
Programmation Systèmes
Cours 9 — System V IPC

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire PPS, Université Paris Diderot

2012–2013

URL http://upsilon.cc/zack/teaching/1213/progsyst/
Copyright © 2011–2012 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-sa/3.0/

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 1 / 101

http://upsilon.cc/zack/teaching/1213/progsyst/
http://creativecommons.org/licenses/by-sa/3.0/


Outline

1 Introduction to System V IPC

2 System V Message Queues
Client/server message queues

3 System V Semaphores

4 System V Shared Memory
Data structures in shared memory

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 2 / 101



Outline

1 Introduction to System V IPC

2 System V Message Queues
Client/server message queues

3 System V Semaphores

4 System V Shared Memory
Data structures in shared memory

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 3 / 101



System V IPC

The expression “System V IPC” (or “SysV IPC”, for short) refers to 3
distinct IPC mechanisms:

1 SysV message queues — used to pass messages between
processes

ñ boundary management, i.e. message granularity
ñ messages are typed with integer values, allowing to cherry pick

messages of a specific type

2 SysV semaphores — used for process synchronization
ñ kernel-maintained integers that can be atomically

tested & decremented (or tested & incremented)
ñ “taking” a unit of a semaphore value indicates that the taker is

working on a shared resource

3 SysV shared memory – used to share memory regions
ñ similar to shared mmap mappings, but with kernel persistence

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 4 / 101



System V IPC

The expression “System V IPC” (or “SysV IPC”, for short) refers to 3
distinct IPC mechanisms:

1 SysV message queues — used to pass messages between
processes

ñ boundary management, i.e. message granularity
ñ messages are typed with integer values, allowing to cherry pick

messages of a specific type

2 SysV semaphores — used for process synchronization
ñ kernel-maintained integers that can be atomically

tested & decremented (or tested & incremented)
ñ “taking” a unit of a semaphore value indicates that the taker is

working on a shared resource

3 SysV shared memory – used to share memory regions
ñ similar to shared mmap mappings, but with kernel persistence

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 4 / 101



System V IPC

The expression “System V IPC” (or “SysV IPC”, for short) refers to 3
distinct IPC mechanisms:

1 SysV message queues — used to pass messages between
processes

ñ boundary management, i.e. message granularity
ñ messages are typed with integer values, allowing to cherry pick

messages of a specific type

2 SysV semaphores — used for process synchronization
ñ kernel-maintained integers that can be atomically

tested & decremented (or tested & incremented)
ñ “taking” a unit of a semaphore value indicates that the taker is

working on a shared resource

3 SysV shared memory – used to share memory regions
ñ similar to shared mmap mappings, but with kernel persistence

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 4 / 101



Why together?

System V IPCs are quite different in function.
Why discuss them together?

history
late 70s they first appear together in Columbus UNIX, a Bell UNIX for

database and efficient transaction processing
1983 they land together in System V that made them popular in

mainstream UNIX-es, hence the name
2001 SUSv3 is published and require implementation of all of them for

XSI conformance, hence they are also called XSI IPC

uniformity
ñ System V IPC mechanisms share many API traits (persistence,

namespace, protocol, etc.)

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 5 / 101



Overview of System V IPC APIs

System V IPC mechanisms at a glance:

aspect msg queues semaphores shared memory
header <sys/msg.h> <sys/sem.h> <sys/shm.h>
data type msqid_ds semid_ds shmid_ds
get object msgget semget shmget / shmat
close object — — shmdt
manipulation msgctl semctl shmctl
communicate msgsnd / msgrcv semop memory access

Note the uniformity in naming and operations, to the extent of
what’s possible for different communication primitives.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 6 / 101



System V IPC concepts

object instance of the IPC mechanism that can be used for
communication

e.g.:
ñ a specific message queue
ñ a (set of) semaphores
ñ a shared memory region

each object defines a communication context

identifier unique identifier for an IPC object

key name used by processes to rendez-vous on a common
object, to ensure they communicate in the same context

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 7 / 101



System V IPC protocol

The usage of all System V IPC mechanisms goes through a common
“protocol”:

1 obtain a key

ñ mechanism-independent

2 get an object

ñ passing the key to a mechanism-specific syscall

3 store its identifier

ñ mechanism-independent

4 communicate through the object

ñ passing the identifier to mechanism-specific syscalls

Steps (1) and (2) are optional: object identifiers are stable integers
that can be stored and passed around as processes see fit.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 8 / 101



System V IPC protocol

The usage of all System V IPC mechanisms goes through a common
“protocol”:

1 obtain a key
ñ mechanism-independent

2 get an object
ñ passing the key to a mechanism-specific syscall

3 store its identifier
ñ mechanism-independent

4 communicate through the object
ñ passing the identifier to mechanism-specific syscalls

Steps (1) and (2) are optional: object identifiers are stable integers
that can be stored and passed around as processes see fit.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 8 / 101



System V IPC vs file-based communication

At a macro level, using System V IPC is similar to communicate via
shared files:

file ←→ System V IPC
file name ←→ key

file ←→ object
FD ←→ identifier

Notable differences between object identifiers and FDs:

IPC identifiers are kernel-persistent; FDs are process-persistent

IPC identifiers are globally visible; FDs are restricted to related
processes

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 9 / 101



Getting IPC object

Each mechanism provide a get syscall to get an IPC object

msgget, semget, shmget

Similarly to open for files, get syscalls are used to either:
1 create a new IPC object and return its identifier; or

2 return the identifier of a preexisting IPC object.

Either way, get syscalls receive as arguments:1

the key for the object we want to get

a set of flags that always support:

IPC_CREAT request object creation, if needed
IPC_EXCL request object creation, fail if already exists
S_IRUSR, S_IWUSR, . . . permission mask

the analogy with open continues. . .

1additional, mechanism-specific args and flags are used by specific
syscalls
Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 10 / 101



Getting IPC object — example

int id ;

/* . . . */

/* get message queue for key */
i f ( ( id = msgget ( key , IPC_CREAT | S_IRUSR | S_IWUSR ) ) < 0)

err_sys ( "msgget error " ) ;

Notes:

the message queue will be created if it doesn’t exist, otherwise
the existing one corresponding to key will be returned

if created, the message queue will be readable and writable only
by processes belonging to the owner of the current process

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 11 / 101



System V object persistence

System V IPC objects have kernel persistence: they remain available,
no matter the number of “users” they have, until kernel shutdown or
explicit deletion.

Advantages

processes can access the object, change its state, and then exit
without having to wait; other processes can come up later and
check the (modified) state

ñ i.e. System V IPC objects are stateful and connectionless

Disadvantages

IPC objects consume system resources and cannot be
automatically garbage collected

ñ hence the need of enforcing limits on their quantity

it’s hard to determine when it is safe to delete an object

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 12 / 101



System V object deletion

Each System V IPC offers a control syscall for generic object
manipulation

msgctl, semctl, shmctl

IPC control syscalls are typical dispatcher syscalls that expect an
object identifier, a command, and extra command-specific
arguments.
Among other things, IPC control syscalls are used to delete IPC
objects:

passing the IPC_RMID command

and no extra arguments (i.e. a trailing NULL)

Example

/* delete shared memory region */
i f ( shmctl ( id , IPC_RMID , NULL) < 0)

err_sys ( " shmctl error " ) ;

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 13 / 101



Shell manipulation of IPC objects

Shell utilities are available to manipulate System V IPC objects:

ipcs lists available System V IPC objects

which objects are shown (i.e. all we can read, all we
are owner of, etc.) is implementation dependent
provide extra info: key, id, owner, permissions, etc.
ipcs -l show system limits on IPC object counts

ipcrm allows to delete IPC objects (we own)

ipcmk (non portable) allows to create IPC objects

On Linux, /proc/sysvipc/ provides a view on all existing IPC
objects, in a format easier to parse than ipcs.

Demo

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 14 / 101



Shell manipulation of IPC objects

Shell utilities are available to manipulate System V IPC objects:

ipcs lists available System V IPC objects

which objects are shown (i.e. all we can read, all we
are owner of, etc.) is implementation dependent
provide extra info: key, id, owner, permissions, etc.
ipcs -l show system limits on IPC object counts

ipcrm allows to delete IPC objects (we own)

ipcmk (non portable) allows to create IPC objects

On Linux, /proc/sysvipc/ provides a view on all existing IPC
objects, in a format easier to parse than ipcs.

Demo

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 14 / 101



System V IPC keys

System V IPC keys are represented as key_t integer values. They get
translated to unique object identifiers by get syscalls.

The kernel maintains a key↔identifier association and guarantees
that processes getting IPC objects with the same key:

will get the same identifier

will not clash with identifiers returned for other keys

But we have just shifted the problem!
A related problem is: how can processes choose a common key, so
that they don’t end up obtaining the identifier of an IPC object used
by other applications?

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 15 / 101



Assigning System V IPC keys

There are three main strategies to assign IPC keys to applications:

1 choose an arbitrary key value once and for all and distribute it
via a common header file

2 pass the special constant IPC_PRIVATE as key to get syscalls,
which always result in the creation of a fresh IPC object

ñ e.g. id = msgget(IPC_PRIVATE, S_IRUSR | S_IWUSR);
ñ the creating process will then need to transmit the object

identifier to collaborating processes by other means

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 16 / 101



Assigning System V IPC keys

There are three main strategies to assign IPC keys to applications:

1 choose an arbitrary key value once and for all and distribute it
via a common header file

2 pass the special constant IPC_PRIVATE as key to get syscalls,
which always result in the creation of a fresh IPC object

ñ e.g. id = msgget(IPC_PRIVATE, S_IRUSR | S_IWUSR);
ñ the creating process will then need to transmit the object

identifier to collaborating processes by other means

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 16 / 101



ftok

3 use the ftok syscall to generate a unique key from the name of
an existing file and an arbitrary integer

ñ i.e. delegate uniqueness guarantees to the filesystem namespace

#include <sys/ipc.h>

key_t ftok(char *pathname, int proj);
Returns: key value if OK, -1 on error

pathname points to a file that will be subject to stat

proj allows to have different contexts for the same file

Behind the scenes, the 8 least significant bits of proj and of the file
i-node will be used to build a unique key.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 17 / 101



ftok — example

#include <stdio .h>
#include <stdl ib .h>
#include <sys/ ipc .h>
#include " helpers .h"

int main ( int argc , char **argv ) {
key_t key ;

i f ( argc != 3)
err_quit ( "Usage : ftok PATH PROJNO" ) ;

i f ( ( key = ftok ( argv [1 ] , atoi ( argv [ 2 ] ) ) ) < 0)
err_sys ( " ftok error " ) ;

pr in t f ( " key=%d\n" , key ) ;

exit ( EXIT_SUCCESS ) ;
} /* ftok . c */

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 18 / 101



ftok — example

Demo

Notes:

ftok is a function in the mathematical sense: equal values map
to equal results

ñ the function is not 100% granted to be injective though, as only
the least significant bits are considered

the key depends on the i-node, i.e. we can’t cheat with links

directory traversal permissions can be used to enforce private
contexts via keys that can’t be obtained by 3rd party programs
that lack the appropriate permissions

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 18 / 101



POSIX IPC

POSIX.1b introduced 3 IPC mechanisms equivalent to System V IPC:
POSIX message queues, semaphores, and shared memory.

pros

simpler API than System V IPC

consistent naming and usage of IPC objects
ñ /foo/bar/baz instead of ftok paraphernalia
ñ open-, close-, unlink-like syscalls

reference counting for IPC objects
ñ ease garbage collection

cons

less portability:
ñ POSIX IPC are optional SUSv3 features

« all implemented in Linux since 2004 “only”

ñ non portable object creation (e.g. would /object work?)
ñ no portable cmdline tools to list/remove IPC objects

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 19 / 101



Outline

1 Introduction to System V IPC

2 System V Message Queues
Client/server message queues

3 System V Semaphores

4 System V Shared Memory
Data structures in shared memory

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 20 / 101



System V message queues

System V message queues are IPC objects used for data transfer
among unrelated processes.

communication granularity are individual messages
ñ no need to handle message boundaries explicitly as it happened

with byte stream

communication discipline is first-in, first-out . . .
. . . but messages are typed with integer values and can be
extracted using type predicates

ñ i.e. a queue can be seen as multiple independent queues, one
per message type, as well as a priority queue

each message carries a payload of arbitrary data

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 21 / 101



Message queues limits & blocking behavior

Message queues are limited: in their total number, in message size,
and in the number of messages.

$ ipcs − l −q
−−−−−− Messages Limits −−−−−−−−
max queues system wide = 7786
max size of message ( bytes ) = 8192
default max size of queue ( bytes ) = 16384
$

By default:

sending a message is not blocking unless the queue is full,
otherwise it’s blocking

receiving a message is blocking unless a message for the
receiver is already available

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 22 / 101



Overview of System V Message Queue API

header file <sys/msg.h>
get queue msgget
send message msgsnd
receive message msgrcv
data structure msqid_ds note the “q”
control msgctl

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 23 / 101



msgget

An existing message queue can be opened or a new one created
using the message queue get syscall msgget:

#include <sys/msg.h>

int msgget(key_t key, int flags);
Returns: message queue ID if OK, -1 on error

flags supports IPC_CREAT, IPC_EXCL, and permissions as usual

the return message queue ID should be stored and used for
subsequent usage of the message queue

Reminder: as with all other System V IPC objects, get is not
mandatory; message queue IDs are stable and can be passed around
by other means.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 24 / 101



Messages

A message is a structure conforming to the following structure:

struct mymsg {
long mtype ; /* message type */
char mtext [ ] ; /* message payload */

}

the payload size is arbitrary: all message exchanges will specify
a (maximum) size

ñ generally, applications decide on a specific message structure
and all involved programs stick to it

as a consequence, extra trailing payload fields can be added

also, mtext can have size 0
ñ e.g. payload-less messages where all conveyed information is

the message type

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 25 / 101



msgsnd

Once you have a message msgp, you can send it through a given
message queue msqid using msgsnd:

#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);
Returns: 0 if OK, -1 on error

msgsz is the size of the payload (i.e. what follows mtype)
ñ it will depend on your specific instantiation of the msg. struct

msgflg supports a single flag:

IPC_NOWAIT non-blocking send

if given, IPC_NOWAIT will have msgsnd fail with EAGAIN if the
target queue is full, instead of blocking

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 26 / 101



msgrcv

The dual of msgsnd is msgrcv, that is used to receive a message
from the queue msqid and copy it to msgp:

#include <sys/msg.h>

int msgrcv(int msqid, void *msgp, size_t maxmsgsz, long msgtyp,
int msgflg);

Returns: 0 if OK, -1 on error

maxmsgsz is the maximum payload size

msgtyp is the type predicate that identifies the message we
want to receive

msgtyp == 0 first message in the queue
msgtyp > 0 first message mtype == msgtyp
msgtyp < 0 first message with the lowest

mtype < abs(msgtyp)

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 27 / 101



msgrcv (cont.)

#include <sys/msg.h>

int msgrcv(int msqid, void *msgp, size_t maxmsgsz, long msgtyp,
int msgflg);

Returns: 0 if OK, -1 on error

msgflg support the following flags:

IPC_NOWAIT non-blocking receive
MSG_EXCEPT complement message selection for msgtyp > 0
MSG_NOERROR allow to remove over-size messages

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 27 / 101



Message queue associated data structure

To each System V IPC object, the kernel associates a data structure
that can be retrieved and set using the appropriate control syscall.

For message queues the data structure is msqid_ds, which contains
a lot of accounting information as well as common properties such
as permissions:

struct msqid_ds {
struct ipc_perm msg_perm; /* ownership and permissions */
time_t msg_stime ; /* time of last msgsnd ( ) */
time_t msg_rtime ; /* time of last msgrcv ( ) */
time_t msg_ctime ; /* time of last change */
unsigned long __msg_cbytes ; /* n . of bytes in queue */
msgqnum_t msg_qnum; /* n . of messages in queue */
msglen_t msg_qbytes ; /* max n. of bytes in queue */
pid_t msg_lspid ; /* PID of last msgsnd ( ) */
pid_t msg_lrpid ; /* PID of last msgrcv ( ) */

} ;

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 28 / 101



msgctl

The control syscall of message queues is msgctl, a typical
dispatcher syscall:

#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);
Returns: 0 if OK, -1 on error

Allowed commands for cmd are:

IPC_RMID destroy queue; all pending messages are lost
IPC_STAT get queue data structure into buf
IPC_SET set queue data structure from buf

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 29 / 101



Outline

1 Introduction to System V IPC

2 System V Message Queues
Client/server message queues

3 System V Semaphores

4 System V Shared Memory
Data structures in shared memory

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 30 / 101



Client/server message queues

Message queues can be used to implement host-local client/server
architectures.

Several arrangements are possible:

1 one request/response queue
ñ this was not possible with FIFO-based client/server architectures,

as there was no way to route responses to the appropriate client

2 one request queue + one response queue

3 one request queue + one response queue per-client

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 31 / 101



Single request/response queue

we use a single message queue
ñ all clients send requests there
ñ the server send there responses to all clients

then, to ensure proper message routing:
ñ requests have type 1 and contain client PID
ñ responses have type equal to the PID of the target client

message queue

Client sends request
(mtype= 1, mtext

includes client PID)
1

Server sends
response (mtype
= PID of client)

3
Server reads

request (select
msgtyp= 1)

2

Client reads
response (select

msgtyp= own PID)
4

Client

Server

TLPI, Fgure 46-2

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 32 / 101



Single request/response queue — discussion

it is usually safe to use 1 (or 0) as server message type (it’s
init’s PID)

ñ alternatively we can use server’s PID, but it is difficult for client
to get to know it

queue limited capacity might cause denial of service (DoS):
1 many clients might fill the queue blocking the system, as not

even the server will be able to write responses
2 a malicious/misbehaving client might fail to retrieve its

response; many will block the system

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 33 / 101



One request queue + one response queue

As a first improvement, we can use two queues:

client send their requests to a single request queue

server send responses for all clients to a single response queue

This arrangement solves problem (1)—many clients blocking the
queue:

when the request queue is full, new client will block, but the
server will still be able to process requests and send responses
without blocking

It does not solves problem (2)—clients failing to retrieve responses.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 34 / 101



Per client response queue

To improve over problem (2) we need a more complex arrangement.

a single request queue, as before

one response queue per client
ñ a client creates its own private message queue
ñ the client queue identifier is included in requests
ñ the server retrieves the queue identifier and write responses to

the corresponding queue

to avoid blocking on full response queues (e.g. created on
purpose by malicious clients), the server fork a child to handle
each request

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 35 / 101



Per client response queue

To improve over problem (2) we need a more complex arrangement.

a single request queue, as before

one response queue per client
ñ a client creates its own private message queue
ñ the client queue identifier is included in requests
ñ the server retrieves the queue identifier and write responses to

the corresponding queue

to avoid blocking on full response queues (e.g. created on
purpose by malicious clients), the server fork a child to handle
each request

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 35 / 101



Per client response queue (cont.)

Server MQ

Client sends request to
Server MQ (mtext includes
ID of client queue)

2

3

Client reads
response(s)

6

fork()

msgg
et(

IPC_PRIVA
TE, ...

)

1
Client creates
private queue

Client MQ

Server reads
request

4

5 Server child sends
response(s)

Server creates child
to handle request

Client

Server Server child

TLPI, Fgure 46-3

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 36 / 101



Per client response queue — example

As an example of the per client response queue architecture we
provide an implementation of a:

Example (stat server)

clients send to the server a pathname of a file they want to be
stat-ed

ñ possibly, the file is accessible to the server but not to the clients

the server stat the file and return its information to the client
ñ in the example, we return only file size

We will use one shared queue for requests + one private queue per
client for responses.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 37 / 101



Per client response queue — example (protocol)

#include <errno .h>
#include <l imi ts .h>
#include <stdio .h>
#include <stdl ib .h>
#include <str ing .h>
#include <sys/msg.h>
#include <sys/ stat .h>
#include <unistd .h>
#include " helpers .h"

#define SRV_FTOK_PATH " /tmp/stat−server " /* dummy value */
#define SRV_FTOK_PROJ 1

#define RES_OK 1 /* OK, checksum returned */
#define RES_ERR 2 /* error , no checksum */

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 38 / 101



Per client response queue — example (protocol) (cont.)

struct request_msg {
long mtype ; /* not used */
int c l i _ i d ; /* c l i en t queue id */
char pathname[PATH_MAX] ;

} ;

struct response_msg {
long mtype ; /* one of RES_* values */
size_t size ; /* size ( i f mtype==RES_OK) */
/* . . . */

} ;

#define REQ_SIZ ( sizeof ( struct request_msg ) − sizeof ( long ) )
#define RES_SIZ ( sizeof ( struct response_msg ) − sizeof ( long ) )

/* stat−common.h */

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 38 / 101



Per client response queue — example (server)
#include " stat−common.h"

static int srv_id ;
int handle_request ( const struct request_msg *req ) ;
void rm_queue( int signo ) {

msgctl ( srv_id , IPC_RMID , NULL ) ;
}
void dezombie ( int signo ) {

waitpid (−1, NULL, WNOHANG) ;
}
int main ( void ) {

int msglen ;
key_t srv_key ;
pid_t pid ;
struct request_msg req ;

i f ( ( srv_key = ftok (SRV_FTOK_PATH, SRV_FTOK_PROJ ) ) < 0)
err_sys ( " ftok error " ) ;

i f ( ( srv_id = msgget ( srv_key , IPC_CREAT | IPC_EXCL
| S_IRUSR | S_IWUSR | S_IWGRP ) ) < 0)

err_sys ( "msgget error " ) ;
i f ( signal (SIGCHLD, dezombie ) == SIG_ERR /* better cleanup needed . . . */

| | s ignal ( SIGINT , rm_queue) == SIG_ERR )
err_sys ( " signal error " ) ;

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 39 / 101



Per client response queue — example (server) (cont.)

for ( ; ; ) {
i f ( ( msglen = msgrcv ( srv_id , &req , REQ_SIZ , 0, 0 ) ) < 0) {

i f ( errno == EINTR )
continue ;

break ;
}

i f ( ( pid = fork ( ) ) < 0)
err_sys ( " fork error " ) ;

i f ( pid == 0) { /* chi ld */
i f ( handle_request (&req ) < 0)

err_msg ( " handle_request error " ) ;
exit ( EXIT_SUCCESS ) ;

}
/* parent continues to handle next request */

}

rm_queue(−1);
exit ( EXIT_SUCCESS ) ;

}

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 39 / 101



Per client response queue — example (server) (cont.)

int handle_request ( const struct request_msg *req ) {
struct stat f info ;
struct response_msg res ;

i f ( stat ( req−>pathname, &f info ) < 0) {
res .mtype = RES_ERR ;

} else {
res .mtype = RES_OK;
res . size = f info . st_size ;

}
return msgsnd( req−>c l i _ id , &res , RES_SIZ , 0 ) ;

}

/* stat−server . c */

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 39 / 101



Per client response queue — example (client)

#include " stat−common.h"
static int c l i _ i d ;
void rm_queue( void ) {

msgctl ( c l i _ id , IPC_RMID , NULL ) ;
}

int main ( int argc , char **argv ) {
int srv_id ;
key_t srv_key ;
struct request_msg req ;
struct response_msg res ;

i f ( argc != 2)
err_quit ( "Usage : stat−c l i en t PATH" ) ;

i f ( ( srv_key = ftok (SRV_FTOK_PATH, SRV_FTOK_PROJ ) ) < 0)
err_sys ( " ftok error " ) ;

i f ( ( srv_id = msgget ( srv_key , 0 ) ) < 0)
err_sys ( "msgget error ( server queue ) " ) ;

i f ( ( c l i _ i d = msgget ( IPC_PRIVATE ,
S_IRUSR | S_IWUSR | S_IWGRP ) ) < 0)

err_sys ( "msgget error ( c l i en t queue ) " ) ;
i f ( atexi t ( rm_queue) != 0)

err_sys ( " atexi t error " ) ;

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 40 / 101



Per client response queue — example (client) (cont.)

req .mtype = 1; /* unused */
req . c l i _ i d = c l i _ i d ;
strncpy ( req .pathname, argv [1 ] , sizeof ( req .pathname) − 1) ;
req .pathname[ sizeof ( req .pathname) − 1] = ’\0 ’ ; /* safeguard */
i f (msgsnd( srv_id , &req , REQ_SIZ , 0) < 0)

err_sys ( "msgsnd error " ) ;

i f (msgrcv ( c l i _ id , &res , RES_SIZ , 0 , 0) < 0)
err_sys ( "msgrcv error " ) ;

i f ( res .mtype == RES_ERR )
exit ( EXIT_FAILURE ) ;

else {
pr in t f ( "%ld\n" , res . size ) ;
exit ( EXIT_SUCCESS ) ;

}
} /* stat−c l i en t . c */

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 40 / 101



Per client response queue — example

Demo
Notes:

clients cannot DoS the server queue
ñ they can still DoS the system by filling up the number of

available queues; this is an intrinsic problem of System V IPC

clients and servers take good care of queue cleanup

we don’t use message types, but they can be used to provide
Quality of Service (QoS), by prioritizing requests

Exercise

Adapt the example to become a file server, where the server sends to
clients the content of the requested file.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 41 / 101



Per client response queue — example

Demo
Notes:

clients cannot DoS the server queue
ñ they can still DoS the system by filling up the number of

available queues; this is an intrinsic problem of System V IPC

clients and servers take good care of queue cleanup

we don’t use message types, but they can be used to provide
Quality of Service (QoS), by prioritizing requests

Exercise

Adapt the example to become a file server, where the server sends to
clients the content of the requested file.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 41 / 101



Disadvantages of System V message queues

Common System V IPC issues:

object identifiers, rather than FDs

keys, rather than filenames

no accounting of object users; hard to delete safely

limits

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 42 / 101



Outline

1 Introduction to System V IPC

2 System V Message Queues
Client/server message queues

3 System V Semaphores

4 System V Shared Memory
Data structures in shared memory

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 43 / 101



Semaphores

A semaphore is an abstract data type whose instances can be used
by processes that want to coordinate access to shared resources.
A semaphore is equipped with operations that allow coordination
without race conditions between testing the value of the semaphore
and changing it.

In its general form, a semaphore is an integer variable that can never
descend below 0.
Intuitively, such a semaphore counts the number of available units
of a shared resource.

A special, yet very common, case is that of a binary semaphore used
to guarantee mutual exclusion when accessing a single shared
resource. A binary semaphore has only two possible values:

1 the resource is available

0 the resource is taken

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 44 / 101



Semaphores essential bibliography

Edsger W. Dijkstra
Cooperating Sequential Processes
Programming Languages, Academic Press, New York. 1968
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 45 / 101

http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html


Semaphore operations

Two operations are defined on a semaphore:

P (for probeer te verlagen, “try to decrease” in Dutch)
try to decrease semaphore value and blocks if that would result
in a negative value; when the operation returns the semaphore
value has been decreased by one
intuition: ask for exclusive access to a resource unit

V (for verhogen, “increase” in Dutch)
increase semaphore value
intuition: signal that a resource unit has been made available to
others who are waiting for it

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 46 / 101



Semaphore — example

You want to coordinate access to a shared memory area among
multiple processes ensuring memory coherence.

More precisely, each process wants to perform an increment action
on the int counter variable stored into shared memory. The
increment operation is defined as: read counter and write it back
incremented by one (i.e. counter++). The desired property is that if
n processes perform a total of k increment operations, the counter
is incremented exactly by k.

Due to the race condition between reading counter value and
writing it back incremented, it is not enough for each process to
simply do counter++

with more complex data structure, the race condition can also
cause data corruption that makes impossible to read the value

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 47 / 101



Semaphore — example (cont.)

With a binary semaphore S we can solve the problem and avoid race
conditions. We assume that the semaphore is initialized with S ← 1.
Each process will implement increment as follows:

1 P(S)
2 counter++

3 V(S)

The P call would block if someone else is incrementing counter.
Within the P . . .V window a process knows that—as long as all other
processes follow the same protocol—he will execute its critical
section without interference from others.

For semaphores to work, it is essential that P(S) atomically test &
decrement (if possible) the semaphore value.
Only the kernel can guarantee that.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 48 / 101



General semaphores

In the example, there is a single resource available (the counter
global variable), hence a binary semaphore is enough.

the scheme can be generalized to n available resources using
S ← n as semaphore initialization

we then generalize P and V to take arbitrary integer parameters
ñ V(S,n) increment semaphore value by n
ñ P(S,n) try to decrease semaphore value by n and block if that is

not possible
« note: until the decrease is possible, semaphore value remains

unchanged, i.e. no partial decrease is possible

Example

A TP room at the UFR has n available machines. In the morning, the
room opens with S ← n. A student arrives at the door and does
P(S,1) to enter. A group of m students working together on a
project does P(S,m). Each student leaving the room does V(S,1).

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 49 / 101



System V Semaphores

The traditional implementation of semaphores by UNIX kernels are
System V semaphores.

they belong to System V IPC mechanisms; the IPC object is a set
of semaphores

all semaphores in the set are generalized semaphores with
arbitrary (non-negative) integer values

each semaphore in a set support the following operations:
1 add a (positive) value to semaphore value (generalized V)
2 subtract a (positive) number from semaphore value

(generalized P)
3 set semaphore value to an arbitrary (non-negative) value

(initialization)
4 wait for semaphore value to become 0

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 50 / 101



Overview of System V semaphore API

header file <sys/sem.h>
get semaphore set semget
semaphore action semop
data structure semid_ds
control semctl

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 51 / 101



semget

To obtain a semaphore set corresponding to a given key, the get
syscall semget should be used:

#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);
Returns: semaphore set ID if OK, -1 on error

nsems specifies the number of semaphores in the set
ñ 1 is a common choice

semflg supports IPC_CREAT, IPC_FLAGS, and permissions as
usual

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 52 / 101



semop

All semaphore operations are requested via the semop syscall. The
fact that the object granularity is the semaphore set, makes it rather
cumbersome to use. . .

#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, unsigned int nsops);
Returns: 0 if OK, -1 on error

semid is the semaphore set identifier
sops points to a (non-empty) array of operations to be
performed on individual semaphores

struct sembuf {
unsigned short sem_num; /* semaphore number, 0−based */
short sem_op; /* operation to be performed */
short sem_flg ; /* operation flags */

} ;

nsops is the number of operations in the sops array
Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 53 / 101



semop (cont.)

#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, unsigned int nsops);
Returns: 0 if OK, -1 on error

struct sembuf {
unsigned short sem_num; /* semaphore number, 0−based */
short sem_op; /* operation to be performed */
short sem_flg ; /* operation flags */

} ;

Operations are interpreted as follows:

sem_op > 0 -→ V(Ssem_num,sem_op)
sem_op < 0 -→ P(Ssem_num, |sem_op|)
sem_op = 0 -→ test & wait until Ssem_num = 0

operation flags support IPC_NOWAIT with the usual semantics

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 53 / 101



Semaphore associated data structure

As with all System V IPC objects, a kernel data structure is
associated to each semaphore set:

struct semid_ds {
struct ipc_perm msg_perm; /* ownership and permissions */
time_t sem_otime ; /* time of last semop ( ) */
time_t sem_ctime ; /* time of last change */
unsigned long sem_nsems; /* n . of semaphores in set */

} ;

It allows to access IPC object permissions and also provides the
usual accounting information.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 54 / 101



semctl

The semaphore set control syscall is semctl. Contrary to other
control syscalls, semctl is overloaded for two different purposes:

1 generic control operations (access to semid_ds, deletion)

2 semaphore initialization & reset

#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ... /*union semun arg */);
Returns: non-negative integer if OK, -1 on error

Generic control operations are as usual according to cmd:

IPC_RMID to delete the semaphore set

IPC_STAT/IPC_SET to get/set the associated data structure

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 55 / 101



semctl (cont.)

#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ... /*union semun arg */);
Returns: non-negative integer if OK, -1 on error

Semaphore initialization / reset uses the following cmd-s:

GETVAL/SETVAL: get/set the value of the setnum-th semaphore

GETALL/SETALL: as above, but for all semaphores at once

Arguments and return values for all semctl commands are conveyed
by semun, that must be defined by your programs as follows:

union semun {
int val ; /* individual semaphore value */
struct semid_ds *buf ; /* semaphore data structure */
unsigned short *array ; /* multiple semaphore values */

} ;

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 56 / 101



Semaphore initialization

according to SUSv3, semaphores are not initialized to any
specific value when created with semget+IPC_CREAT

ñ Linux initializes semaphores to 0, but it’s not portable

therefore, semaphores must be explicitly initialized after
creation with semctl

If multiple processes attempt to create & initialize a common
semaphore you get a race condition for semaphore initialization.

Solutions:
1 avoidance: ensure that a single process is in charge of creating

& initializing the semaphore, e.g.:
ñ creation at (application) boot time, possibly using ipcmk
ñ have a parent create & initialize before spawning children

2 the sem_otime trick based on the historical (and now standard)
fact that the field is set to 0 upon creation

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 57 / 101



Semaphore initialization

according to SUSv3, semaphores are not initialized to any
specific value when created with semget+IPC_CREAT

ñ Linux initializes semaphores to 0, but it’s not portable

therefore, semaphores must be explicitly initialized after
creation with semctl

If multiple processes attempt to create & initialize a common
semaphore you get a race condition for semaphore initialization.

Solutions:
1 avoidance: ensure that a single process is in charge of creating

& initializing the semaphore, e.g.:
ñ creation at (application) boot time, possibly using ipcmk
ñ have a parent create & initialize before spawning children

2 the sem_otime trick based on the historical (and now standard)
fact that the field is set to 0 upon creation

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 57 / 101



Semaphore — example

#include <stdio .h>
#include <sys/sem.h>
#include <sys/ stat .h>
#include <unistd .h>
#include " helpers .h"

union semun { /* SUSv3 mandates def in i t ion in user programs */
int val ;
struct semid_ds *buf ;
unsigned short *array ;

} ;

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 58 / 101



Semaphore — example (cont.)

int main ( int argc , char **argv ) {
int semid ;

i f ( argc < 2 | | argc > 3)
err_quit ( "Usage : svsem_demo [ SEM_ID ] SEM_OP" ) ;

i f ( argc == 2) { /* create & i n i t semaphore */
union semun arg ;

i f ( ( semid = semget ( IPC_PRIVATE , 1,
S_IRUSR | S_IWUSR ) ) < 0)

err_sys ( "semid error " ) ;
arg . val = atoi ( argv [ 1 ] ) ;

i f ( semctl ( semid , 0, SETVAL , arg ) < 0)
err_sys ( " semctl error " ) ;

pr in t f ( "semaphore ID = %d\n" , semid ) ;
}

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 58 / 101



Semaphore — example (cont.)

else { /* act on f i r s t semaphore */
struct sembuf sop ;

semid = atoi ( argv [ 1 ] ) ;
sop .sem_num = 0; /* act on f i r s t semaphore */
sop .sem_op = atoi ( argv [ 2 ] ) ;
sop . sem_flg = 0; /* no special f lags */

pr int f ( "%d: about to semop\n" , getpid ( ) ) ;
i f (semop(semid , &sop , 1) < 0)

err_sys ( "semop error " ) ;

pr in t f ( "%d: semop completed\n" , getpid ( ) ) ;
}

exit ( EXIT_SUCCESS ) ;
}
/* svsem_demo. c . Based on TLPI ’ s svsem_demo. c .

Copyright (C) Michael Kerrisk , 2010. License : GNU AGPL−3+ */

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 58 / 101



Semaphore — example (cont.)

Demo

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 58 / 101



Semaphore limits

As other System V IPC objects, semaphores are limited along many
traits, many of which can be customized:

$ ipcs − l −s
−−−−−− Semaphore Limits −−−−−−−−
max number of arrays = 128
max semaphores per array = 250
max semaphores system wide = 32000
max ops per semop ca l l = 32
semaphore max value = 32767
$

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 59 / 101



Disadvantages of System V semaphores

Common System V IPC issues:

object identifiers, rather than FDs

keys, rather than filenames

no accounting of object users; hard to delete safely

limits

Semaphore-specific issues:

initialization race condition

overly complex API, “thanks” to the set granularity

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 60 / 101



Outline

1 Introduction to System V IPC

2 System V Message Queues
Client/server message queues

3 System V Semaphores

4 System V Shared Memory
Data structures in shared memory

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 61 / 101



System V Shared Memory

System V shared memory is an IPC mechanism that allows unrelated
processes to share memory areas. In the System V shared memory
jargon, shared memory areas are called segments.

As with other System V IPC mechanisms, segments are
kernel-persistent and should be explicitly created and destroyed.

For many purposes, System V shared memory is similar to memory
mappings that we already discussed:

different processes access virtual pages pointing to the same
memory frames

communication happens via direct memory access

however, segments can be shared among unrelated processes
without a file as backing store

ñ with memory mappings either you map a file, or you can share
only among related processes (via anonymous mappings)

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 62 / 101



System V Shared Memory

System V shared memory is an IPC mechanism that allows unrelated
processes to share memory areas. In the System V shared memory
jargon, shared memory areas are called segments.

As with other System V IPC mechanisms, segments are
kernel-persistent and should be explicitly created and destroyed.

For many purposes, System V shared memory is similar to memory
mappings that we already discussed:

different processes access virtual pages pointing to the same
memory frames

communication happens via direct memory access

however, segments can be shared among unrelated processes
without a file as backing store

ñ with memory mappings either you map a file, or you can share
only among related processes (via anonymous mappings)

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 62 / 101



Shared memory protocol

The “protocol” to use shared memory segments, unlike other System
V mechanisms, require more than one step before actual IPC.

1 obtain the identifier of a shared memory segment
ñ this can happen via a get syscall (shmget) that either create a

segment or retrieve its identifier
ñ or via communication of the identifier by other means

2 attach the segment to the process address space
ñ as a result of attaching, the caller obtain the starting memory

address of the shared segment

3 use the attached segment, as if it were native process memory
ñ no mediation by the syscall API is needed
ñ as with memory mappings, synchronization among sharing

processes is an important concern here

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 63 / 101



Shared memory protocol (cont.)

4 once a process is done using shared memory, it should detach
the segment from its address space

ñ once detached, access to the memory corresponding to the (now
detached) segment will cause SIGSEGV

5 once all processes are done using shared memory, a process
should delete the segment using the control syscall with
IPC_RMID

ñ until this step is done, the shared memory segment will continue
to exist (and to occupy system resources)

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 64 / 101



Overview of System V Shared Memory API

header file <sys/shm.h>
get segment shmget
attach segment shmat
detach segment shmdt
data structure shmid_ds
control shmctl

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 65 / 101



shmget

shmget is the get syscall for shared memory segments:

#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);
Returns: shared memory segment id if OK, -1 on error

key is the System V key, obtained by the usual means

size is the size of the desired memory segment, in bytes
ñ the kernel will return a segment of size multiple to system page

size, roundup to the next such multiple will happen

shmflg is a bitwise OR of the usual System V IPC flags:
IPC_CREAT, IPC_EXCL, permission bits

on success, shmget returns a shared memory segment identifier
that can be stored and passed to others

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 66 / 101



shmat

Once a process has obtained a segment identifier, it should use it to
attach the segment to its address space using shmat, which behaves
similarly to mmap:

#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);
Returns: base address of the attached segment if OK, -1 on error

shmid is the identifier of the segment to attach
shmaddr is the address where to attach the segment

ñ it is optional, if omitted the kernel will choose a suitable address
ñ contrary to mmap, it is not a hint

« either attachment at shmadrr is possible
« or shmat will fail with EINVAL

on success, shmat will return the starting address of the
attached segment

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 67 / 101



Where to attach segments?

The main reason to force attachment at a specific address is to
ensure consistency throughout all processes that share the segment.

Example

A group of processes want to collaborate on a big array of struct
mystruct in shared memory.
To do so, they all attach a suitably-sized segment starting at address
0x6ed000.
Once done, all processes know that the 1234-th array entry can be
found at address:

0x6ed000+ sizeof (struct mystruct)∗ (1234− 1)

Otherwise, addresses pointing to specific array entries in different
processes might be different.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 68 / 101



Where to attach segments? (cont.)

Attaching segments at fixed addresses using shmaddr comes with
its own problems though

at compile time, when we write the program, we often don’t
know if shmaddr will be available at runtime for attaching the
segment; in particular:

ñ we don’t know if another segment will be attached at shmaddr
ñ we don’t know if at shmaddr there will be enough available

contiguous memory to fit the segment+roundup

it reduces portability, as an address valid on some UNIX
machine will not necessarily be valid on different UNIX-es
shmaddr is less flexible than mmap’s addr hint, as mmap is able
to fallback to a difference address

ñ unless you requested MAP_FIXED

As a best practice, never use shmaddr and rely on the kernel to find
a suitable address for you.
(Stay tuned for how to solve the uniform memory address problem.)

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 69 / 101



shmat (cont.)

#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);
Returns: base address of the attached segment if OK, -1 on error

Flags is a bitwise OR of flags that include:

SHM_RDONLY: attach segment read-only

SHM_REMAP: replace already existing mapping at shmaddr

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 70 / 101



shmdt

Once done working on a shared memory segment, a process can
detach it from its address space using shmdt:

#include <sys/shm.h>

int shmdt(const void *shmaddr);
Returns: 0 if OK, -1 on error

Note that detaching is different than deleting. Once detached, the
memory segment (and its content) will still exist in kernel space until
explicitly deleted.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 71 / 101



Segment inheritance

Attached memory segments are automatically detached upon
process termination.

Attached memory segments are inherited through fork— as it
happens with memory mappings. That provides a(nother) handy way
to do IPC between parent and child

1 parent creates shared memory segment using key IPC_PRIVATE

2 parent fork-s a child

3 child and parent can now transfer data via shared memory

Note: the same is neither possible via regular memory due to
address space copying (on write), nor via vfork as parent is blocked
until child “reset”.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 72 / 101



Shared memory — example

As an example, we will develop a simple command line toolkit to
transfer data across processes with the mediation of the kernel and
without relying on the filesystem. It will work as follows:

we create shared memory segments using ipcmk, and note
down the shared memory identifier (shmid) that it returns

we copy data from standard input to shared memory with the
custom program stdin2shm

we copy data from shared memory to stdout with the custom
program shm2stdout

ñ for both programs we will need to specify on the cmdline shared
memory segment identifier and size

once done, we use ipcrm to free the used segment

For simplicity, copied data (in both directions) will be trimmed to

min(stdin size, segment size)

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 73 / 101



Shared memory — example (protocol)

#include <stdio .h>
#include <stdl ib .h>
#include <sys/shm.h>
#include <unistd .h>
#include " helpers .h"

#define min(x , y ) (x > y ? y : x )

static int shmid = −1;
static int shmsize = −1;

struct shmseg {
int size ; /* used data in buf */
char buf [ ] ; /* actual data */

} ;

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 74 / 101



Shared memory — example (protocol) (cont.)

/* parse cmdline and f i l l : shmid , shmsize */
void parse_cmdline ( int argc , char **argv ) {

char msg[1024] = " " ;

i f ( argc != 3) {
snprintf (msg, 1024, "Usage : %s SHMID SIZE " , argv [ 0 ] ) ;
err_quit (msg) ;

}
shmid = atoi ( argv [ 1 ] ) ;
shmsize = atoi ( argv [ 2 ] ) ;

}

/* shm−common.h */

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 74 / 101



Shared memory — example (stdin2shm)
#include "shm−common.h"

int main ( int argc , char **argv ) {
int n, bufsize ;
struct shmseg *shmp;
parse_cmdline ( argc , argv ) ;

i f ( (shmp = shmat ( shmid , NULL, 0) ) < 0)
err_sys ( "shmat error " ) ;

fp r in t f ( stderr , " attached segment at : %p\n" , shmp) ;

bufsize = shmsize − sizeof ( int ) ;
shmp−>size = 0; /* running count of read bytes */
while ( bufsize − shmp−>size >= 0

&& (n = read ( STDIN_FILENO , shmp−>buf + shmp−>size ,
bufsize − shmp−>size ) ) > 0)

shmp−>size += n;
i f (n < 0) err_sys ( " read error " ) ;
fp r in t f ( stderr , " stdin −> shm: copied %d bytes\n" , shmp−>size ) ;
exit ( EXIT_SUCCESS ) ;

} /* stdin2shm . c */

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 75 / 101



Shared memory — example (shm2stdout)
#include "shm−common.h"
int main ( int argc , char **argv ) {

int n, done , rem;
struct shmseg *shmp;
parse_cmdline ( argc , argv ) ;

i f ( (shmp = shmat ( shmid , NULL, 0) ) < 0)
err_sys ( "shmat error " ) ;

fp r in t f ( stderr , " attached segment at : %p\n" , shmp) ;

done = 0; /* written bytes */
rem = min(shmp−>size , shmsize ) ; /* todo bytes */
while ( rem > 0

&& (n = write (STDOUT_FILENO, shmp−>buf + done, rem ) ) > 0) {
done += n;
rem −= n;

}
i f (n < 0) err_sys ( " write error " ) ;
fp r in t f ( stderr , "shm −> stdout : copied %d bytes\n" , done ) ;
exit ( EXIT_SUCCESS ) ;

} /* shm2stdout . c */
Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 76 / 101



Shared memory — example (cont.)

Demo
Notes:

shared memory segments are stable, content copied there
persists beyond the life of processes accessing it

shared memory identifiers are stable (and readable), we can
create and pass them around between different programs

setup and tear-down are delegated to ipcmk and ipcrm

we do no synchronization whatsoever

Exercise

Can we avoid specifying segment size on the cmdline?

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 77 / 101



Shared memory synchronization — example

Any “real” use of shared resources memory needs synchronization to
avoid race conditions and memory corruptions. Consider the
following use case:

Example (efficient process-to-process data transfer)

We want to transfer a big amount of data among two unrelated
processes.
For maximum efficiency:

we want to minimize the amount of memory copies and of
context switches between user space and kernel space

we do not want to use the filesystem

System V shared memory offers an interesting solution.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 78 / 101



Shared memory synchronization — example (cont.)

we use a shared memory segment as a buffer for data exchange
among two processes

two processes are involved: a writer (reading from stdin and
writing to shared memory) + a reader (reading from shared
memory and writing to stdout)

as the buffer is in general not enough to hold the entire amount
of data to be transferred we do several iterations of
(i) writer writes, (ii) reader reads

therefore we need to ensure proper synchronization:
1 mutual exclusion: the reader does not act when the writer does

and vice-versa
2 reader and writer alternates in accessing data

« i.e. each written chunk is read exactly once

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 79 / 101



Shared memory synchronization — example (cont.)

To do so we use an array of 2 System V semaphores:
1 a write semaphore W

ñ intuition: when the semaphore is taken, writing is happening
2 a read semaphore R

ñ intuition: when the semaphore is taken, reading is happening

At system bootstrap, we initialize the semaphores so that only
writing can happen:

write semaphore is initialized W ← 1 (available)

read semaphore is initialized R ← 0 (not available)

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 80 / 101



Shared memory synchronization — example (cont.)

writer()
while true do

1 P(W)
2 shmem← stdin

3 V(R)

reader()
while true do

1 P(R)
2 stdout ← shmem

3 V(W)

Discussion:

at bootstrap: reader is blocked at (1); writer do a full iteration

when writer does (3), reader is unblocked;
when writer does (1) (again), it blocks (sides exchanged)

reader do a full iteration, unblocks writer at (3), and blocks
when doing (1) again (sides exchanged again, loop)

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 81 / 101



Shared memory sync. — example (protocol)

#include <sys/sem.h>
#include <sys/shm.h>
#include <sys/ stat .h>
#include <sys/types .h>
#include <unistd .h>
#include " helpers .h"

#define SHM_KEY 0x1234 /* shmem key */
#define SEM_KEY 0x5678 /* semaphore set key */
#define OBJ_PERMS ( S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP )
#define WRITE_SEM 0 /* write index in semaphore set */
#define READ_SEM 1 /* read index in semaphore set */
#define BUF_SIZE 10240 /* transfer buffer size */

union semun { /* SUSv3 forces def in i t ion in user programs */
int val ;
struct semid_ds *buf ;
unsigned short *array ;

} ;

struct shmseg {
int cnt ; /* bytes used in ’buf ’ */
char buf [ BUF_SIZE ] ; /* data */

} ;

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 82 / 101



Shared memory sync. — example (library)

/* i n i t semaphore to 1 */
int sem_init_avai l ( int semid , int semno) {

union semun arg ;

arg . val = 1;
return semctl ( semid , semno, SETVAL , arg ) ;

}

/* i n i t semaphore to 0 */
int sem_init_taken ( int semid , int semno) {

union semun arg ;

arg . val = 0;
return semctl ( semid , semno, SETVAL , arg ) ;

}

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 83 / 101



Shared memory sync. — example (library) (cont.)

int sem_p( int semid , int semno) { /* reserve semaphore (P ) */
struct sembuf sop ;

sop .sem_num = semno;
sop .sem_op = −1;
sop . sem_flg = 0;
return semop(semid , &sop , 1 ) ;

}

int sem_v ( int semid , int semno) { /* release semaphore (V) */
struct sembuf sop ;

sop .sem_num = semno;
sop .sem_op = 1;
sop . sem_flg = 0;
return semop(semid , &sop , 1 ) ;

}

/* svshm−xfr .h , based on svshm_xfr .h
Copyright (C) Michael Kerrisk 2010, License : GNU AGPL−3+ */

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 83 / 101



Shared memory sync. — example (writer)

#include "svshm−xfr .h"

int main ( int argc , char **argv ) {
int semid , shmid , bytes , xfrs ;
struct shmseg *shmp;
union semun dummy;

i f ( ( semid = semget (SEM_KEY, 2, IPC_CREAT | OBJ_PERMS ) ) < 0)
err_sys ( "semget error " ) ;

i f ( sem_init_avai l ( semid , WRITE_SEM) < 0)
err_sys ( " semctl error ( sem_init_avai l ) " ) ;

i f ( sem_init_taken ( semid , READ_SEM) < 0)
err_sys ( " semctl error ( sem_init_taken ) " ) ;

i f ( ( shmid = shmget (SHM_KEY, sizeof ( struct shmseg) ,
IPC_CREAT | OBJ_PERMS ) ) < 0)

err_sys ( "shmget error " ) ;
i f ( (shmp = shmat ( shmid , NULL, 0) ) < 0)

err_sys ( "shmat error " ) ;

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 84 / 101



Shared memory sync. — example (writer) (cont.)

for ( xfrs = 0, bytes = 0; ; xfrs++, bytes += shmp−>cnt ) {
i f (sem_p( semid , WRITE_SEM) < 0)

err_sys ( "semop error (sem_p) " ) ;
i f ( ( shmp−>cnt = read ( STDIN_FILENO , shmp−>buf ,

BUF_SIZE ) ) < 0)
err_sys ( " read error " ) ;

i f ( sem_v ( semid , READ_SEM) < 0)
err_sys ( "semop error (sem_v ) " ) ;

/* Test for EOF after reader turn so that
i t can see the 0 value in shmp−>cnt . */

i f (shmp−>cnt == 0)
break ;

}

i f (sem_p( semid , WRITE_SEM) < 0)
err_sys ( "semop error (sem_p) " ) ;

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 84 / 101



Shared memory sync. — example (writer) (cont.)

i f ( semctl ( semid , 0, IPC_RMID , dummy) < 0)
err_sys ( " semctl error " ) ;

i f ( shmdt(shmp) < 0)
err_sys ( "shmdt error " ) ;

i f ( shmctl ( shmid , IPC_RMID , 0) < 0)
err_sys ( " shmctl error " ) ;

fp r in t f ( stderr , " sent %d bytes (%d xfrs )\n" , bytes , xfrs ) ;
exit ( EXIT_SUCCESS ) ;

}

/* svshm−writer . c , based on svshm_xfr_writer . c
Copyright (C) Michael Kerrisk 2010, License : GNU AGPL−3+ */

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 84 / 101



Shared memory sync. — example (reader)

#include "svshm−xfr .h"

int main ( int argc , char **argv ) {
int semid , shmid , xfrs , bytes ;
struct shmseg *shmp;

i f ( ( semid = semget (SEM_KEY, 0, 0 ) ) < 0)
err_sys ( "semget error " ) ;

i f ( ( shmid = shmget (SHM_KEY, 0, 0 ) ) < 0)
err_sys ( "shmget error " ) ;

i f ( (shmp = shmat ( shmid , NULL, SHM_RDONLY) ) < 0)
err_sys ( "shmat error " ) ;

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 85 / 101



Shared memory sync. — example (reader) (cont.)

for ( xfrs = 0, bytes = 0; ; xfrs++) {
i f (sem_p( semid , READ_SEM) < 0)

err_sys ( "semop error (sem_p) " ) ;

i f (shmp−>cnt == 0) /* writer EOF */
break ;

bytes += shmp−>cnt ;

i f ( write (STDOUT_FILENO, shmp−>buf , shmp−>cnt )
!= shmp−>cnt )

err_quit ( " par t i a l / fa i led write " ) ;

i f ( sem_v ( semid , WRITE_SEM) < 0)
err_sys ( "semop error (sem_v ) " ) ;

}

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 85 / 101



Shared memory sync. — example (reader) (cont.)

i f ( shmdt(shmp) < 0)
err_sys ( "shmdt error " ) ;

/* one more writer turn to cleanup */
i f ( sem_v ( semid , WRITE_SEM) < 0)

err_sys ( " releaseSem " ) ;

fp r in t f ( stderr ,
" received %d bytes (%d xfrs )\n" , bytes , xfrs ) ;

exit ( EXIT_SUCCESS ) ;
}

/* svshm−reader . c , based on svshm_xfr_reader . c
Copyright (C) Michael Kerrisk 2010, License : GNU AGPL−3+ */

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 85 / 101



Shared memory sync. — example (cont.)

Demo

Notes:

semaphore initialization is delegated to writer
ñ it should start first, otherwise reader won’t find the shared

memory segment (and fail)

we need a way to inform reader of EOF; to do so we let reader
read cnt == 0

before writer termination (that will destroy the shared memory
segment), we wait for the last reader turn to happen

ñ after it, reader liberates writer using sem_v one last time

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 86 / 101



Shared memory associated data structure

As all System V IPC mechanisms, each shared memory segment is
associated to a specific data structure, shmid_ds in this case:

struct shmid_ds {
struct ipc_perm msg_perm; /* ownership and permissions */
size_t shm_segsz ; /* size of segment ( bytes ) */
time_t shm_atime ; /* time of last shmat ( ) */
time_t shm_dtime ; /* time of last shmdt ( ) */
time_t shm_ctime ; /* time of last change */
pid_t shm_cpid ; /* PID of creator */
pid_t shm_lpid ; /* PID of last shmat/shmdt ( ) */
shmatt_t shm_nattach ; shm_lpid ; /* n . of attached processes */

}

It contains the usual ownership and accounting information.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 87 / 101



shmctl

The control syscall for shared memory segments is shmctl:

#include <sys/shm.h>

shmctl(int shmid, int cmd, struct shmid_ds *buf);
Returns: 0 if OK, -1 on error

It supports the usual operations: IPC_RMID (removal), IPC_STAT
(retrieve shmid_ds), IPC_SET (update shmid_ds).

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 88 / 101



Segment removal semantics

To avoid disruptions in process address spaces, a shared memory
segment is not removed immediately after IPC_RMID.
Instead, the kernel does reference counting on the number of
attached processes and destroys the segment only when the number
reaches 0.

we can ensure proper segment cleanup by removing the
segment right after attaching it

. . . but whether new attaches are allowed or not after IPC_RMID
is implementation dependent

ñ Linux allows it

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 89 / 101



Shared memory limits

Like other System V IPC mechanisms, shared memory segments are
limited:

$ ipcs − l −q
−−−−−− Shared Memory Limits −−−−−−−−
max number of segments = 4096
max seg size ( kbytes ) = 32768
max tota l shared memory ( kbytes ) = 8388608
min seg size ( bytes ) = 1
$

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 90 / 101



Outline

1 Introduction to System V IPC

2 System V Message Queues
Client/server message queues

3 System V Semaphores

4 System V Shared Memory
Data structures in shared memory

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 91 / 101



Shared memory location

Shared memory, memory
mappings, and shared
libraries placed here

Reserved for heap expansion

Virtual memory address
(hexadecimal)

argv, environ

Uninitialized data (bss)

Initialized data

Text (program code)

0xC0000000

Stack

Heap

0x08048000

0x40000000
TASK_UNMAPPED_BASE

Top of
stack

Program
break

0x00000000in
cr

ea
si

n
g 

vi
rt

ua
l a

dd
es

se
s

TLPI, Fgure 48-2

If we let the kernel choose, all
shared memory
areas—memory mappings,
System V shared segments,
and shared libraries—will be
located in a common memory
area between the stack and
the heap.

on Linux, the starting
address for shared
memory areas is the
compile-time constant
TASK_UNMAPPED_BASE

Shared memory areas are
per-process. There is no
guarantee that co-operating
processes will attach a shared
area at the same address.

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 92 / 101



Data structures in shared memory

At the conceptual level, most
non-trivial data structures are
interlinked, i.e. parts of the
structure refers to other parts of
it.

At the physical memory level, we
have memory cells that contains
parts of a data structure (say, p)
that points to other parts of it
(say, target).

Figure: conceptual memory layout of
data structure in shared memory

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 93 / 101



Data structures in shared memory (cont.)

For a memory part to reference
another, we usually store the
absolute memory address of the
destination as part of the source.
In presence of shared memory
regions that might be attached at
different addresses this is wrong:

the absolute address of
target might be different
from process to process

ñ it might happen that the
address is the same, but
there is no guarantee of it

also, there is no way of
knowing where other
processes have attached a
shared memory area

Figure: wrong/risky with shared
memory

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 94 / 101



Data structures in shared memory

Figure: shared memory safe

The solution is to use
addresses relative to the
beginning of the shared area
as pointers.

keep around baseaddr, as
returned by mmap or
shmat

to store a pointer to
shared memory:

*p = (target - baseaddr);

to dereference a pointer:
target = baseaddr + *p;

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 95 / 101



Data structures in shmem — example

Let’s reconsider the ad-hoc memory allocation mechanism we
implemented using mmap (shared + anonymous). That example had
no problem with absolute addressing:

the memory mapping was created by a common ancestor before
fork

due to address space copy, the absolute addresses were
granted to be the same for all involved processes

We want to do the same, but this time among unrelated processes
that cooperate on a linked list:

shm-list-writer sets up a linked list in a shared memory
segment

shm-list-reader visit the list printing its content

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 96 / 101



Data structures in shmem — example (protocol)

#include <errno .h>
#include <stdio .h>
#include <sys/shm.h>
#include <sys/ stat .h>
#include <unistd .h>
#include " helpers .h"

#define SHM_KEY 0x1234 /* shmem key */
#define OBJ_PERMS ( S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP )

struct l i s t {
int val ;
struct l i s t *next ;

} ;

static struct l i s t * l i s t _bot ;
static struct l i s t * l i s t _ top ;
static long l i s t _ s i z ;

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 97 / 101



Data structures in shmem — example (library)
struct l i s t * l i s t _ge t ( void ) {

int shmid ;
i f ( ( shmid = shmget (SHM_KEY, 0, 0 ) ) < 0)

return ( ( void * ) −1);
l i s t _bot = shmat ( shmid , NULL, 0 ) ;
pr in t f ( " l i s t attached at %p\n" , l i s t _bot ) ;
return l i s t _bot ;

}

int l i s t _ i n i t ( long len ) {
int shmid ;
i f ( ( shmid = shmget (SHM_KEY, len * sizeof ( struct l i s t ) ,

IPC_CREAT | OBJ_PERMS ) ) < 0)
return (−1);

i f ( ( l i s t _ top = shmat ( shmid , NULL, 0) ) < 0)
return (−1);

pr in t f ( " l i s t attached at %p\n" , l i s t _ top ) ;
l i s t _bot = l i s t _ top ;
l i s t _ s i z = len ;
pr int f ( " l i s t _ i n i t : top=%p, len=%ld\n" , l is t_top , len ) ;
return 0;

}Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 98 / 101



Data structures in shmem — example (library) (cont.)

struct l i s t * l i s t _ a l l o c ( ) {
long siz = l i s t_ top − l i s t _bot ;
i f ( s iz >= l i s t _ s i z ) {

errno = ENOMEM;
return NULL;

}
l is t_top−>next = NULL;
pr int f ( " al located %p ( length : %ld )\n" , l is t_top , siz + 1) ;
return l i s t _ top ++;

}

struct l i s t * l i s t _ f r ee ( ) {
/* l e f t as an exercise */
return NULL;

}

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 98 / 101



Data structures in shmem — example (library) (cont.)

struct l i s t * list_append ( struct l i s t * l , int val ) {
struct l i s t * e l t ;
i f ( ( e l t = l i s t _ a l l o c ( ) ) == NULL)

return NULL;
el t−>val = val ;
l−>next = ( void * ) ( ( long ) e l t − ( long ) l i s t _bot ) ;
return e l t ;

}

void v i s i t _ l i s t ( const char * label , struct l i s t * l ) {
pr in t f ( " [%s ] v i s i t l i s t : " , label ) ;
while ( l != NULL) {

pr in t f ( "%d " , l−>val ) ;
i f ( l−>next == NULL)

l = NULL;
else

l = ( void * ) ( ( long ) l i s t _bot + ( long ) l−>next ) ;
}
pr in t f ( " \n" ) ;

}

/* shm−l i s t−common.h */
Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 98 / 101



Data structures in shmem — example (writer)

#include "shm−l i s t−common.h"

int main ( void ) {
struct l i s t *head , * l = NULL;

i f ( l i s t _ i n i t (1000) < 0) err_sys ( " l i s t _ i n i t error " ) ;
i f ( ( l = l i s t _ a l l o c ( ) ) == NULL)

err_sys ( " l i s t _ a l l o c " ) ;
l−>val = 13;
head = l ;
i f ( ( l = list_append ( l , 17)) == NULL

| | ( l = list_append ( l , 42)) == NULL)
err_sys ( " list_append " ) ;

v i s i t _ l i s t ( "common" , head ) ;

exit ( EXIT_SUCCESS ) ;
} /* shm−l i s t−writer . c */

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 99 / 101



Data structures in shmem — example (reader)

#include "shm−l i s t−common.h"

int main ( void ) {
struct l i s t * l = NULL;

i f ( ( l = l i s t _ge t ( ) ) < 0)
err_sys ( " l i s t _ge t error " ) ;

v i s i t _ l i s t ( "common" , l ) ;

exit ( EXIT_SUCCESS ) ;
} /* shm−l i s t−reader . c */

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 100 / 101



Data structures in shmem — example (cont.)

Demo

Notes:

we have switched from a cons semantics to an append
semantics

ñ otherwise the head pointer would be lost in the data structure
ñ alternatively: we could have stored a pointer to the head in
struct list and kept it up to date

shared memory segments are attached to different addresses
on a regular basis!

we need quite a bit of (scary) cast gymnastics to make the
compiler happy (i.e. we really are on our own, beware!)

Stefano Zacchiroli (Paris Diderot) System V IPC 2012–2013 101 / 101


	Introduction to System V IPC
	System V Message Queues
	Client/server message queues

	System V Semaphores
	System V Shared Memory
	Data structures in shared memory


