
Programmation Systèmes
Cours 3 — Process Management

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire PPS, Université Paris Diderot

2012–2013

URL http://upsilon.cc/zack/teaching/1213/progsyst/
Copyright © 2011–2012 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-sa/3.0/

Stefano Zacchiroli (Paris Diderot) Process Management 2012–2013 1 / 60

http://upsilon.cc/zack/teaching/1213/progsyst/
http://creativecommons.org/licenses/by-sa/3.0/


Outline

1 Fork inheritance

2 External program execution

3 Simple UNIX architectures

4 Summary

Stefano Zacchiroli (Paris Diderot) Process Management 2012–2013 2 / 60



forking & flushing

Many system resources associated to processes are duplicated and
inherited by child processes

memory copying (on write) is just an instance of that

Memory copy has an effect on buffers that are stored in memory:

most notably: standard I/O buffers

but also: any other user-space buffer layer you might be using
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forking & flushing (cont.)

#include <unistd .h>
#include " helpers .h"
#include <str ing .h>

char buf [ ] = " write to stdout\n" ;
int main ( void ) {

pid_t pid ;
i f ( write (STDOUT_FILENO, buf , str len ( buf ) ) != str len ( buf ) )

err_sys ( " write error " ) ;
pr in t f ( " pr int f by %d: before fork\n" , getpid ( ) ) ;
i f ( ( pid = fork ( ) ) < 0) {

err_sys ( " fork error " ) ;
} else i f ( pid == 0) { /* chi ld */

pr int f ( " pr int f by %d: hi from child !\n" , getpid ( ) ) ;
} else { /* parent */

pr int f ( " pr int f by %d: hi from parent !\n" , getpid ( ) ) ;
}
pr in t f ( " pr int f by %d: bye\n" , getpid ( ) ) ;
exit ( EXIT_SUCCESS ) ;

}

What do you expect from the above code? (up to interleaving)
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forking & flushing (cont.)

$ ./ fork−f lush
write to stdout
printf by 13495: before fork
pr int f by 13495: hi from parent !
pr in t f by 13495: bye
pr int f by 13496: hi from child !
pr in t f by 13496: bye
$

$ ./ fork−f lush > log
$ cat log
write to stdout
printf by 10758: before fork
pr int f by 10758: hi from parent !
pr in t f by 10758: bye
printf by 10758: before fork
pr int f by 10759: hi from child !
pr in t f by 10759: bye
$

why output redirection changes the result?
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forking & flushing (cont.)

The write syscall is not buffered, executing it before forking ensure
that data is written exactly once.
The standard I/O library is buffered, if buffers are not flushed before
fork, multiple writes can ensue.

when stdout is connected to a terminal (the case with
no redirection) the STDOUT stream is line-buffered

ñ each newline triggers a flush
ñ hence printf content gets flushed before fork and is delivered

only once

otherwise (the redirection case), stdout is fully-buffered
ñ flushs are delayed past fork, hence printf content might get

duplicated

See: setvbuf(3)

Similar issues might affect any other user-space buffering layer. . .
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File sharing

Another relevant resource inherited by child processes are file
descriptors.

Upon fork all file descriptors of the parent are duplicated into the
the child.

duplication is performed by the kernel, as if dup had been called
on each of them

as a consequence, parent and child share a file table entry (in
kernel space) for every file descriptor that was open at the time
of fork
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Reminder — dup

#include <unistd.h>

int dup(int filedes);

int dup2(int filedes, int filedes2);
Returns: new file descriptor if OK, -1 on error

APUE, Figure 3.8

sample situation after dup(STDIN_FILENO);
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File sharing — before fork

APUE, Figure 3.6

(same for standard error, not shown)
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File sharing — after fork

APUE, Figure 8.2
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File sharing — offsets

File offsets are stored in file table, therefore after fork file offsets
are shared among parent and child

if a process moves the offset, the other will see the
displacement

remember: movements also happen implicitly at each
read/write on a file descriptor

This features helps creating software architectures where related
processes collaborate on the same open files.

Example (fork-based architecture)
1 Parent fork a child to do some task and wait for it to complete.

2 Child uses standard file descriptors as part of his task.

3 Upon child exit, parent can resume using standard file
descriptors without having to fiddle with offsets.a

ayou just need to be careful with buffering
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File sharing — interleaving

The previous architecture works because the parent ensures child
goes first, waiting for it. In the general case, parent and child should
not use shared files “at the same time”. Doing so would result in
garbled I/O due to interleaving issues.

There are 3 main approaches to file sharing after fork:
1 the parent waits for child to complete (previous example) and

do nothing with its file descriptors

2 parent and child go different ways; to avoid interleaving issues
each process closes the file descriptors it doesn’t use (the set of
shared files should be empty after closes)

3 parent and child maintain a set of shared files and synchronize
access to them; goal: ensure that at any given time only one
process is acting on a shared file
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Common traits after fork

In addition to memory and file descriptors, many other resources are
inherited by child processes:1

user & group IDs (real, effective)

process group & session IDs

set-(user/group)-IDs flags

controlling terminal

current working & root directory

umask

signal mask

close-on-exec flags

environment variables

shared memory & memory mappings

resource limits
1we’ve discussed only some of them up to now
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Distinguishing traits after fork

On the other hand, differences remain among parent and child:2

fork return value

process and parent process IDs

time accounting counters are set to 0 in the child

file locks are not inherited

pending alarms (cleared for the child)

pending signals (set to the empty set for the child)

2ditto: we’ve discussed only some of them up to now
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fork failures

fork can essentially only fail due to resource exhaustion
1 if the maximum number of processes in the system has been

reached, or if there is not enough memory to create a new
process table entry (ENOMEM)

2 if the maximum number of processes allocated to the current
user has been reached

ñ this is when the fork bomb will stop (creating new processes. . . )

#include <unistd .h>

int main ( ) {
while (1 )

fork ( ) ;
}

ñ related trivia, what does the following shell code do?
:(){ :|:& };:
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Fork use cases

There are two main use cases for fork:

1 a process wants to duplicate itself to concurrently execute
(possibly different) parts of the same program

ñ e.g. network/system daemons and other services that want to
serve multiple requests concurrently

ñ the parent idles waiting for requests; it forks a new child to
handle each incoming request

2 a process wants to execute a different program
ñ e.g. shells
ñ e.g. software architectures organized into a set of independent

executables (typical products of the UNIX philosophy)

We’ve seen how fork deals with (1).

UNIX’s recipe for (2) is to first fork and then, in the child process,
use the exec syscall to run a new program.
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Exec

In the UNIX tradition, creating a new process and executing a
program are separate actions.

Therefore exec does not create a new process. Rather:

it replaces the invoking process with a new one, obtained
reading a program from the filesystem

all segments—text, data, bss, heap, and stack—are re-initialized
as if the program were being executed from scratch

ñ in fact it is, that’s why we’ve seen exec in strace logs before

the usual startup routine is executed up to handing control over
to main() of the new program

Note: if you plainly exec something (without fork), you “throw
away” your program.
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The exec family

We write “exec” for short, but there are 6 different exec:

#include <unistd.h>

int execl(const char *pathname, const char *arg0, ...);

int execv(const char *pathname, char *const argv[]);

int execle(const char *pathname, const char *arg0, ..., char *const envp[]);

int execve(const char *pathname, char *const argv[], char *const envp[]);

int execlp(const char *filename, const char *arg0, ...);

int execvp(const char *filename, char *const argv[]);
Returns: all return -1 on error, don’t return on success

All execute an external program replacing the current process.

Note: on success they do not return.
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exec differences

Don’t panic!
Differences among execs can be organized along 3 axes.

1 “Command line” argument specification argv for the new
program can be given either as lists or as vectors of pointers.

ñ list of pointers shall be given including a trailing NULL
ñ as, no wonder, it happens for argv in main() calling convention
ñ note: the calling convention allow to have
basename(path) ≠ argv[0]

Mnemonic

execs containing the ‘l’ character (3 of them) take list of pointers;
execs containing the ‘v’ character (3 of them) take vectors.
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exec differences (cont.)

Don’t panic!
Differences among execs can be organized along 3 axes.

2 Program specification the program to be executed can be given
either as a pathname or as a filename argument.

ñ a filename argument that does not contain "/" will be searched
according to the PATH environment variable

e.g.
$ echo $PATH

/home/zack/bin:/usr/local/bin:/usr/bin:/bin:/sbin/:/usr/sbin/

Mnemonic

execs containing the ‘p’ character (2 of them) take filename
arguments (i.e. they search in the path); other execs (4 of them)
take pathname arguments.
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exec differences (cont.)

Don’t panic!
Differences among execs can be organized along 3 axes.

3 Environment list specification *environ for the new program
can be given either implicitly or explicitly

ñ in the implicit case, the environment list is copied from the
calling process

ñ in the explicit case, a list of pointers to "key=value" strings
shall be given

ñ as, no wonder, it happens for *environ in main() calling
convention

Mnemonic

execs containing the ‘e’ character (2 of them) take an environment
list argument; other execs don’t.
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exec relationships

Ultimately:

mnemonics and man 3 exec are your friends.

(. . . but why section 3?)

Note: on most UNIX the only syscall is execve (documented in
section 2), whereas other execs are wrapper functions:

APUE, Figure 8.15
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Helper — echoall

#include <stdio .h>
#include <stdl ib .h>

extern char **environ ;

int main ( int argc , char *argv [ ] )
{

int i ;
char ** ptr ;

for ( i = 0; i < argc ; i ++) /* dump argv */
pr int f ( " argv [%d ] : %s\n" , i , argv [ i ] ) ;

for ( ptr = environ ; *ptr != NULL; ptr++) /* dump env */
pr int f ( "%s\n" , *ptr ) ;

exit ( EXIT_SUCCESS ) ;
}
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exec — example
#include <unistd .h>
#include <sys/wait .h>
#include " helpers .h"
char * env_init [ ] = { "USER=unknown" , "TERM=xterm" , NULL } ;
int main ( void ) {

pid_t pid ;
i f ( ( pid = fork ( ) ) < 0) {

err_sys ( " fork error " ) ;
} else i f ( pid == 0) { /* chi ld */

i f ( execle ( " /tmp/echoall " , /* path , env */
" echoall " , " foo " , "BAR" , NULL,
env_init ) < 0)

err_sys ( " execle error " ) ;
}
i f ( wait (NULL) < 0)

err_sys ( " wait error " ) ;
i f ( ( pid = fork ( ) ) < 0) {

err_sys ( " fork error " ) ;
} else i f ( pid == 0) { /* f i l e , no env */

i f ( execlp ( " echoall " ,
" echoall " , " only 1 arg " , NULL) < 0)

err_sys ( " execlp error " ) ;
}
exit ( EXIT_SUCCESS ) ;

}
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exec — example (cont.)

Demo

Stefano Zacchiroli (Paris Diderot) Process Management 2012–2013 23 / 60



exec inheritance

Similarly to the fork case, the exec-uted program inherits some
traits from the former process:

process and parent process ID

real user & group ID

process group and session ID

file descriptors

controlling terminal

pending alarm (not reset)

current working & root directory

umask

file locks

signal mask and pending signals

resource limits

time accounting counters

environment list for non-‘e’ exec
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exec limits and xargs

Part of the communication “bandwidth” among parent and child
processes is related to the maximum size of the argument and
environment lists.
POSIX.1 guarantees that such a limit is at least 4096
arguments / environment variables.

Even if such a limit is pretty large, one way to hit it is playing with
shell globbing, e.g. grep execve /usr/share/man/*/*, depends
on your system. . . .

As a solution for shell globbing, you might resort to xargs(1).
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system

As a shorthand to execute a system program from a running
process, the system function is provided:

#include <stdlib.h>

int system(const char *cmdstring);

On UNIX systems, system takes care of fork, exec, wait, and return
its termination status.

process management is hidden from the invoking process
ñ the function is both ISO C and POSIX, but in the ISO standard it’s

heavily implementation-dependent

the command is given as a string that will be interpreted by the
system shell

ñ you need a standard shell for this, according to POSIX it’s
/bin/sh
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system (cont.)

As a shorthand to execute a system program from a running
process, the system function is provided:

#include <stdlib.h>

int system(const char *cmdstring);

Return value:

if either fork or wait fail → -1

if the shell cannot be executed (exec failure) → 127

otherwise → shell termination status

special case: passing NULL as an argument should return
non-zero if system is supported—which is always the case on
UNIX—; 0 otherwise
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system — example

#include <stdl ib .h>
#include <stdio .h>
#include <sys/wait .h>
#include " helpers .h"

char *cmd = "grep zack /etc/passwd | cut −f 5 −d: " ;

int main ( void ) {
int status ;
i f ( ( status = system (cmd) ) == −1)

err_sys ( " system error " ) ;
pr_exit ( status ) ;
/* i f ( WIFEXITED ( status ) )

* pr intf ( " normal termination , ex i t status = %d\n" ,

* WEXITSTATUS( status ) ) ;

* else i f (WIFSIGNALED( status ) )

* pr intf ( " abnormal termination , signal number = %d\n" ,

* WTERMSIG( status ) ) ; */
exit ( EXIT_SUCCESS ) ;

}
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system — example (cont.)

$ ./system
Stefano Zacchiroli,,,
normal termination, exit status = 0
$

Notes:

the command makes use of shell meta characters, pipelines, etc.

fork-based file sharing is implicitly used by system

termination status can be inspected via the usual wait macros
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Exercise: system implementation

We want to provide an implementation of system.

Given that it is a regular function rather than a syscall, we can
provide such an implementation in user space.

Requirements:
1 the implementation shall match system prototype

2 the implementation shall obey system return convention

3 the implementation shall not interfere with the calling process

Stefano Zacchiroli (Paris Diderot) Process Management 2012–2013 29 / 60



system — implementation

#include <sys/wait .h>
#include <errno .h>
#include <unistd .h>

int system ( const char *cmd) {
pid_t pid ;
int status ;
i f ( ( pid = fork ( ) ) < 0) {

status = −1; /* fork error */
} else i f ( pid == 0) { /* chi ld */

execl ( " /bin/sh" , " sh " , "−c " , cmd, NULL ) ;
_exit (127); /* exec error */

} else { /* parent */
wait (&status ) ;

}
return ( status ) ;

}
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system — implementation

#include <sys/wait .h>
#include <errno .h>
#include <unistd .h>

int system ( const char *cmd) {
pid_t pid ;
int status ;
i f ( ( pid = fork ( ) ) < 0) {

status = −1; /* fork error */
} else i f ( pid == 0) { /* chi ld */

execl ( " /bin/sh" , " sh " , "−c " , cmd, NULL ) ;
_exit (127); /* exec error */

} else { /* parent */
wait (&status ) ;

}
return ( status ) ;

}

Is this solution correct?
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system — implementation (buggy)

#include <sys/wait .h>
#include <errno .h>
#include <unistd .h>

int system ( const char *cmd) {
pid_t pid ;
int status ;
i f ( ( pid = fork ( ) ) < 0) {

status = −1; /* fork error */
} else i f ( pid == 0) { /* chi ld */

execl ( " /bin/sh" , " sh " , "−c " , cmd, NULL ) ;
_exit (127); /* exec error */

} else { /* parent */
wait (&status ) ;

}
return ( status ) ;

}

This solution fails requirement (3): wait can retrieve the termination
status of a process other than the shell executed by system.
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waitpid

To solve the problem we need a new syscall, capable of waiting for
the termination of a specific process. Enter waitpid:

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *statloc, int options);
Returns: process ID if OK, 0 or -1 on error

The child to wait for depends on the pid argument:
pid == 1 waits for any child (wait-like semantics)
pid > 1 waits for a specific child, that has pid as its PID
pid == 0 waits for any child in the same process group of caller
pid < -1 waits for any child in the process group abs(pid)

options provide more control over waitid semantics; it is a bitwise
OR of flags that include:

WNOHANG do not block if child hasn’t exited yet (and return 0)
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system — a rough implementation
#include <sys/wait .h>
#include <errno .h>
#include <unistd .h>

int system ( const char *cmd) { /* no signal management */
pid_t pid ;
int status ;
i f (cmd == NULL)

return ( 1 ) ; /* system is available */
i f ( ( pid = fork ( ) ) < 0) {

status = −1; /* fork error */
} else i f ( pid == 0) { /* chi ld */

execl ( " /bin/sh" , " sh " , "−c " , cmd, NULL ) ;
_exit (127); /* exec error */

} else { /* parent */
while (waitpid(pid, &status, 0) < 0) {

i f ( errno != EINTR ) {
status = −1; /* generic error */
break ;

}
}

}
return ( status ) ;

} // based on APUE, Figure 8.22
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waitid

The more recent waitid provides even more flexibility and a saner
interface to wait for specific processes:

#include <sys/wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);
Returns: 0 if OK, -1 on error

id is interpreted according to the value of idtype:
P_PID wait for a process with PID id
P_PGID wait for any child process in process group id
P_ALL wait for any child

options is a bitwise OR of states the caller wants to monitor:
WSTOPPED wait for a stopped process
WCONTINUED wait for a (stopped and then) continued process
WEXITED wait for terminated processes
WNOWAIT leave the process in zombie state
WNOHANG as per waitpid
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(fork+exec) || spawn ?

Some (non-UNIX) operating systems combine fork and exec in a
single operation called spawn.

UNIX’s separation is convenient for various reasons:
1 there are use cases where fork is useful alone
2 when coupled with inheritance, the separation allows to change

per-process attributes (e.g. to drop privileges) between fork
and exec, e.g.:

ñ set up redirections
ñ change user IDs
ñ change signal masks
ñ set up “jails”
ñ . . .
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fork+exec = cheap!

But we need to watch out that the fork+exec does not induce
unacceptable performance penalty wrt the spawn approach.

Qualitative considerations:

an important part of fork/exec cost is writing segments into memory

for fork the cost is minimized by virtual memory and copy-on-write

for exec the cost lower bound is program loading from disk

extra process management bookkeeping should be measured

Quantitative analysis:

(Linux) fork/exec shown to be twice as fast than (Win NT) spawn

Randy Appleton

Improving context switching performance for idle tasks in Linux

CATA 1999
http://math.nmu.edu/~randy/Research/Papers/Scheduler/
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UNIX philosophy in a nutshell

This is the Unix philosophy: Write programs that do one
thing and do it well. Write programs to work together.
Write programs to handle text streams, because that is a
universal interface.

— Doug McIlroy (inventor of UNIX pipes)
in “A Quarter Century of Unix”

Practically, the UNIX style of designing do-one-thing-well
architectures is multiprocessing, i.e. breaking down applications into
small programs that communicate through well-defined interfaces.

Enabling traits for this are:
1 cheap and easy process spawning (i.e. fork/exec)

2 methods that ease inter-process communication

3 usage of simple, transparent, textual data formats
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UNIX philosophy — some consequences

we aim for a reduction in global application complexity

if not, at least individual programs tend to be more manageable

we focus on stable interfaces and we are encouraged to think
upfront at data formats and protocols

this make it easier to adapt the software to different contexts
(interfaces, other data sources, and sinks); it makes the
software more hackable

it also encourages cooperation with other programmers,
especially—but not only—when source code is available
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UNIX philosophy — references

In-depth discussion of UNIX philosophy is outside the scope of this
course. We will only highlight typical architectures that are enabled
by specific UNIX programming interfaces, as we encounter them.

Eric S. Raymond
The Art of UNIX Programming
Addison-Wesley Professional, 2003.
http://www.faqs.org/docs/artu/
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Shelling out — the simplest fork architecture

Most UNIX architectures are based on IPC mechanisms we haven’t
yet discussed. But the simplest architecture, based on cheap
process spawning, only needs the process management primitives
we’ve already introduced.

Definition (Shelling out)

Shelling out is the practice of delegating tasks to external programs,
handing over terminal to them for the duration of the delegation,
and waiting for them to complete.

It is called shell-ing out as it has been traditionally implemented
using system, which relies on the system shell.
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Shelling out — discussion

communication is minimal, when compared to other IPC
architectures

ñ control information: termination status, arguments, environment
ñ protocol design is not an issue

data are passed through the filesystem
ñ data format design is a concern

Typical shell out work-flow
1 parent create a temporary file and write data to it

2 parent shell out a child passing a path to the temporary file

3 child work on the temporary file
4 child exit
5 parent (re-)read temporary file and delete it
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Case study: the mutt mail user agent

“All mail clients suck. This one just sucks less.”

— Mutt homepage, http://www.mutt.org

mutt is (one of) the most popular console-based Mail User Agent on
UNIX systems. It relies on a typical shelling out use case: shelling
out an editor.

When asked to compose a mail, Mutt:
1 examines the EDITOR and VISUAL environment variable to figure out

user preferred editor
2 creates a temporary file

ñ fills it in with a mail template (e.g. headers, signature, etc.)
3 spawn the editor on the temporary file
4 [ the user uses the editor to write the mail and then quits ]
5 parses the composed email from the temporary file, delete it
6 resume normal operation (e.g. to propose sending the email)
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Shelling out — example
#include <stdio .h>
#include <stdl ib .h>
#include <unistd .h>
#include <str ing .h>
#include " helpers .h"

char tp l [ ] = "From: \nTo: \nCc : \nBcc : \nSubject : \n\n" ;
int main ( void ) {

char tmp [ ] = " /tmp/shellout .XXXXXX" ;
char cmd[1024];
int fd , status ;
i f ( ( fd = mkstemp(tmp ) ) == −1) err_sys ( "mktemp error " ) ;
i f ( write ( fd , tpl , str len ( tp l ) ) != str len ( tp l ) )

err_sys ( " write error " ) ;
/* Exercise : support insert ion of ~/. signature , i f i t ex is ts */
i f ( close ( fd ) == −1) err_sys ( " close error " ) ;
i f ( snprintf (cmd, sizeof (cmd) , " /usr/bin/vim %s " , tmp) < 0)

err_sys ( " snprintf error " ) ; /* Exercise : use $EDITOR */
i f ( ( status = system (cmd) ) == −1) /* shoud inspect better . . . */

err_sys ( " system error " ) ;
snprintf (cmd, sizeof (cmd) , "echo −−−; cat %s ; echo −−−" , tmp ) ;
system (cmd) ; /* dummy mail processing */
i f ( unlink (tmp) == −1) err_sys ( " unlink error " ) ;
exit ( EXIT_SUCCESS ) ;

}
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Shelling out — example

Demo
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Race conditions

Shelling out, the risk of unwanted interference among parent and
child processes is almost non-existent.3 Other fork-based
architectures won’t be so lucky.

Definition (Race condition)
A race condition occurs when multiple processes cooperate on
shared storage and the correctness of the overall result depends on
the order in which the processes are run (a factor which is, in
general, outside our control).
Intuition: the processes “race” to access the shared storage.

We want to avoid race conditions to preserve deterministic program
behavior and to avoid corrupting shared data structures. Race
conditions are hard to debug, because—by definition—they are hard
to reproduce.

3except for signals, that the parent should block while executing child
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fork race conditions

fork is a common source of race conditions: we cannot tell (in a
portable way. . . ) which process—parent or child—goes first. If
output correctness depends on that ordering, you have a problem.

sleep mitigates but does not solve the problem

e.g. under heavy load it is possible that the non-sleeping
process is delayed so much, that the sleeping process goes first
anyhow
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Race conditions — example

#include <stdio .h>
#include <unistd .h>
#include " helpers .h"

void charatatime ( char * st r ) {
char *ptr ;
int c ;
setbuf ( stdout , NULL ) ; /* set unbuffered */
for ( ptr = str ; ( c = *ptr++) != 0; )

putc ( c , stdout ) ;
}
int main ( void ) {

pid_t pid ;
i f ( ( pid = fork ( ) ) < 0) err_sys ( " fork error " ) ;
else i f ( pid == 0) {

charatatime ( " output from child \n" ) ;
} else {

charatatime ( " output from parent\n" ) ;
}
exit ( EXIT_SUCCESS ) ;

}
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Race conditions — example (cont.)

Desired behaviour

one line of output for the parent, one line of output for the child (in
an arbitrary order)

Note: arbitrariness is not always the problem.

Demo

ain’t always easy to reproduce a race condition. . .
while true ; do ./race ; done
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Polling

Example

A child process wants to wait until its parent has terminated.
The situation can be detected as getppid() == 1.

One way to solve the race condition problem is by polling,
i.e. periodically checking if the situation has happened:

while ( getppid ( ) != 1)
sleep (1)

The problem with polling is that it keeps the CPU busy.

Goal: get rid of race conditions and avoid polling.
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Parent/child synchronization

We need synchronization primitives that processes can use to
synchronize and avoid race conditions.

As a proof of concept we will consider the following primitives:4

WAIT_PARENT child blocks waiting for (a “signal” from) parent

WAIT_CHILD parent blocks waiting for (a “signal” from) children

TELL_PARENT(pid) child “signals” parent

TELL_CHILD(pid) parent “signals” child

Note: they allow synchronization only at the parent/child border.
But that gives all the expressivity we need, given that the only way to
create new processes is fork.

4we’ll also have TELL_WAIT in both processes, for initialization
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Tell/Wait — intended usage

int main ( void ) {
pid_t pid ;

TELL_WAIT();

i f ( ( pid = fork ( ) ) < 0) err_sys ( " fork error " ) ;
else i f ( pid == 0) {

WAIT_PARENT(); /* parent f i r s t */
charatatime ( " output from child \n" ) ;

} else {
charatatime ( " output from parent\n" ) ;
TELL_CHILD(pid);

}
exit ( EXIT_SUCCESS ) ;

}
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Tell/Wait — intended usage (cont.)

int main ( void ) {
pid_t pid ;

TELL_WAIT();

i f ( ( pid = fork ( ) ) < 0) err_sys ( " fork error " ) ;
else i f ( pid == 0) {

charatatime ( " output from child \n" ) ;
TELL_PARENT(getppid());

} else {
WAIT_CHILD(); /* chi ld f i r s t */
charatatime ( " output from parent\n" ) ;

}
exit ( EXIT_SUCCESS ) ;

}
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Tell/Wait — exercise

Exercise

Provide an implementation of the tell/wait primitives.

we’ll see several alternative implementations in the future. . .
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vfork

#include <unistd.h>

pid_t vfork(void);
Returns: 0 in child, process ID of child in parent, -1 on error

Many forks are followed by an exec. In those cases, duplicating the
parent address space is not needed, as it’ll be replaced.

When duplicating address space was expensive—i.e. before the
advent of COW—vfork provided a cheaper alternative. It is identical
to fork except that:

1 the child executes in the same address space of the parent

2 the parent blocks until child exec or _exit

Thou shalt not use this.a

aalthough no copying is better than some copying. . .
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vfork subtleties

vfork might lead to deadlocks if the child wait for the parent,
as the parent is blocked. . .

most actions performed in the child will affect the parent when
it resumes

ñ touching data, heap, stack
ñ changing process properties, etc.

some actions do not affect the parent
ñ actions on file descriptors, as the file table is in kernel space and

it’s duplicated by vfork
ñ yep, it’s tricky. . .

vfork guarantees that child goes first and can be used as a
(very dangerous!) synchronization primitive
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vfork — example
#include <stdio .h>
#include <unistd .h>
#include " helpers .h"

int glob = 6; /* i n i t i a l i z ed data */
int main ( void ) {

int var ; /* automatic variable */
pid_t pid ;
var = 88;
pr int f ( " before vfork\n" ) ;
i f ( ( pid = vfork ( ) ) < 0) {

err_sys ( " vfork error " ) ;
} else i f ( pid == 0) { /* chi ld */

glob++; /* modify parent ’ s variables */
var++;
_exit ( 0 ) ; /* chi ld terminates */

} /* parent continues here . . . */
pr int f ( " pid = %d, glob = %d, var = %d\n" , getpid ( ) ,

glob , var ) ;
exit ( EXIT_SUCCESS ) ;

} // based on APUE, Figure 8.3
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vfork — example (cont.)

$ ./ vfork
before vfork
pid = 6121, glob = 7, var = 89
$

Notes:

no need for the parent to sleep (child goes first)

variable changes are visible in the parent (same address space)

we use _exit instead of exit
ñ to avoid clean shutdown of Standard I/O, as the parent might

still want to use it
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Outline

1 Fork inheritance

2 External program execution

3 Simple UNIX architectures

4 Summary
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The story so far

basics of user- and kernel-space

process management primitives: the fork / wait / exec triad

very primitive IPC: arguments, exit codes, file system

challenges: race conditions

Ahead of us:

communication mechanisms

synchronization mechanisms
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Trivia — what will second child print?

#include <unistd .h>
#include <sys/wait .h>
#include " helpers .h"

int main ( void ) {
pid_t pid ;

i f ( ( pid = fork ( ) ) < 0) {
err_sys ( " fork error " ) ;

} else i f ( pid == 0) { /* 1st chi ld */
i f ( ( pid = fork ( ) ) < 0)

err_sys ( " fork error " ) ;
else i f ( pid > 0) /* parent from 2nd fork == 1st chi ld */

exit ( EXIT_SUCCESS ) ;
/* 2nd chi ld */
sleep ( 2 ) ;
pr in t f ( "2nd child , parent pid = %d\n" , getppid ( ) ) ;
exit ( EXIT_SUCCESS ) ;

}
i f ( waitpid ( pid , NULL, 0) != pid ) /* wait for 1st chi ld */

err_sys ( " waitpid error " ) ;
/* parent ( or iginal process ) */
exit ( EXIT_SUCCESS ) ;

} // based on APUE, Figure 8.8
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Double fork

We want to write a program that fork a child and wants to both
avoid waiting for it and avoid zombies.
How to do that?

Using the double fork technique.
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Double fork (cont.)

We want to write a program that fork a child and wants to both
avoid waiting for it and avoid zombies.
How to do that? Using the double fork technique.

Double fork
1 parent forks a 1st child and wait for the children
2 1st child forks again and exit

ñ providing an exit status for the parent

3 as soon as 1st child dies, 2nd child will be re-parented to init
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Double fork (cont.)

We want to write a program that fork a child and wants to both
avoid waiting for it and avoid zombies.
How to do that? Using the double fork technique.
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Double fork — example

$ ./ double−fork
$ 2nd child , parent pid = 1

main parent returns immediately

shell prompt arrives before second child’s output

2 seconds pass before output from second child

second child has been reparented to init
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