
Programmation Systèmes
Cours 8 — Synchronization & File Locking

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire PPS, Université Paris Diderot

2012–2013

URL http://upsilon.cc/zack/teaching/1213/progsyst/
Copyright © 2011–2012 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-sa/3.0/

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 1 / 45

http://upsilon.cc/zack/teaching/1213/progsyst/
http://creativecommons.org/licenses/by-sa/3.0/

Outline

1 Synchronization and file locking

2 flock

3 fcntl

4 POSIX locks

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 2 / 45

Outline

1 Synchronization and file locking

2 flock

3 fcntl

4 POSIX locks

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 3 / 45

Process synchronization

Consider again the distributed scheme to assign unique sequential
identifiers.

we store the global counter in a shared file

each process accesses it as follows:
1 read current sequence number (n) from file
2 use sequence number n
3 write n+ 1 back to file

Without synchronization the following might happen:

1 process A: read sequence number (obtains n)
2 process B: read sequence number (obtains n)
3 process A: use sequence number n
4 process A: write n+ 1 back to file
5 process B: use sequence number n
6 process B: write n+ 1 back to file

FAIL.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 4 / 45

Process synchronization

Consider again the distributed scheme to assign unique sequential
identifiers.

we store the global counter in a shared file

each process accesses it as follows:
1 read current sequence number (n) from file
2 use sequence number n
3 write n+ 1 back to file

Without synchronization the following might happen:

1 process A: read sequence number (obtains n)
2 process B: read sequence number (obtains n)
3 process A: use sequence number n
4 process A: write n+ 1 back to file
5 process B: use sequence number n
6 process B: write n+ 1 back to file

FAIL.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 4 / 45

File locking

File locking is one of the simplest ways to perform synchronization
among cooperating processes. With file locking, each process:

1 place a lock on the file
2 executes its critical section

ñ e.g. read sequence number n, use it, write n+ 1 back

3 remove the lock

The kernel maintains internal locks associated with files on the
filesystem and guarantees that only one process at a time can get a
file lock (and therefore be in the critical section).

The rationale for associating locks with files is that synchronization
is often used in conjunction with file I/O, on shared files.

file locks can also be used for general process synchronization,
given its simplicity and the pervasiveness of filesystem on UNIX

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 5 / 45

Advisory vs mandatory locking

We speak about mandatory locking when the locking system forbids
a process to perform I/O, unless it has obtained a specific file lock.

We speak about advisory locking when acquiring locks before
proceeding into the critical section is a convention agreed upon by
cooperating processes, i.e.:

acquiring the lock by multiple processes is prevented

performing I/O ignoring the lock is not

Traditionally, the most common kind of file locking on UNIX is
advisory locking.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 6 / 45

File locking APIs

There are mainly 2 APIs for placing file locks on UNIX:
flock, which places locks on entire files
fcntl (AKA POSIX locks), which can be used to place locks on
file regions

ñ fcntl offers a superset of flock’s features, but it’s also
plagued by important design flaws. . .

Pick one, preferably flock. Do not mix the two!

History
in early UNIX system there was no support for file locking; that
made impossible to build safe database systems on UNIX
flock originated on BSD circa 1980. Nowadays, it is often used
for general process synchronization (when filesystem speed is not
a bottleneck)
fcntl-based locking descends from System V circa 1984 and is
nowadays a relatively popular API
POSIX.1 chose to standardize the fcntl API

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 7 / 45

Outline

1 Synchronization and file locking

2 flock

3 fcntl

4 POSIX locks

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 8 / 45

flock

#include <sys/file.h>

int flock(int fd, int operation);
Returns: 0 if OK, -1 on error

fd is a file descriptor referencing an open file
operation is an OR of the following flags:

flag meaning
LOCK_SH place a shared lock
LOCK_EX place an exclusive lock
LOCK_UN unlock instead of locking
LOCK_NB make a non-blocking lock request

Locks are requested on open files. Hence, to lock a file a process
should have the permissions needed to open it. Other than that,
read/write/exec permissions are irrelevant.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 9 / 45

flock semantics

At any time, a process can hold 0 or 1 locks on an open file.

Lock kinds. Two alternative kinds of locks are supported:

a shared lock (AKA “read lock”) can be hold by several processes
at a time — LOCK_SH

an exclusive lock (AKA “write lock”) can be hold by only one
process at a time and also inhibits the presence of shared locks
— LOCK_EX

Table: compatibility matrix of the different types of locks

Process A Process B
LOCK_SH LOCK_EX

LOCK_SH yes no
LOCK_EX no no

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 10 / 45

flock semantics (cont.)

At any time, a process can hold 0 or 1 locks on an open file.

Blocking behavior. If the request lock cannot be granted, the
process will block. Unblocking will happen as soon as the lock can
be granted, atomically with the grant.
To avoid blocking, the flag LOCK_NB can be used. In that case,
instead of blocking, flock will fail with errno set to EWOULDBLOCK.

Unlock. To release the currently held lock, the flag LOCK_UN can be
used. Locks are also automatically released upon close.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 10 / 45

flock — example

#include <errno .h>
#include <stdio .h>
#include <str ing .h>
#include <sys/ f i l e .h>
#include <unistd .h>
#include " helpers .h"

#define LOCK_PATH "my−lock "

int main (int argc , char **argv) {
int fd , lock ;

i f (argc < 2 | | str len (argv [1]) < 1) {
pr in t f ("Usage : ./ f lock (x | s) [n]\n") ;
exit (EXIT_FAILURE) ;

}
lock = (argv [1] [0] == ’x ’) ? LOCK_EX : LOCK_SH;
i f (argc >= 3 && str len (argv [2]) >= 1 && argv [2] [0] == ’n ’)

lock |= LOCK_NB;

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 11 / 45

flock — example (cont.)

i f ((fd = open(LOCK_PATH, O_RDONLY)) < 0)
err_sys ("open error ") ;

i f (f lock (fd , lock) < 0) {
i f (errno == EWOULDBLOCK)

err_sys (" already locked ") ;
else

err_sys (" f lock error (acquire) ") ;
}
pr in t f (" lock acquired , sleeping . . . \ n") ;
sleep (8) ;
i f (f lock (fd , LOCK_UN) < 0)

err_sys (" f lock error (release) ") ;

exit (EXIT_SUCCESS) ;
} /* f lock . c */

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 11 / 45

flock — example (cont.)

Demo

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 11 / 45

flock context

From flock(2):

Locks created by flock() are associated with an open file
table entry. This means that duplicate file descriptors
(created by, for example, fork or dup) refer to the same
lock, and this lock may be modified or released using any of
these descriptors.

[. . .]
If a process uses open (or similar) to obtain more than

one descriptor for the same file, these descriptors are
treated independently by flock. An attempt to lock the file
using one of these file descriptors may be denied by a lock
that the calling process has already placed via another
descriptor.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 12 / 45

flock context (cont.)

Let’s unravel that. . .

Obtained file locks are stored by the kernel in the table of open files

they are neither stored in the file descriptor itself nor stored in
filesystem i-nodes

. . . but different locks referring to the same file are considered
as a whole!

These choices have important consequences on flock inheritance:

upon FD duplication (dup/dup2), locks are inherited by the new
file descriptors

upon fork, we know that the entry in the table of open files is
shared; therefore, locks are preserved as well

upon exec, open files are left untouched; once more, locks are
preserved

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 12 / 45

flock inheritance gotchas

flock context can result in surprising behavior, if we’re not careful.
Here are some common “gotchas”.1

fd1 = open(" foo . txt " , O_RDWR) ;
f lock (fd1 , LOCK_EX) ;
fd2 = dup(fd) ;
f lock (fd2 , LOCK_UN) ;
/* i s " foo . txt " locked now? */

there is only one lock, stored in the open file table entry pointed
by both fd1 and fd2

it will be released by LOCK_UN

1BSD / Linux behavior
Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 13 / 45

flock inheritance gotchas

flock context can result in surprising behavior, if we’re not careful.
Here are some common “gotchas”.1

fd1 = open(" foo . txt " , O_RDWR) ;
f lock (fd1 , LOCK_EX) ;
fd2 = dup(fd) ;
f lock (fd2 , LOCK_UN) ;
/* i s " foo . txt " locked now? */

there is only one lock, stored in the open file table entry pointed
by both fd1 and fd2

it will be released by LOCK_UN

1BSD / Linux behavior
Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 13 / 45

flock inheritance gotchas (cont.)

fd1 = open(" foo . txt " , O_RDWR) ;
fd2 = open(" foo . txt " , O_RDWR) ;
f lock (fd1 , LOCK_EX) ;
f lock (fd2 , LOCK_EX) ;
/* i s " foo . txt " locked now? */

there are two different locks, as separate open create separate
entries in the open file table (possibly for the same file)

. . . but flock consider all entries before granting locks!

the 2nd flock will block (forever. . .) as we are trying to acquire
2 different exclusive locks on the same file

Warning

A process can lock himself out of a flock lock, if not careful.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 14 / 45

flock inheritance gotchas (cont.)

fd1 = open(" foo . txt " , O_RDWR) ;
fd2 = open(" foo . txt " , O_RDWR) ;
f lock (fd1 , LOCK_EX) ;
f lock (fd2 , LOCK_EX) ;
/* i s " foo . txt " locked now? */

there are two different locks, as separate open create separate
entries in the open file table (possibly for the same file)

. . . but flock consider all entries before granting locks!

the 2nd flock will block (forever. . .) as we are trying to acquire
2 different exclusive locks on the same file

Warning

A process can lock himself out of a flock lock, if not careful.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 14 / 45

flock inheritance gotchas (cont.)

fd = open(" foo . txt " , O_RDWR) ;
f lock (fd , LOCK_EX) ;
i f (fork () == 0)

f lock (fd , LOCK_UN) ;
/* i s " foo . txt " locked for the parent? */
/* i s " foo . txt " locked for the chi ld ? */

there is only one lock, inherited through fork

upon LOCK_UN, the child will release the lock for both himself
and the parent

This is actually useful: it allows to transfer a lock from parent to
child without race conditions and without having to use explicit
synchronization. To do so, after fork the parent should close its file
descriptor, leaving the child in control of the lock.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 15 / 45

flock inheritance gotchas (cont.)

fd = open(" foo . txt " , O_RDWR) ;
f lock (fd , LOCK_EX) ;
i f (fork () == 0)

f lock (fd , LOCK_UN) ;
/* i s " foo . txt " locked for the parent? */
/* i s " foo . txt " locked for the chi ld ? */

there is only one lock, inherited through fork

upon LOCK_UN, the child will release the lock for both himself
and the parent

This is actually useful: it allows to transfer a lock from parent to
child without race conditions and without having to use explicit
synchronization. To do so, after fork the parent should close its file
descriptor, leaving the child in control of the lock.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 15 / 45

flock — limitations

flock suffers from a number of limitations, that have been used as
justifications to standardize on fcntl:

granularity: only entire files can be locked
ñ fine when files are used only as rendez-vous points for

synchronizing access to something else
ñ but important limitation when synchronizing for shared file I/O

flock can only do advisory locking

the implementations of relevant file systems (e.g. NFS) do not
support flock locks

ñ e.g. in Linux’s NFS, support for flock locks is available only
since version 2.6.12

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 16 / 45

Outline

1 Synchronization and file locking

2 flock

3 fcntl

4 POSIX locks

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 17 / 45

Interlude: one syscall to rule them all

Many of the system calls we have seen manipulate FDs for specific
purposes. That API model is “1 action ↔ 1 syscall”.
An alternative model is “many actions ↔ 1 syscall”, i.e. use a single
syscall with a command argument used as a dispatcher for several
actions. Restricted examples of this are:

lseek’s whence argument

signal’s handler argument

flock’s operation argument

trade off: API size ↔ API complexity

Dispatcher syscalls tend to the right in the above trade-off:

pro less clutter in the API namespace

pro easier to extend without breaking ABI compatibility

cons diminished code—and API doc.—readability

cons harder to detect type error (as in “typed prog. languages”)

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 18 / 45

Interlude: fcntl

fcntl is a dispatcher syscall for a wide range of FD manipulations:
duplication
flags (e.g. close on exec)
locking
request signal notifications

#include <unistd.h>
#include <fcntl.h>

int fcntl (int fd, int cmd, ... /* arg */);
Returns: depends on cmd; often: 0 if OK, -1 on error

fd is the FD that will be acted upon
cmd is the desired action (the dispatcher argument)
/* arg */ is a variable list of arguments, depending on cmd

The portability of fcntl varies from command to command (this is
possible “thanks” to the extensibility of dispatcher syscalls).
Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 19 / 45

Interlude: fcntl — example (dup)

#include <fcnt l .h>
#include <unistd .h>
#include " helpers .h"

#define HELLO " Hello , "
#define WORLD "World !\n"
int main (void) {

int fd ;
i f ((fd = fcnt l (STDOUT_FILENO, F_DUPFD, 0)) < 0)

err_sys (" f cn t l error ") ;
i f (write (fd , HELLO, 7) != 7

| | write (STDOUT_FILENO, WORLD, 7) != 7)
err_sys (" write error ") ;

exit (EXIT_SUCCESS) ;
} /* fcnt l−dup. c */

$./ fcnt l−dup
Hello , World !
$

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 20 / 45

Interlude: fcntl — close-on-exec

Associated to each entry in the table of open files, the kernel keeps
a list of file descriptor boolean flags.
One such flag2 is close-on-exec. It states whether the file descriptor
should be closed upon exec or not (the default).

fcntl operations F_GETFD (get) and F_SETFD are used to get/set
the flags. The close-on-exec bit corresponds to the FD_CLOEXEC
constant.

for F_GETFD the return value is the current file descriptor flags
on success; -1 otherwise

for F_SETFD the return value is 0 on success, -1 otherwise

2in fact, the only one defined
Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 21 / 45

Interlude: fcntl — example (close-on-exec)
#include <fcnt l .h>
#include <unistd .h>
#include " helpers .h"
int main (void) {

pid_t pid ;
int fdflags ;

i f ((pid = fork ()) < 0) err_sys (" fork error ") ;
else i f (pid == 0) { /* 1st chi ld */

system ("echo ’1: Hello , World ! ’ ") ;
exit (EXIT_SUCCESS) ;

}
fdf lags = fcn t l (STDOUT_FILENO, F_GETFD) ;
fdflags |= FD_CLOEXEC;
i f (f cn t l (STDOUT_FILENO, F_SETFD , fdflags) < 0)

err_sys (" f cn t l error ") ;
i f ((pid = fork ()) < 0) err_sys (" fork error ") ;
else i f (pid == 0) { /* 2nd chi ld */

system ("echo ’2: Hello , World ! ’ ") ;
exit (EXIT_SUCCESS) ;

}
sleep (1) ;
exit (EXIT_SUCCESS) ;

} /* fcnt l−cloexec . c */

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 22 / 45

Interlude: fcntl — example (close-on-exec)

Demo

Notes:

assumption: system is implemented in terms of exec
ñ safe assumption on UNIX systems

the 2nd child does not print anything on STDOUT, as it’s been
closed upon exec

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 22 / 45

Outline

1 Synchronization and file locking

2 flock

3 fcntl

4 POSIX locks

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 23 / 45

POSIX locks

Contrary to what happens with flock, where locks are global, with
fcntl processes can place locks on byte ranges of an open file,
referenced by a FD.

Two kinds of locks are supported: write locks (equivalent to flock’s
LOCK_EX) and read locks (eq. to LOCK_SH).

POSIX locking is often also called record locking, but that is a
misnomer:

the name is meaningful on OS where the conceptual model of
files is record-driven, i.e. a file is a list of records

that is not the case on UNIX, where files are byte streams,
i.e. list of bytes

POSIX locking is also called fcntl locking, from the syscall.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 24 / 45

POSIX locking — sample usage

Process A

Request write lock on
bytes 0 to 99

Update bytes 0 to 99

Process B

Convert lock on bytes
0 to 99 to read lock

Request read lock on
bytes 0 to 99

blocks

unblocks

Read bytes 0 to 99 Read bytes 0 to 99

Convert lock on bytes
0 to 99 to write lock

blocks

Unlock bytes 0 to 99unblocks

Update bytes 0 to 99

Unlock bytes 0 to 99

T
im

e

TLPI, Figure 55-2

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 25 / 45

POSIX locking — model

With flock, we saw that each process can hold 0 or 1 locks on each
of its entries in the open file table, no matter the lock kind.
With fcntl the principle remains, but the granularity is the byte
range, sized from 1 byte to the entire file.

locks are requested/released on byte ranges

conceptually, locks “distribute” to each byte of the locked
ranges

ñ on any byte of an open file, a process can hold zero or one lock
(no matter the lock kind)

Figure: two ranges locked: one with a read lock (bytes 21–25), the other
with a write lock (bytes 29–30)

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 26 / 45

POSIX locking — model (cont.)

Internally, the kernel represents fcntl locks as ranges, to minimize
the size of the representation.
Automatic split and merge of ranges is performed when needed.

Figure: taking a write lock in between a previously read-lock-ed range

A (Linux-specific) peek on the internal kernel representation can be
obtained by looking at /proc/locks:
$ head −n 2 /proc/ locks
1: POSIX ADVISORY WRITE 27134 fe:03:2649029 0 EOF
2: POSIX ADVISORY WRITE 5171 fe:03:1014279 1073741824 1073742335
$Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 27 / 45

POSIX locking — permissions

In some sense, with flock locks the file is a rendez-vous point
among processes for synchronization purposes:

the content of the file does not necessarily matter

even though it might happen that the shared resource, that
processes want to access, is that very same file

With POSIX locks the file content is much more important: parts of it
are now used as rendez-vous point.

Coherently with this intuition, permissions are more fine grained
with fcntl locks:

to be able to put a read lock, a process needs read permission
from a file

to be able to put a write lock, a process needs write permission
to a file

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 28 / 45

POSIX locking — ranges

Ranges for fcntl are specified by providing:
1 range starting point (absolute position in bytes, inclusive)

2 range length (in bytes)

Starting point is specified as in lseek, i.e. by providing an offset
and a whence argument:

SEEK_SET, for absolute offsets from the beginning of the file

SEEK_CUR, for relative offsets to the current file offset

SEEK_END, for relative (negative) offsets from end of file

It is allowed to lock bytes which are past EOF. But there is no
guarantee that will be enough, as the file could grow more.
“EOF-sticky” ranges can be specifying with a length of 0 bytes. Such
ranges will always extend to EOF, no matter the file growth.

flock can be emulated using the 〈0,0〉 range

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 29 / 45

POSIX locking — ranges

Ranges for fcntl are specified by providing:
1 range starting point (absolute position in bytes, inclusive)

2 range length (in bytes)

Starting point is specified as in lseek, i.e. by providing an offset
and a whence argument:

SEEK_SET, for absolute offsets from the beginning of the file

SEEK_CUR, for relative offsets to the current file offset

SEEK_END, for relative (negative) offsets from end of file

It is allowed to lock bytes which are past EOF. But there is no
guarantee that will be enough, as the file could grow more.
“EOF-sticky” ranges can be specifying with a length of 0 bytes. Such
ranges will always extend to EOF, no matter the file growth.

flock can be emulated using the 〈0,0〉 range

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 29 / 45

POSIX locking — invocation

fcntl can be used to request POSIX locking as follows:

#include <unistd.h>
#include <fcntl.h>

int fcntl (int fd, int cmd, struct flock *flock);
Returns: 0 if OK, -1 on error

where cmd is one of F_SETLK, F_SETLKW, F_GETLK.
The flock structure is used to specify range, lock type, as well as a
value-return argument:

struct f lock {
short l_type ; /* lock type */
short l_whence ; /* how to interpret l _s tar t */
of f_ t l _ s t a r t ; /* range start */
of f_ t l_ len ; /* range length */
pid_t l_pid ; /* who holds the lock (for F_GETLK) */

}

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 30 / 45

POSIX locking — modify locks

Two cmd values are used to acquire locks:

F_SETLK acquire or release a lock on the given range, depending
on l_type

l_type action
F_RDLCK acquire a read lock
F_WRLCK acquire a write lock
F_UNLCK release a lock

if any incompatible lock is held by other processes,
fcntl will fail with errno set to either EAGAIN or
EACCESS

F_SETLKW same as above, but with blocking behavior, fcntl will
block until the lock can be granted

Note: semantics is all or nothing, an incompatible lock on a single
byte of the requested range will trigger failure.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 31 / 45

POSIX locking — check for locks

With the F_GETLK command we can check if it would be possible to
acquire a lock—of the given kind, on the given range.

For F_GETLK the flock structure is used as a value-return argument

l_type will be F_UNLCK if the lock would have been permitted

otherwise, information about one of those ranges will be
returned, in particular

ñ l_pid: PID of the process holding the lock
ñ l_type: kind of lock that is blocking us
ñ range in l_start and l_len, with l_whence always set to
SEEK_SET

Any common combination of F_GETLK with F_SETLK(W) is subject
to race conditions, as in between the two the lock situation might
change.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 32 / 45

POSIX locking — example

As an example of POSIX locking, we fix the race condition in our
distributed scheme to assign sequential unique identifiers (dropping
mmap, as an unrelated change).

To request an identifier each client will:
1 open a well-known file

2 write-lock the part of it that contains the counter

3 read the counter (why here?)
4 update the counter
5 release the lock

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 33 / 45

POSIX locking — example (cont.)

We use a (non-portable) record-oriented format defined as follows:
1 beginning of file

2 magic number 42 (written as the C string "42\0")

3 next sizeof(time_t) bytes: time of last change, in seconds
from epoch as returned by time

4 next sizeof(long) bytes: current value of global counter
5 end of file

As the file format is binary, we need a custom utility to initialize it.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 34 / 45

POSIX locking — example (protocol)

#include <fcnt l .h>
#include <str ing .h>
#include <time .h>
#include <unistd .h>
#include " helpers .h"

#define DB_FILE " counter . data "
#define MAGIC "42"
#define MAGIC_SIZ sizeof (MAGIC)

struct glob_id {
time_t ts ; /* last modification timestamp */
long val ; /* global counter value */

} ;

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 35 / 45

POSIX locking — example (library)
int glob_id_verify_magic (int fd) {

char buf [16] ;
struct f lock lock ;

lock . l_type = F_RDLCK; /* read lock */
lock . l_whence = SEEK_SET ; /* abs . posit ion */
lock . l _ s t a r t = 0; /* from begin . . . */
lock . l_ len = MAGIC_SIZ ; /* . . . to magic ’ s end */
pr int f (" acquiring read lock . . . \ n") ;
i f (f cn t l (fd , F_SETLKW, &lock) < 0)

err_sys (" f cn t l error ") ;

i f (read (fd , buf , MAGIC_SIZ) != MAGIC_SIZ)
err_sys (" read error ") ;

lock . l_type = F_UNLCK;
pr int f (" releasing read lock . . . \ n") ;
i f (f cn t l (fd , F_SETLK , &lock) < 0)

err_sys (" f cn t l error ") ;

return (strncmp (buf , MAGIC, 16) == 0 ? 0 : −1);
}
Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 36 / 45

POSIX locking — example (library) (cont.)

int glob_id_write (int fd , long val) {
int rc ;
struct glob_id id ;

id . ts = time (NULL) ;
id . val = val ;
i f ((rc = write (fd , &id , sizeof (struct glob_id))

!= sizeof (struct glob_id)))
return rc ;

return 0;
}

/* fcnt l−uid−common.h */

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 36 / 45

POSIX locking — example (DB init/reset)
#include " fcnt l−uid−common.h"
int main (void) {

int fd ;
struct f lock lock ;

i f ((fd = open(DB_FILE , O_WRONLY | O_CREAT | O_TRUNC,
S_IRUSR | S_IWUSR)) < 0)

err_sys ("open error ") ;
lock . l_type = F_WRLCK; /* write lock */
lock . l_whence = SEEK_SET ; /* abs . posit ion */
lock . l _ s t a r t = 0; /* from begin . . . */
lock . l_ len = 0; /* . . . to EOF */
pr int f (" acquiring write lock . . . \ n") ;
i f (f cn t l (fd , F_SETLKW, &lock) < 0)

err_sys (" f cn t l error ") ;

i f (write (fd , MAGIC, MAGIC_SIZ) != MAGIC_SIZ
| | glob_id_write (fd , (long) 0) < 0)

err_sys (" write error ") ;
exit (EXIT_SUCCESS) ;

} /* fcnt l−uid−reset . c */
Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 37 / 45

POSIX locking — example (client)
#include " fcnt l−uid−common.h"
int main (void) {

int fd ;
struct glob_id id ;
struct f lock lock ;

i f ((fd = open(DB_FILE , O_RDWR)) < 0)
err_sys ("open error ") ;

pr in t f (" checking magic number . . . \ n") ;
i f (glob_id_verify_magic (fd) < 0) {

pr in t f (" inva l id magic number: abort .\n") ;
exit (EXIT_FAILURE) ;

}

lock . l_type = F_WRLCK; /* write lock */
lock . l_whence = SEEK_SET ; /* abs . posit ion */
lock . l _ s t a r t = MAGIC_SIZ ; /* from magicno . . . */
lock . l_ len = 0; /* . . . to EOF */
pr int f (" acquiring write lock . . . \ n") ;
i f (f cn t l (fd , F_SETLKW, &lock) < 0)

err_sys (" f cn t l error ") ;
Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 38 / 45

POSIX locking — example (client) (cont.)

i f (lseek (fd , MAGIC_SIZ , SEEK_SET) < 0)
err_sys (" lseek error ") ;

i f (read (fd , &id , sizeof (struct glob_id))
!= sizeof (struct glob_id))

err_sys (" read error (too lazy to retry . . .) ") ;
pr in t f (" got id : %ld\n" , id . val) ;

sleep (5) ;

i f (lseek (fd , MAGIC_SIZ , SEEK_SET) < 0)
err_sys (" lseek error ") ;

glob_id_write (fd , id . val + 1) ;

exit (EXIT_SUCCESS) ;
} /* fcnt l−uid−get . c */

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 38 / 45

POSIX locking — example

Demo

Notes:

working with record-oriented files is painful!
ñ . . . and not very UNIX-y

as expected:
ñ different byte ranges can be locked independently
ñ write locks are mutually exclusive
ñ read locks block write locks

locks are automatically released at process termination

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 39 / 45

POSIX locking — release and inheritance

POSIX locks are associated with both a process and an i-node. That
is substantially different from flock locks. Some consequences:

when a process terminates, all its locks are released

a process can no longer lock himself out by opening a file twice,
because the 〈pid, i-node〉 keys are the same

Inheritance

fcntl locks are preserved through exec same PID

fcntl locks are not inherited upon fork != pid
ñ there is no way to atomically pass locks to children :-(

Release

when a process close a FD, all its fcntl locks on the
corresponding file are released

ñ there is no way to fool this (dup, dup2, etc.)
ñ particularly bad for encapsulation in library code that need to

hand out FDs :-(

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 40 / 45

Deadlock. . .

Consider two processes doing the following:

Process A

A.1 F_SETLKW on bytes 20–30

A.2 F_SETLKW on bytes 50–70

Process B

B.1 F_SETLKW on bytes 50–70

B.2 F_SETLKW on bytes 20–30

Which of the following action interleaving cause problem?
1 A.1 → A.2 → B.1 → B.2

2 B.1 → B.2 → A.1 → A.2

3 A.1 → B.1 → B.2 → A.2
4 B.1 → A.1 → A.2 → B.2
5 A.1 → B.1 → A.2 → B.2

6 B.1 → A.1 → B.2 → A.2

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 41 / 45

Deadlock. . . (cont.)

Definition (Deadlock)

A deadlock is a situation in which a circular list of two or more
processes are each waiting for the availability of a resource hold by
the successor in the list. (and therefore nobody can obtain it)

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 42 / 45

. . . and deadlock detection

Without assistance from the kernel, a deadlock will leave all involved
processes blocked forever.
Many techniques exist to deal with deadlocks, ranging from
prevention, to avoidance and detection.

For POSIX locking, the kernel is capable of deadlock detection.

When a deadlock is detected, the kernel choose one fcntl call
involved—arbitrarily, according to SUSv3—and make it fail with
errno set to EDEADLK.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 43 / 45

Deadlock detection — example

#include <fcnt l .h>
#include <unistd .h>
#include " helpers .h"

void lockabyte (const char *name, int fd , of f_ t offset) {
struct f lock lock ;

lock . l_type = F_WRLCK;
lock . l _ s t a r t = offset ;
lock . l_whence = SEEK_SET ;
lock . l_ len = 1;

i f (f cn t l (fd , F_SETLKW, &lock) < 0)
err_sys (" f cn t l error ") ;

pr in t f ("%s : got the lock , byte %ld\n" , name, offset) ;
}

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 44 / 45

Deadlock detection — example (cont.)
int main (void) {

int fd ;
pid_t pid ;

i f ((fd = creat ("my−lock " , S_IRUSR | S_IWUSR)) < 0)
err_sys (" creat error ") ;

i f (write (fd , "ab" , 2) != 2)
err_sys (" write error ") ;

i f ((pid = fork ()) < 0) {
err_sys (" fork error ") ;

} else i f (pid == 0) { /* chi ld */
lockabyte (" chi ld " , fd , 0) ;
sleep (1) ;
lockabyte (" chi ld " , fd , 1) ;

} else { /* parent */
lockabyte (" parent " , fd , 1) ;
sleep (1) ;
lockabyte (" parent " , fd , 0) ;

}
exit (EXIT_SUCCESS) ;

} /* deadlock . c */
Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 44 / 45

Deadlock detection — example (cont.)

Demo

Notes:

as usual sleep(1) does not guarantee that the deadlock will
occur; how can we force the deadlock to happen?

ñ deadlocks are common causes of heisenbug

on Linux, it is the most recent fcntl invocation that will fail;
SUSv3 gives no such guarantee

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 44 / 45

lockf

SUSv3 offers a wrapper function to ease record locking:

#include <unistd.h>

int lockf(int fd, int cmd, off_t len);
Returns: 0 if OK, -1 on error

lockf locks a sequence of bytes of length len, starting at the
current file offset. Locks can be requested with the cmd-s F_LOCK
(blocking) and F_TLOCK (non-blocking, “T” for “try”), released with
F_ULOCK, and tested with F_TEST.

Unfortunately, SUSv3 does not specify whether lockf is
implemented in terms of fcntl and hence its possible interactions
with fcntl.

Stefano Zacchiroli (Paris Diderot) IPC: file locking 2012–2013 45 / 45

	Synchronization and file locking
	flock
	fcntl
	POSIX locks

