The novelty here is the fact that to
handle research software, it is no longer possible to work in isolation inside the
academic world, for the reasons explained previously: one needs a means to share
information and work with other ecosystems where software is present, like in
industry and public administration.

One key finding of the EOSC SIRS Report is that Software Heritage provides
the shared basic architectural layer that allows to interconnect all these ecosystems,
because of its unified approach to archiving and referencing all software artefacts,
independently of the tools or platforms used to develop or distribute the software
involved.

2.4.3 Growing Technical and Policy Support

In order to take advantage of the services provide by Software Heritage in this
setting, a broad spectrum of actions have been started and are ongoing. We briefly
survey here the ones that are most relevant at the time of writing.

56 R. Di Cosmo and S. Zacchiroli

Fig. 2.7 Overview of the interplay between HAL and Software Heritage for research software

At the national level, France has developed a multi-annual plan on Open Science
that includes research software [21, 22] and consistently implemented this plan
through a series of steps that range from technical development to policy measures.

On the technical side, the French national open-access repository HAL [14]
(analogous to the popular arXiv service11) has been integrated with the Software
Heritage archive. The integration allows researchers to have their software projects
archived and referenced in Software Heritage, while curated rich metadata and
citation information are made available on HAL [14], with a streamlined process
depicted in Fig. 2.7.

On the policy side, the second French national plan for open science [22],
published in July 2021, prescribes the use of Software Heritage and HAL for all
the research software produced in France, and Software Heritage is now listed

11 https://arxiv.org.

https://arxiv.org
https://arxiv.org
https://arxiv.org

2 The Software Heritage Open Science Ecosystem 57

in the official national roadmap of research infrastructures published in February
2022 [23].

This approach is now being pushed forward at the European level, through
funding for consortia that will build the needed connectors between Software
Heritage and several infrastructures and technologies used in academia, using
the French experience as a reference. Most notably, the FAIRCORE4EOSC [19]
European project includes plans to build connectors with scholarly repository
systems like Dataverse [47] and InvenioRDM [28] (the white-label variant of
Zenodo), publishers like Dagstuhl [43] and Episcience [18], and aggregators like
swMath [20] and OpenAire [36].

2.4.4 Supporting Researchers

The growing awareness about the importance of software as a research output will
inevitably bring new recommendations for research activity, which will eventually
become obligations for researchers, as we have seen with publications and data.

Through the collaboration with academic infrastructures, Software Heritage is
striving to develop mechanisms that minimize the extra burden for researchers, and
we mention here a few examples.

A newly released extension, codename updateswh, for the popular Web
browsers Firefox and Google Chrome allows to trigger archival in just one click for
any public repository hosted on Bitbucket, GitLab (.com and any instance), GitHub,
and any instance of Gitea. It also allows to access in one click the archived version
of the repository and obtain the associated SWHID identifier.

Integration with Web hooks is available for a variety of code hosting platforms,
including Bitbucket, GitHub, GitLab.com, and SourceForge, as well as for instances
of GitLab and Gitea, which enable owners of projects hosted on those platforms
to trigger archival automatically on any new release, reducing the burden on
researchers even more.

Software Heritage will try to detect and parse intrinsic metadata present in
software projects independently of the format chosen, but we see the value of
standardizing on a common format. This is why, with all academic platforms, we are
working with, we are advocating the use of codemeta.json, a machine readable
file based on the CodeMeta extension of schema.org, to retrieve automatically
metadata associated to software artifact, in order to avoid the need for researchers
to fill forms when declaring software artifacts in academic catalogs, following the
schema put in place with the HAL national open-access portal.

Finally, we have released the biblatex-software bibliographic style extension
to make it easy to cite software artefacts in publications written using the popular
LATEX framework.

58 R. Di Cosmo and S. Zacchiroli

2.5 Conclusions and Perspectives

In conclusion, the Software Heritage ecosystem is a useful resource for both
software engineering studies and for Open Science. As an infrastructure for research
on software engineering, the archive provides numerous benefits. The SWHID
intrinsic identifiers make it easier for researchers to identify and track software
artifacts across different repositories and systems. The uniform data structure
used by the archive abstracts away all the details of software forges and package
managers, providing a standardized representation of software code that is easy to
use and analyze. The availability of the open datasets makes it possible to tailor
experiments to one’s needs and improves their reproducibility. An obvious direction
at the time of writing is to leverage Software Heritage’s extensive source code
corpus for pre-training large language models. Future collaborations may lead to
integrate functionalities like the domain-specific language from the Boa project or
the efficient data structures of the World of Code project, enabling researchers to
run more specialized queries and achieve more detailed insights.

Regarding the Open Science aspect, Software Heritage already offers the ref-
erence archive for all publicly available research software. The next step is to
interconnect it with a growing number of scholarly infrastructures, which will
increase reproducibility of research in all fields and support software citation
directly from the archive, contributing to increasing visibility of research software.

Going forward, we believe that Software Heritage will provide a unique observa-
tory for the whole software development ecosystem, both in academia and outside of
it. We hope that with growing adoption, it will play an increasingly valuable role in
advancing the state of software engineering research and in supporting the software
pillar of open science.

References

1. Abramatic, J.F., Di Cosmo, R., Zacchiroli, S.: Building the universal archive of source code.
Commun. ACM 61(10), 29–31 (2018). https://doi.org/10.1145/3183558

2. Allançon, T., Pietri, A., Zacchiroli, S.: The software heritage filesystem (SwhFS): integrating
source code archival with development. In: International Conference on Software Engineer-
ing (ICSE). IEEE, Piscataway (2021). https://doi.org/10.1109/ICSE-Companion52605.2021.
00032

3. Allen, A., Schmidt, J.: Looking before leaping: creating a software registry. J. Open Res. Softw.
3(e15) (2015). https://doi.org/10.5334/jors.bv

4. Alliez, P., Di Cosmo, R., Guedj, B., Girault, A., Hacid, M.S., Legrand, A., Rougier, N.:
Attributing and referencing (research) software: best practices and outlook from INRIA. Com-
put. Sci. Eng. 22(1), 39–52 (2020). https://doi.org/10.1109/MCSE.2019.2949413. Available
from https://hal.archives-ouvertes.fr/hal-02135891

5. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform resource identifier (URI): Generic syntax.
RFC 3986, RFC Editor (2005)

https://doi.org/10.1145/3183558
https://doi.org/10.1145/3183558
https://doi.org/10.1145/3183558
https://doi.org/10.1145/3183558
https://doi.org/10.1145/3183558
https://doi.org/10.1145/3183558
https://doi.org/10.1109/ICSE-Companion52605.2021.00032
https://doi.org/10.1109/ICSE-Companion52605.2021.00032
https://doi.org/10.1109/ICSE-Companion52605.2021.00032
https://doi.org/10.1109/ICSE-Companion52605.2021.00032
https://doi.org/10.1109/ICSE-Companion52605.2021.00032
https://doi.org/10.1109/ICSE-Companion52605.2021.00032
https://doi.org/10.1109/ICSE-Companion52605.2021.00032
https://doi.org/10.1109/ICSE-Companion52605.2021.00032
https://doi.org/10.1109/ICSE-Companion52605.2021.00032
https://doi.org/10.5334/jors.bv
https://doi.org/10.5334/jors.bv
https://doi.org/10.5334/jors.bv
https://doi.org/10.5334/jors.bv
https://doi.org/10.5334/jors.bv
https://doi.org/10.5334/jors.bv
https://doi.org/10.5334/jors.bv
https://doi.org/10.1109/MCSE.2019.2949413
https://doi.org/10.1109/MCSE.2019.2949413
https://doi.org/10.1109/MCSE.2019.2949413
https://doi.org/10.1109/MCSE.2019.2949413
https://doi.org/10.1109/MCSE.2019.2949413
https://doi.org/10.1109/MCSE.2019.2949413
https://doi.org/10.1109/MCSE.2019.2949413
https://doi.org/10.1109/MCSE.2019.2949413
https://hal.archives-ouvertes.fr/hal-02135891
https://hal.archives-ouvertes.fr/hal-02135891
https://hal.archives-ouvertes.fr/hal-02135891
https://hal.archives-ouvertes.fr/hal-02135891
https://hal.archives-ouvertes.fr/hal-02135891
https://hal.archives-ouvertes.fr/hal-02135891
https://hal.archives-ouvertes.fr/hal-02135891

2 The Software Heritage Open Science Ecosystem 59

6. Bhattacharjee, A., Nath, S.S., Zhou, S., Chakroborti, D., Roy, B., Roy, C.K., Schneider, K.A.:
An exploratory study to find motives behind cross-platform forks from software heritage
dataset. In: International Conference on Mining Software Repositories (MSR), pp. 11–15.
ACM, New York (2020). https://doi.org/10.1145/3379597.3387512

7. Boldi, P., Pietri, A., Vigna, S., Zacchiroli, S.: Ultra-large-scale repository analysis via graph
compression. In: International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 184–194. IEEE, Piscataway (2020). https://doi.org/10.1109/SANER48275.
2020.9054827

8. Bönisch, S., Brickenstein, M., Chrapary, H., Greuel, G., Sperber, W.: swMATH - a new
information service for mathematical software. In: MKM/Calculemus/DML. Lecture Notes
in Computer Science, vol. 7961, pp. 369–373. Springer, Berlin (2013)

9. Borgman, C.L., Wallis, J.C., Mayernik, M.S.: Who’s got the data? Interdependencies in science
and technology collaborations. In: Computer Supported Cooperative Work (CSCW), vol. 21,
pp. 485–523 (2012). https://doi.org/10.1007/s10606-012-9169-z

10. Childers, B.R., Fursin, G., Krishnamurthi, S., Zeller, A.: Artifact evaluation for publications
(Dagstuhl Perspectives Workshop 15452). Dagstuhl Rep. 5(11), 29–35 (2016). https://doi.org/
10.4230/DagRep.5.11.29

11. Di Cosmo, R.: Archiving and referencing source code with software heritage. In: Interna-
tional Conference on Mathematical Software (ICMS). Lecture Notes in Computer Science,
vol. 12097, pp. 362–373. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-52200-
1_36

12. Di Cosmo, R., Zacchiroli, S.: Software Heritage: Why and how to preserve software source
code. In: International Conference on Digital Preservation (iPRES) (2017)

13. Di Cosmo, R., Gruenpeter, M., Zacchiroli, S.: Identifiers for digital objects: the case of software
source code preservation. In: International Conference on Digital Preservation (iPRES) (2018).
https://doi.org/10.17605/OSF.IO/KDE56

14. Di Cosmo, R., Gruenpeter, M., Marmol, B.P., Monteil, A., Romary, L., Sadowska, J.: Curated
Archiving of Research Software Artifacts: lessons learned from the French open archive (HAL)
(2019). Presented at the International Digital Curation Conference. Submitted to IJDC

15. Di Cosmo, R., Gruenpeter, M., Zacchiroli, S.: Referencing source code artifacts: a separate
concern in software citation. Comput. Sci. Eng. 22(2), 33–43 (2020). https://doi.org/10.1109/
MCSE.2019.2963148

16. Di Cosmo, R., Lopez, J.B.G., Abramatic, J.F., Graf, K., Colom, M., Manghi, P., Harrison,
M., Barborini, Y., Tenhunen, V., Wagner, M., Dalitz, W., Maassen, J., Martinez-Ortiz, C.,
Ronchieri, E., Yates, S., Schubotz, M., Candela, L., Fenner, M., Jeangirard, E.: Schol-
arly Infrastructures for Research Software. European Commission. Directorate General for
Research and Innovation (2020). https://doi.org/10.2777/28598

17. Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N.: Boa: a language and infrastructure for
analyzing ultra-large-scale software repositories. In: International Conference on Software
Engineering (ICSE), pp. 422–431 (2013)

18. Episciences. https://www.episciences.org. Accessed 15 April 2023
19. FAIRCORE4EOSC project. https://faircore4eosc.eu. Accessed 15 April 2023
20. FIZ Karlsruhe GmbH: swMATH mathematical software. https://swmath.org (2023). Accessed

15 April 2023
21. French Ministry of Research and Higher Education: French National Plan for Open Science.

https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-
les-resultats-de-la-recherche-scientifique-ouverts-tous-49241 (2018)

22. French Ministry of Research and Higher Education: French second national plan
for open science: Support and opportunities for universities’ open infrastructures
and practices. https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-
science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525 (2021)

23. French Ministry of Research and Higher Education: Feuille de route nationale des infras-
tructures de recherche. https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-
nationale-des-infrastructures-de-recherche (2022)

https://doi.org/10.1145/3379597.3387512
https://doi.org/10.1145/3379597.3387512
https://doi.org/10.1145/3379597.3387512
https://doi.org/10.1145/3379597.3387512
https://doi.org/10.1145/3379597.3387512
https://doi.org/10.1145/3379597.3387512
https://doi.org/10.1145/3379597.3387512
https://doi.org/10.1109/SANER48275.2020.9054827
https://doi.org/10.1109/SANER48275.2020.9054827
https://doi.org/10.1109/SANER48275.2020.9054827
https://doi.org/10.1109/SANER48275.2020.9054827
https://doi.org/10.1109/SANER48275.2020.9054827
https://doi.org/10.1109/SANER48275.2020.9054827
https://doi.org/10.1109/SANER48275.2020.9054827
https://doi.org/10.1109/SANER48275.2020.9054827
https://doi.org/10.1007/s10606-012-9169-z
https://doi.org/10.1007/s10606-012-9169-z
https://doi.org/10.1007/s10606-012-9169-z
https://doi.org/10.1007/s10606-012-9169-z
https://doi.org/10.1007/s10606-012-9169-z
https://doi.org/10.1007/s10606-012-9169-z
https://doi.org/10.1007/s10606-012-9169-z
https://doi.org/10.1007/s10606-012-9169-z
https://doi.org/10.1007/s10606-012-9169-z
https://doi.org/10.4230/DagRep.5.11.29
https://doi.org/10.4230/DagRep.5.11.29
https://doi.org/10.4230/DagRep.5.11.29
https://doi.org/10.4230/DagRep.5.11.29
https://doi.org/10.4230/DagRep.5.11.29
https://doi.org/10.4230/DagRep.5.11.29
https://doi.org/10.4230/DagRep.5.11.29
https://doi.org/10.4230/DagRep.5.11.29
https://doi.org/10.4230/DagRep.5.11.29
https://doi.org/10.1007/978-3-030-52200-1_36
https://doi.org/10.1007/978-3-030-52200-1_36
https://doi.org/10.1007/978-3-030-52200-1_36
https://doi.org/10.1007/978-3-030-52200-1_36
https://doi.org/10.1007/978-3-030-52200-1_36
https://doi.org/10.1007/978-3-030-52200-1_36
https://doi.org/10.1007/978-3-030-52200-1_36
https://doi.org/10.1007/978-3-030-52200-1_36
https://doi.org/10.1007/978-3-030-52200-1_36
https://doi.org/10.1007/978-3-030-52200-1_36
https://doi.org/10.1007/978-3-030-52200-1_36
https://doi.org/10.17605/OSF.IO/KDE56
https://doi.org/10.17605/OSF.IO/KDE56
https://doi.org/10.17605/OSF.IO/KDE56
https://doi.org/10.17605/OSF.IO/KDE56
https://doi.org/10.17605/OSF.IO/KDE56
https://doi.org/10.17605/OSF.IO/KDE56
https://doi.org/10.17605/OSF.IO/KDE56
https://doi.org/10.17605/OSF.IO/KDE56
https://doi.org/10.1109/MCSE.2019.2963148
https://doi.org/10.1109/MCSE.2019.2963148
https://doi.org/10.1109/MCSE.2019.2963148
https://doi.org/10.1109/MCSE.2019.2963148
https://doi.org/10.1109/MCSE.2019.2963148
https://doi.org/10.1109/MCSE.2019.2963148
https://doi.org/10.1109/MCSE.2019.2963148
https://doi.org/10.1109/MCSE.2019.2963148
https://doi.org/10.2777/28598
https://doi.org/10.2777/28598
https://doi.org/10.2777/28598
https://doi.org/10.2777/28598
https://doi.org/10.2777/28598
https://doi.org/10.2777/28598
https://www.episciences.org
https://www.episciences.org
https://www.episciences.org
https://www.episciences.org
https://faircore4eosc.eu
https://faircore4eosc.eu
https://faircore4eosc.eu
https://swmath.org
https://swmath.org
https://swmath.org
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-les-resultats-de-la-recherche-scientifique-ouverts-tous-49241
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/le-plan-national-pour-la-science-ouverte-2021-2024-vers-une-generalisation-de-la-science-ouverte-en-48525
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche
https://www.enseignementsup-recherche.gouv.fr/fr/feuille-de-route-nationale-des-infrastructures-de-recherche

60 R. Di Cosmo and S. Zacchiroli

24. Heckman, J.: Varieties of selection bias. Am Eco Rev 80(2), 313–318 (1990)
25. Hinsen, K.: Software development for reproducible research. Comput. Sci. Eng. 15(4), 60–63

(2013). https://doi.org/10.1109/MCSE.2013.91
26. Howison, J., Bullard, J.: Software in the scientific literature: problems with seeing, finding, and

using software mentioned in the biology literature. J. Assoc. Inf. Sci. Technol. 67(9), 2137–
2155 (2016). https://doi.org/10.1002/asi.23538

27. Hunter, J.D.: Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007).
https://doi.org/10.1109/MCSE.2007.55

28. Invenio: InvenioRDM. https://inveniosoftware.org/products/rdm/. Accessed 15 April 2023
29. Ivie, P., Thain, D.: Reproducibility in scientific computing. ACM Comput. Surv. 51(3), 63:1–

63:36 (2018). https://doi.org/10.1145/3186266
30. Lamprecht, A.L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico, E.,

Dominguez Del Angel, V., van de Sandt, S., Ison, J., Martinez, P.A., McQuilton, P., Valencia,
A., Harrow, J., Psomopoulos, F., Gelpi, J.L., Chue Hong, N., Goble, C., Capella-Gutierrez, S.:
Towards FAIR principles for research software. Data Sci. 3(1), 37–59 (2020). https://doi.org/
10.3233/DS-190026

31. Ma, Y., Bogart, C., Amreen, S., Zaretzki, R., Mockus, A.: World of code: an infrastructure
for mining the universe of open source VCS data. In: International Conference on Mining
Software Repositories (MSR), pp. 143–154. IEEE, Piscataway (2019). https://doi.org/10.1109/
MSR.2019.00031

32. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Advances in
Cryptology (CRYPTO), pp. 369–378 (1987). https://doi.org/10.1007/3-540-48184-2%5C_32

33. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indispensable
Technology and Industry. MIT Press, Cambridge (2003)

34. Mockus, A.: Amassing and indexing a large sample of version control systems: towards the
census of public source code history. In: InternationalWorking Conference onMining Software
Repositories (MSR), pp. 11–20. IEEE, Piscataway (2009). https://doi.org/10.1109/MSR.2009.
5069476

35. nexB: ScanCode. https://www.aboutcode.org/projects/scancode.html. Accessed 15 April 2023
36. Openaire. https://www.openaire.eu. Accessed 15 April 2023
37. Pietri, A.: Organizing the graph of public software development for large-scale mining.

(organisation du graphe de développement logiciel pour l’analyse à grande échelle). Ph.D.
Thesis, University of Paris (2021)

38. Pietri, A., Spinellis, D., Zacchiroli, S.: The Software Heritage graph dataset: public software
development under one roof. In: International Conference on Mining Software Repositories
(MSR), pp. 138–142 (2019). https://doi.org/10.1109/MSR.2019.00030

39. Quinlan, S., Dorward, S.: Venti: a new approach to archival data storage. In: Conference on
File and Storage Technologies (FAST). USENIX Association, Berkeley (2002). https://www.
usenix.org/conference/fast-02/venti-new-approach-archival-data-storage

40. Rossi, D., Zacchiroli, S.: Geographic diversity in public code contributions: an exploratory
large-scale study over 50 years. In: International Conference on Mining Software Repositories
(MSR), pp. 80–85. ACM, New York (2022). https://doi.org/10.1145/3524842.3528471

41. Rossi, D., Zacchiroli, S.: Worldwide gender differences in public code contributions (and how
they have been affected by the COVID-19 pandemic). In: International Conference on Software
Engineering – Software Engineering in Society Track (ICSE-SEIS), pp. 172–183. ACM, New
York (2022). https://doi.org/10.1109/ICSE-SEIS55304.2022.9794118

42. Rousseau, G., Di Cosmo, R., Zacchiroli, S.: Software provenance tracking at the scale of
public source code. Empirical Software Eng. 25(4), 2930–2959 (2020). https://doi.org/10.
1007/s10664-020-09828-5

43. Schloss Dagstuhl. https://www.dagstuhl.de. Accessed 15 April 2023
44. Smith, A.M., Katz, D.S., Niemeyer, K.E.: Software citation principles. PeerJ Comput. Sci. 2,

e86 (2016). https://doi.org/10.7717/peerj-cs.86
45. Stewart, K., Odence, P., Rockett, E.: Software package data exchange (SPDX) specification.

IFOSS L. Rev. 2, 191 (2010)

https://doi.org/10.1109/MCSE.2013.91
https://doi.org/10.1109/MCSE.2013.91
https://doi.org/10.1109/MCSE.2013.91
https://doi.org/10.1109/MCSE.2013.91
https://doi.org/10.1109/MCSE.2013.91
https://doi.org/10.1109/MCSE.2013.91
https://doi.org/10.1109/MCSE.2013.91
https://doi.org/10.1109/MCSE.2013.91
https://doi.org/10.1002/asi.23538
https://doi.org/10.1002/asi.23538
https://doi.org/10.1002/asi.23538
https://doi.org/10.1002/asi.23538
https://doi.org/10.1002/asi.23538
https://doi.org/10.1002/asi.23538
https://doi.org/10.1002/asi.23538
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://inveniosoftware.org/products/rdm/
https://inveniosoftware.org/products/rdm/
https://inveniosoftware.org/products/rdm/
https://inveniosoftware.org/products/rdm/
https://inveniosoftware.org/products/rdm/
https://doi.org/10.1145/3186266
https://doi.org/10.1145/3186266
https://doi.org/10.1145/3186266
https://doi.org/10.1145/3186266
https://doi.org/10.1145/3186266
https://doi.org/10.1145/3186266
https://doi.org/10.3233/DS-190026
https://doi.org/10.3233/DS-190026
https://doi.org/10.3233/DS-190026
https://doi.org/10.3233/DS-190026
https://doi.org/10.3233/DS-190026
https://doi.org/10.3233/DS-190026
https://doi.org/10.3233/DS-190026
https://doi.org/10.1109/MSR.2019.00031
https://doi.org/10.1109/MSR.2019.00031
https://doi.org/10.1109/MSR.2019.00031
https://doi.org/10.1109/MSR.2019.00031
https://doi.org/10.1109/MSR.2019.00031
https://doi.org/10.1109/MSR.2019.00031
https://doi.org/10.1109/MSR.2019.00031
https://doi.org/10.1109/MSR.2019.00031
https://doi.org/10.1007/3-540-48184-2%5C_32
https://doi.org/10.1007/3-540-48184-2%5C_32
https://doi.org/10.1007/3-540-48184-2%5C_32
https://doi.org/10.1007/3-540-48184-2%5C_32
https://doi.org/10.1007/3-540-48184-2%5C_32
https://doi.org/10.1007/3-540-48184-2%5C_32
https://doi.org/10.1007/3-540-48184-2%5C_32
https://doi.org/10.1007/3-540-48184-2%5C_32
https://doi.org/10.1007/3-540-48184-2%5C_32
https://doi.org/10.1007/3-540-48184-2%5C_32
https://doi.org/10.1007/3-540-48184-2%5C_32
https://doi.org/10.1109/MSR.2009.5069476
https://doi.org/10.1109/MSR.2009.5069476
https://doi.org/10.1109/MSR.2009.5069476
https://doi.org/10.1109/MSR.2009.5069476
https://doi.org/10.1109/MSR.2009.5069476
https://doi.org/10.1109/MSR.2009.5069476
https://doi.org/10.1109/MSR.2009.5069476
https://doi.org/10.1109/MSR.2009.5069476
https://www.aboutcode.org/projects/scancode.html
https://www.aboutcode.org/projects/scancode.html
https://www.aboutcode.org/projects/scancode.html
https://www.aboutcode.org/projects/scancode.html
https://www.aboutcode.org/projects/scancode.html
https://www.aboutcode.org/projects/scancode.html
https://www.aboutcode.org/projects/scancode.html
https://www.openaire.eu
https://www.openaire.eu
https://www.openaire.eu
https://www.openaire.eu
https://doi.org/10.1109/MSR.2019.00030
https://doi.org/10.1109/MSR.2019.00030
https://doi.org/10.1109/MSR.2019.00030
https://doi.org/10.1109/MSR.2019.00030
https://doi.org/10.1109/MSR.2019.00030
https://doi.org/10.1109/MSR.2019.00030
https://doi.org/10.1109/MSR.2019.00030
https://doi.org/10.1109/MSR.2019.00030
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://doi.org/10.1145/3524842.3528471
https://doi.org/10.1145/3524842.3528471
https://doi.org/10.1145/3524842.3528471
https://doi.org/10.1145/3524842.3528471
https://doi.org/10.1145/3524842.3528471
https://doi.org/10.1145/3524842.3528471
https://doi.org/10.1145/3524842.3528471
https://doi.org/10.1109/ICSE-SEIS55304.2022.9794118
https://doi.org/10.1109/ICSE-SEIS55304.2022.9794118
https://doi.org/10.1109/ICSE-SEIS55304.2022.9794118
https://doi.org/10.1109/ICSE-SEIS55304.2022.9794118
https://doi.org/10.1109/ICSE-SEIS55304.2022.9794118
https://doi.org/10.1109/ICSE-SEIS55304.2022.9794118
https://doi.org/10.1109/ICSE-SEIS55304.2022.9794118
https://doi.org/10.1109/ICSE-SEIS55304.2022.9794118
https://doi.org/10.1109/ICSE-SEIS55304.2022.9794118
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1007/s10664-020-09828-5
https://www.dagstuhl.de
https://www.dagstuhl.de
https://www.dagstuhl.de
https://www.dagstuhl.de
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86

2 The Software Heritage Open Science Ecosystem 61

46. Stodden, V., LeVeque, R.J., Mitchell, I.: Reproducible research for scientific computing: tools
and strategies for changing the culture. Comput. Sci. Eng. 14(4), 13–17 (2012). https://doi.org/
10.1109/MCSE.2012.38

47. The Dataverse Project. https://dataverse.org. Accessed 15 April 2023
48. Wellenzohn, K., Böhlen, M.H., Helmer, S., Pietri, A., Zacchiroli, S.: Robust and scalable

content-and-structure indexing. VLDB J. (2022). https://doi.org/10.1007/s00778-022-00764-y
49. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A.,

Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., Bouwman, J., Brookes,
A.J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C.T., Finkers, R.,
Gonzalez-Beltran, A., Gray, A.J., Groth, P., Goble, C., Grethe, J.S., Heringa, J., ’t Hoen, P.A.,
Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S.J., Martone, M.E., Mons, A., Packer, A.L.,
Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.A., Schultes, E., Sengstag,
T., Slater, T., Strawn, G., Swertz, M.A., Thompson, M., van der Lei, J., van Mulligen, E.,
Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., Mons, B.: The FAIR
guiding principles for scientific data management and stewardship. Sci. Data 3(1), 160018
(2016). https://doi.org/10.1038/sdata.2016.18

50. Zacchiroli, S.: Gender differences in public code contributions: a 50-year perspective. IEEE
Softw. 38(2), 45–50 (2021). https://doi.org/10.1109/MS.2020.3038765

51. Zacchiroli, S.: A large-scale dataset of (open source) license text variants. In: International
Conference on Mining Software Repositories (MSR), pp. 757–761. ACM, New York (2022).
https://doi.org/10.1145/3524842.3528491

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/MCSE.2012.38
https://doi.org/10.1109/MCSE.2012.38
https://doi.org/10.1109/MCSE.2012.38
https://doi.org/10.1109/MCSE.2012.38
https://doi.org/10.1109/MCSE.2012.38
https://doi.org/10.1109/MCSE.2012.38
https://doi.org/10.1109/MCSE.2012.38
https://doi.org/10.1109/MCSE.2012.38
https://dataverse.org
https://dataverse.org
https://dataverse.org
https://doi.org/10.1007/s00778-022-00764-y
https://doi.org/10.1007/s00778-022-00764-y
https://doi.org/10.1007/s00778-022-00764-y
https://doi.org/10.1007/s00778-022-00764-y
https://doi.org/10.1007/s00778-022-00764-y
https://doi.org/10.1007/s00778-022-00764-y
https://doi.org/10.1007/s00778-022-00764-y
https://doi.org/10.1007/s00778-022-00764-y
https://doi.org/10.1007/s00778-022-00764-y
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1109/MS.2020.3038765
https://doi.org/10.1109/MS.2020.3038765
https://doi.org/10.1109/MS.2020.3038765
https://doi.org/10.1109/MS.2020.3038765
https://doi.org/10.1109/MS.2020.3038765
https://doi.org/10.1109/MS.2020.3038765
https://doi.org/10.1109/MS.2020.3038765
https://doi.org/10.1109/MS.2020.3038765
https://doi.org/10.1145/3524842.3528491
https://doi.org/10.1145/3524842.3528491
https://doi.org/10.1145/3524842.3528491
https://doi.org/10.1145/3524842.3528491
https://doi.org/10.1145/3524842.3528491
https://doi.org/10.1145/3524842.3528491
https://doi.org/10.1145/3524842.3528491

	2 The Software Heritage Open Science Ecosystem
	2.1 The Software Heritage Archive
	2.1.1 Data Model
	2.1.2 Software Heritage Persistent Identifiers (SWHIDs)

	2.2 Large Open Datasets for Empirical Software Engineering
	2.2.1 The Software Heritage Datasets
	2.2.1.1 The Software Heritage Graph Dataset
	2.2.1.2 Accessing Source Code Files
	2.2.1.3 License Dataset

	2.3 Research Highlights
	2.3.1 Enabling Artifact Access and (Large-Scale) Analysis
	2.3.2 Software Provenance and Evolution
	2.3.3 Software Forks
	2.3.4 Diversity, Equity, and Inclusion

	2.4 Building the Software Pillar of Open Science
	2.4.1 Software in the Scholarly Ecosystem
	2.4.2 Extending the Scholarly Ecosystem Architecture to Software
	2.4.3 Growing Technical and Policy Support
	2.4.4 Supporting Researchers

	2.5 Conclusions and Perspectives
	References

