
Programmation Systèmes
Cours 2 — Introduction to Process Management

Stefano Zacchiroli
zack@pps.jussieu.fr

Laboratoire PPS, Université Paris Diderot - Paris 7

6 Octobre 2011

URL http://upsilon.cc/zack/teaching/1112/progsyst/
Copyright © 2011 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-sa/3.0/

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 1 / 59

http://upsilon.cc/zack/teaching/1112/progsyst/
http://creativecommons.org/licenses/by-sa/3.0/

Outline

1 Process startup and termination

2 Memory layout

3 Process control

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 2 / 59

Programs

Definition (programs and processes — 2nd approximation)

A program is an executable file residing on the filesystem.

A process is an abstract entity known by the kernel, to which
system resources are allocated in order to execute a program.

A program contains all information needed to create a process at
runtime:

binary format (nowadays: ELF; once upon a time: a.out, COFF)

machine instructions

entry-point: address of the first instruction

data

symbol-/relocation- tables (for debugging, dynamic linking, etc.)

shared library information

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 3 / 59

Processes — as viewed by the kernel

A process is an abstract entity known by the kernel, to which
system resources are allocated in order to execute a program.

From the point of view of the kernel, a process consists of:

a portion of user-space memory
ñ program code
ñ variables accessed by the code

kernel data structures to maintain state about the process, e.g.:
ñ table of open file descriptors
ñ virtual memory table
ñ signal accounting and masks
ñ process limits
ñ current working directory
ñ . . .

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 4 / 59

Process IDs

How can the kernel index process-related data structures?

Definition (process ID)

Each process has a process ID (PID): a positive integer that uniquely
identify processes on the system.

typical usages:

internal reference by the kernel (e.g. indexing process-related
data structures)

external reference by other processes or the admin (e.g. kill)

embedding in derived (unique) names, e.g. process-unique
filenames

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 5 / 59

Process IDs — demo

1 (a view on) internal process reference: /proc

2 external reference: ps(1), kill(1)

3 unique filenames, e.g.

$ ls /tmp | grep aptitude
aptitude−zack.20871:pUkqOd
$

Demo

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 6 / 59

Process ID reuse

Although unique, process IDs are reused. (why?)

as soon as a process terminate, its process ID become
candidate for reuse

UNIX kernels implement algorithms to delay reuse
ñ this prevents addressing by mistake new processes who took the

place of recently terminated processes
ñ the simplest effective algorithm is to allocate process IDs

sequentially, wrapping around

Don’t assume PIDs are stable forever.
With caution, you can assume they are stable “for a while”.

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 7 / 59

Process ID reuse (cont.)

How long it is “for a while”? It depends on:
1 process creation ratio
2 PID max value

#include <stdio .h>
#include <sys/types .h>

int main ()
{

pr in t f (" pid_t :\ t%ld\n" , sizeof (pid_t)) ; // process IDs type
pr int f (" in t : \ t%ld\n" , sizeof (int)) ;
pr in t f (" long :\ t%ld\n" , sizeof (long)) ;

}

$./ pid−size # on a Linux , x86−64 bi t system
pid_t : 4
int : 4
long : 8
$

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 8 / 59

getpid

Each process can retrieve its own PID at runtime using the syscall:

#include <unistd.h>

pid_t getpid(void);
Returns: always return PID of calling process

Accessing PID values:

pid_t is an abstract type

according to POSIX, process IDs shall be signed integer types
ñ but they wrap to 0, according to PID definition

we can use pid_t values as signed integers

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 9 / 59

getpid — demo

#include <stdio .h>
#include <stdl ib .h>
#include <unistd .h>

int main (int argc , char **argv) {
pr in t f (" hello , world from process %d\n" , getpid ()) ;
exit (EXIT_SUCCESS) ;

}

$ gcc -Wall -o hello-pid hello-pid.c
$./hello-pid
hello, world from process 21195
$./hello-pid
hello, world from process 21196
$./hello-pid
hello, world from process 21199

Note: we print PIDs using %d conversion specifier

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 10 / 59

main

A C program starts with the execution of its main function:

int main (int argc , char *argv []) ;

argc number of command line arguments

argv array of pointers to arguments

It is the kernel who initiative program execution.1

Before main execution, a startup routine—inserted by the dynamic
loader, or link editor, and specified in the binary program—is
executed. The startup routine fills in:

argc/argv (copying from exec arguments in kernel space)

environment

1usually in response to an exec syscall
Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 11 / 59

argv (by the standards)

not only:

#include <stdio .h>
#include <stdl ib .h>
int main (int argc , char *argv []) {

int i ;
for (i =0; i <argc ; i ++)

pr int f (" argv [%d] = %s\n" , i , argv [i]) ;
exit (EXIT_SUCCESS) ;

}

but also:

#include <stdio .h>
#include <stdl ib .h>
int main (int argc , char *argv []) {

int i ;
for (i =0; argv [i] != NULL; i ++)

// POSIX.1 and ISO guarantee argv [argc] == NULL
pr int f (" argv [%d] = %s\n" , i , argv [i]) ;

exit (EXIT_SUCCESS) ;
}

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 12 / 59

Process termination

There are many ways for a program to terminate.
Normal termination

1 return from main (“falls off the end”)
2 exit
3 _exit or _Exit
4 as (1) and (2), but for thread-related purposes

Abnormal termination
5 abort (signal-related)
6 receipt of a signal
7 fulfillment of a thread-cancellation request

Falling off the end implicitly invokes exit.
Intuition: it is as if the startup routine calls main as

exit(main(argc, argv));

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 13 / 59

Normal termination — clean shutdown

#include <stdlib.h>

void exit(int status);
Returns: does not return

Clean shutdown performs cleans up standard library resources
before terminating the process:

invoke fclose on all open streams

invoke exit handlers

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 14 / 59

Normal termination — abrupt shutdown

#include <stdlib.h>

void _Exit(int status);

#include <unistd.h>

void _exit(int status);
Returns: does not return

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 15 / 59

Exit status

All exit-like functions expect an integer argument: the exit status.2

The exit status provides a way to communicate to other processes
why the process has (voluntarily) terminated.

Example

The UNIX convention is that programs terminating with a 0 exit
status have terminated successfully; programs terminating with a
! = 0 exit status have failed.
The convention is heavily used by shells.

To avoid magic numbers in your code:

#include <std l ib .h>

exit (EXIT_SUCCESS) ;
// or ex i t (EXIT_FAILURE) ;

2exit status ≠ termination status. The latter accounts for both normal
and abnormal termination; the former only for normal termination

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 16 / 59

Exit status (cont.)

You shall always declare main of type int and return an integer
value; barring standards uncertainty:

#include <stdio .h>
main () {

pr in t f (" hello , world !\n") ;
}

$ gcc -o fall-off fall-off.c
$./fall-off
hello, world!
$ echo $?
14

$ gcc -o fall-off -std=c99 fall-off.c
$./fall-off
hello, world!
$ echo $?
0

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 17 / 59

Exit handlers

A process can register handlers that will be executed upon clean
shutdown:

#include <stdlib.h>

int atexit(void (*func)(void));
Returns: 0 if OK, nonzero on error

Notes:

handlers will be invoked last-registered-first

ISO C guarantees that the system supports at least a maximum
of 32 handlers

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 18 / 59

Exit handlers — example

#include <stdio .h>
#include <stdl ib .h>
#include "apue .h"

void my_exit1 (void) { pr int f (" f i r s t exit handler\n") ; }
void my_exit2 (void) { pr int f (" second exit handler\n") ; }

int main (void) {
i f (atexi t (my_exit2) != 0)

err_sys (" can ’ t register my_exit2 ") ;
i f (atexi t (my_exit1) != 0)

err_sys (" can ’ t register my_exit1 ") ;
i f (atexi t (my_exit1) != 0)

err_sys (" can ’ t register my_exit1 ") ;
pr in t f ("main is done\n") ;
return (0) ;

}

APUE, Figure 7.3

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 19 / 59

Exit handlers — example

$./atexit
main is done
first exit handler
first exit handler
second exit handler
$

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 20 / 59

Startup and termination — putting it all together

APUE, Figure 7.2

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 21 / 59

Environment list

Each process is passed, upon startup an environment list, i.e. a list
of 〈key , value〉 pairs called environment variables.
The environment list can be accessed via the global variable:

extern char **environ ;

APUE, Figure 7.5

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 22 / 59

getenv & putenv

Environment variables can also be accessed via specific functions
from the standard library:

#include <stdlib.h>

char *getenv(const char *name);
Returns: pointer to value if name is found, NULL otherwise

int putenv(char *name);
Returns: 0 if OK, nonzero on error

getenv performs key-based lookup

putenv adds a key/value pair given in "key=value" format,
possibly overwriting previous values

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 23 / 59

The complete getenv family

#include <stdlib.h>

int setenv(const char *name, const char *value, int rewrite);

int unsetenv(const char *name);
Returns: 0 if OK, -1 on error

setenv is similar to putenv, but allows to tune its overwrite
behavior
unsetenv removes existing environment variables

ñ relevant use case: cleaning up an environment before spawning
a new process

only getenv is ISO C and widely supported; support for the
other functions varies

Note: getenv & friends are not expressive enough to browse the
entire environment list; the only way to do that is via environ

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 24 / 59

A typical environment list

#include <stdio .h>
#include <stdl ib .h>

extern char **environ ;

int main () {
int i ;
for (i =0; environ [i] != NULL; i ++)

pr int f ("%s\n" , environ [i]) ;
exit (EXIT_SUCCESS) ;

}

Demo

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 25 / 59

Standard environment variables

UNIX kernels ignore environment variables. Interpretation of the
meaning of environment variables is left to applications.

POSIX.1 and SUS define some standard environment variables and
their meaning. Some of them are:

COLUMNS

HOME

LANG

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MESSAGES

LC_MONETARY

LC_NUMERIC

LC_TIME

LINES

LOGNAME

PATH

PWD

SHELL

TERM

TMPDIR

TZ

See APUE 7.7 and environ(7).

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 26 / 59

Outline

1 Process startup and termination

2 Memory layout

3 Process control

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 27 / 59

Process address space — redux

Each process executes by default in its own address space and
cannot access the address spaces of other processes — barring a
segmentation fault error.

The memory corresponding to a process address space is allocated
to the process by the kernel upon process creation. It can be
extended during execution.

The address space of a program in execution is partitioned into
parts called segments.

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 28 / 59

More on segments

text segment machine instructions that the CPU executes. It is read
from disk upon process creation

initialized data segment (“data segment”) global variables explicitly
initialized, e.g.:

int magic = 42; // outside any function

uninitialized data segment (“bss segment”) global variables not
explicitly initialized, e.g.:

char crap [1024]; // outside any function

doesn’t take any space in the on-disk binary
it will be initialized by the kernel at 0 / NULL
it can be initialized efficiently using copy-on-write

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 29 / 59

More on segments (cont.)

stack dynamically growing and shrinking segment made of
stack frames. One stack frame is allocated for each
currently called function. Each frame contains
automatic variables, i.e. function’s local variables,
arguments, and return value.

heap dynamically growing and shrinking segment, for
dynamic memory allocation. The top of the heap is
called program break

size(1) displays segment sizes for an on-disk binary

Static memory

The improper expression “static memory” refers to memory
allocated in the data or bss segments. Such memory is static wrt
program execution (which is not the case for stack and heap.)

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 30 / 59

Typical segment arrangement

APUE, Figure 7.6

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 31 / 59

Segment arrangement — demo

#include <stdio .h>
#include <stdl ib .h>

int magic = 42;
char crap [1024];

void func (int arg) {
pr in t f (" stack segment near\ t%p\n" , &arg) ;

}
int main (int argc , char **argv) {

char *ptr ;
ptr = malloc (1) ;
func (42) ;
pr in t f ("heap segment near\ t%p\n" , ptr) ;
pr in t f (" bss segment near\ t%p\n" , crap) ;
pr in t f (" text segment near\ t%p\n" , &magic) ;

free (ptr) ;
exit (EXIT_SUCCESS) ;

}

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 32 / 59

Segment arrangement — demo (cont.)

$./segments
stack segment near 0x7ffff53ecccc
heap segment near 0x 1c52010
bss segment near 0x 600b00
text segment near 0x 600ad0
$

(output edited for alignment)

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 32 / 59

Virtual memory

Segments are conceptual entities not necessarily corresponding to
physical memory layout. In particular, segments are about the layout
of virtual memory.

Virtual Memory Management (VMM) is a technique to make efficient
of physical memory, by exploiting locality of reference that most
programs show:

spatial locality: tendency to reference memory addresses near
recently addressed addresses

temporal locality: tendency to reference in the near feature
memory addresses that have been addressed in the recent past

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 33 / 59

Virtual Memory Management in a nutshell

We partition:

address space of each process in fixed-size units called pages

physical memory in frames of the same size

For each process, we maintain a mapping among the two sets.

At any given time, only some of the pages of a program (the resident
set) need to be present in physical frames. Hence we can:

swap out unused pages to a swap area (usually on disk)

when a page fault—i.e. access to page p 6∈ resident set—occurs
1 suspend process execution
2 swap in the corresponding frame
3 resume process execution

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 34 / 59

Virtual memory on UNIX

The kernel maintains a page table for each process:

TLPI, Figure 6-2

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 35 / 59

Virtual memory on UNIX (cont.)

each entry describes a page of the process virtual address space

each entry either points to a physical frame, or indicates that
the page has been swapped out

usually, many pages are unused and lack page table entries
ñ think about the huge gap among stack and heap addresses

accessing unused pages terminates a process delivering a
SIGSEGV signal

The range of valid virtual pages can change overtime:

stack grows past previous limits

memory is (de)allocated by moving the program break

shared memory is attached/detached

memory mappings are established/canceled

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 35 / 59

Effects of virtual memory

As long as swap in / swap out choose pages that fail locality of
reference, physical memory is used more (space-)efficiently.
Other effects:

processes are isolated from one another and from the kernel

processes can share memory
ñ processes can share read-only frames (e.g. text segment)
ñ processes can share arbitrary frames (e.g. mmap, shmget)

memory access control is easy: capabilities can be attached to
page table entries and verified at each access

programmers (and some toolchain programs—compiler, linker,
etc.) can ignore memory physical layout

lazy loading of programs is possible (and faster)

virtual memory size can exceed RAM capacity

CPU efficiency (thanks to swap out, more processes can stay in
memory, increasing the likelihood that one is runnable)

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 36 / 59

Stack and stack frames

The stack pointer register always points
to the top of the stack. Each time a
function is called a new frame is
allocated; each time a function returns,
one is removed.

Each stack frame contains:

call linkage information: saved
copies of various CPU registers. In
particular: the program counter, to
know where to resume execution of
the previous function in the call
stack

(x86-32 bit Linux)

TLPI, Figure 6-3

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 37 / 59

Stack and stack frames (cont.)

Each stack frame contains (cont.):

automatic variables
ñ function arguments
ñ function return values
ñ function local variables
ñ variables allocated via alloca

Automatic variables disappear shortly
after the function call corresponding to
the containing stack frame returns.

Note: stack frames are per-function-call,
not per-function. Why?

(x86-32 bit Linux)

TLPI, Figure 6-3

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 37 / 59

Outline

1 Process startup and termination

2 Memory layout

3 Process control

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 38 / 59

Process families

Processes on UNIX systems form a tree structure:

each process—other than PID 1—has exactly one parent process

each process can have 0 or more child processes

the process with PID 1—usually init—has no parent and sits at
the root of the process tree

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 39 / 59

Process families — example

$ pstree # output trimmed
in i t−+−NetworkManager−+−dhclient

| ‘−2*[{NetworkManager }]
|−acpid
|−atd
|−chromium−+−2*[chromium]
| |−2*[chromium−−−{chromium }]
| ‘−27*[{chromium }]
|−cpufreq−applet−−−{cpufreq−applet }
|−cron
|−2*[dbus−daemon]
|−dconf−service−−−{dconf−service }
|−dhclient−−−dhclient−script−−−ping
|−emacs23−+−aspel l
| ‘−{emacs23}
|−emacsclient
|−gdm3−+−gdm−simple−slav−+−Xorg
| | |−gdm−session−wor−+−gnome−session−+−awesome
| | | | |−evolution−alarm−−−{evolution−alar }
| | | | |−gnome−panel−−−2*[{gnome−panel }]
| | | | |−gnome−power−man−−−{gnome−power−ma}
| | | | |−nautilus−−−{nauti lus }
| | | | |−nm−applet−−−{nm−applet }
| | | | |−not i f icat ion−da−−−{not i f icat ion−d}
| | | | |−polkit−gnome−au−−−{polkit−gnome−a }
| | | | |−ssh−agent
| | | | ‘−2*[{gnome−session }]
| | | ‘−{gdm−session−wo}
| | ‘−{gdm−simple−sla }
| ‘−{gdm3}
|−6*[getty]

$

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 40 / 59

Knowing your family

How can a process know the (PID of) processes in its own family?

Self
getpid (already seen)

Parent

#include <unistd.h>

pid_t getppid(void);
Returns: parent process ID of calling process

Children
The PID of children processes is usually retrieved at creation time. . .

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 41 / 59

fork

An existing process can create a new child process using fork:

#include <unistd.h>

pid_t fork(void);
Returns: 0 in child, process ID of child in parent, -1 on error

This function is called once but returns twice.

— W. Richard Stevens

1 child process starts execution just after fork

2 parent process continues execution just after fork

Notes:

often, you want to differentiate parent and child behaviors; the
difference in return values allows to do that

child can retrieve parent pid with getppid

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 42 / 59

fork

An existing process can create a new child process using fork:

#include <unistd.h>

pid_t fork(void);
Returns: 0 in child, process ID of child in parent, -1 on error

This function is called once but returns twice.

— W. Richard Stevens

1 child process starts execution just after fork

2 parent process continues execution just after fork

Notes:

often, you want to differentiate parent and child behaviors; the
difference in return values allows to do that

child can retrieve parent pid with getppid

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 42 / 59

fork — example

#include <unistd .h>
#include "apue .h"

int main (void) {
pid_t pid ;

pr in t f (" before fork (%d)\n" , getpid ()) ;
i f ((pid = fork ()) < 0) {

err_sys (" fork error ") ;
} else i f (pid == 0) { /* chi ld */

pr int f (" hi from child ! (%d −> %d)\n" ,
getpid () , getppid ()) ;

} else { /* parent */
pr int f (" hi from parent ! (%d)\n" , getpid ()) ;

}
pr in t f ("bye (%d)\n" , getpid ()) ;
exit (EXIT_SUCCESS) ;

}

Note: the above if/else-if/else is a classic fork pattern.

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 43 / 59

fork — example (cont.)

$./ fork
before fork (16804)
hi from parent ! (16804)
bye (16804)
hi from child ! (16805 −> 16804)
bye (16805)
$

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 44 / 59

fork and (virtual) memory

child is a copy of parent
ñ child process gets copies of data, heap, and stack segments
ñ again: they are copies, not shared with the parent

the text segment is shared among parent and child
ñ virtual memory allows to have real sharing (hence reducing

memory usage)
ñ it is enough to map pages of the two processes to the same

frame (which is read-only, in the text segment case)

no upfront copy is needed, copy-on-write (COW) to the rescue!
ñ initially, all pages are shared as above, as if they were read-only
ñ if either process writes to these pages, the kernel copies the

underlying frame and update the VM mapping before returning

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 45 / 59

Memory after fork — example
#include <unistd .h>
#include "apue .h"
int glob = 42; /* i n i t i a l i z ed data */

int main (void) {
int var ; /* automatic variable */
pid_t pid ;
var = 88;
i f ((pid = fork ()) < 0) {

err_sys (" fork error ") ;
} else i f (pid == 0) { /* chi ld */

pr int f (" chi ld pid : %d\n" , getpid ()) ;
glob++; /* modify variables */
var++;

} else { /* parent */
pr int f (" parent pid : %d\n" , getpid ()) ;
sleep (1) ;

}
pr in t f (" pid = %d, glob = %d, var = %d\n" , getpid () , glob , var) ;
exit (EXIT_SUCCESS) ;

}
Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 46 / 59

fork — example (cont.)

$./ fork−2
chi ld pid : 19502
pid = 19502, glob = 43, var = 89
parent pid : 19501
pid = 19501, glob = 42, var = 88
$

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 47 / 59

Termination

Upon process termination (no matter if normal/abnormal,
clean/abrupt), the kernel:

closes all open file descriptors (! = I/O streams)

releases the process memory

No matter the kind of termination, we want a mechanism to
communicate how a process terminates to its parent.

for normal termination → we have exit(status) & co.

for abnormal termination → the kernel prepares a termination
status

Either way, the kernel stores the termination status—which might
contain an exit status or not—until the parent collects it.

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 48 / 59

Reparenting

We’ve implicitly assumed that there is always a parent process to
collect the termination statuses of its children.

Is it a safe assumption?

No. Because parent processes can terminate before their children.

Upon termination of a process, the kernel goes through active
processes to check if the terminated process had children.
If so, init becomes the parent of orphan children.

This way the assumption is made safe.3

3Yes, upon init termination the system crashes
Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 49 / 59

Reparenting

We’ve implicitly assumed that there is always a parent process to
collect the termination statuses of its children.

Is it a safe assumption?

No. Because parent processes can terminate before their children.

Upon termination of a process, the kernel goes through active
processes to check if the terminated process had children.
If so, init becomes the parent of orphan children.

This way the assumption is made safe.3

3Yes, upon init termination the system crashes
Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 49 / 59

wait

The main facility to retrieve termination status of a child process is:

#include <sys/wait.h>

pid_t wait(int *statloc);
Returns: process ID if OK, -1 on error

upon invocation wait:

if no children has recently terminated, blocks until one
terminates

if a children has terminated and its termination status has not
been collected yet, returns immediately filling statloc

return an error if the calling process has no children

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 50 / 59

wait — inspecting termination status

The various cases of termination can be inspected applying suitable
<sys/wait.h> macros to the integer filled by wait.

WIFEXITED(status) true for normal termination
ñ WEXITSTATUS(status) can then be used to retrieve the exit status

WIFSIGNALED(status) true for abnormal termination due to
uncatched signal, then:

ñ WTERMSIG(status) gives the signal number

Other macros are available for job control.

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 51 / 59

wait — example

#include <stdio .h>
#include <unistd .h>
#include <sys/wait .h>
#include "apue .h"

int main (void) {
pid_t pid ;
int status ;
i f ((pid = fork ()) < 0)

err_sys (" fork error ") ;
else i f (pid == 0) { /* chi ld */

pr int f (" hi from child \n") ;
exit (7) ;

} else { /* parent */
i f (wait (&status) != pid)

err_sys (" wait error ") ;
pr in t f (" hi from parent\n") ;
i f (WIFEXITED (status))

pr in t f ("normal termination , exit status = %d\n" ,
WEXITSTATUS(status)) ;

else i f (WIFSIGNALED(status))
pr in t f ("abnormal termination , signal number = %d\n" ,

WTERMSIG(status)) ;
}
exit (EXIT_SUCCESS) ;

}

$./ wait
hi from child
hi from parent
normal termination , exit status = 7
$

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 52 / 59

wait — example

#include <stdio .h>
#include <unistd .h>
#include <sys/wait .h>
#include "apue .h"

int main (void) {
pid_t pid ;
int status ;
i f ((pid = fork ()) < 0)

err_sys (" fork error ") ;
else i f (pid == 0) { /* chi ld */

pr int f (" hi from child \n") ;
exit (7) ;

} else { /* parent */
i f (wait (&status) != pid)

err_sys (" wait error ") ;
pr in t f (" hi from parent\n") ;
i f (WIFEXITED (status))

pr in t f ("normal termination , exit status = %d\n" ,
WEXITSTATUS(status)) ;

else i f (WIFSIGNALED(status))
pr in t f ("abnormal termination , signal number = %d\n" ,

WTERMSIG(status)) ;
}
exit (EXIT_SUCCESS) ;

}

$./ wait
hi from child
hi from parent
normal termination , exit status = 7
$

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 52 / 59

Helper — pr_exit

void pr_exit (int status) {
i f (WIFEXITED (status))

pr in t f ("normal termination , exit status = %d\n" ,
WEXITSTATUS(status)) ;

else i f (WIFSIGNALED(status))
pr in t f ("abnormal termination , signal number = %d\n" ,

WTERMSIG(status)) ;
}

/* defined from now on in "apue .h" */

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 53 / 59

wait — example
#include <stdio .h>
#include <unistd .h>
#include <sys/wait .h>
#include "apue .h"

int main (void)
{

pid_t pid ;
int status ;

i f ((pid = fork ()) < 0)
err_sys (" fork error ") ;

else i f (pid == 0) /* chi ld */
exit (7) ;

i f (wait (&status) != pid) /* wait for chi ld */
err_sys (" wait error ") ;

pr_exit (status) ; /* and print i t s status */
i f ((pid = fork ()) < 0)

err_sys (" fork error ") ;
else i f (pid == 0) /* chi ld */

abort () ; /* generates SIGABRT */
i f (wait (&status) != pid) /* wait for chi ld */

err_sys (" wait error ") ;
pr_exit (status) ; /* and print i t s status */
i f ((pid = fork ()) < 0)

err_sys (" fork error ") ;
else i f (pid == 0) /* chi ld */

status /= 0; /* divide by 0 generates SIGFPE */
i f (wait (&status) != pid) /* wait for chi ld */

err_sys (" wait error ") ;
pr_exit (status) ; /* and print i t s status */
exit (EXIT_SUCCESS) ;

}

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 54 / 59

wait — example (cont.)

$./ wait−2
normal termination , exit status = 7
abnormal termination , signal number = 6
abnormal termination , signal number = 8
$

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 55 / 59

Zombie

(i) Process termination and (ii) collection of termination status are
not synchronized actions. They are mediated by the kernel that
stores the termination status until it is collected.

Definition
A process that has terminated but whose termination status has not
yet been collected is called a zombie process.

Large amounts of zombie processes are undesirable, as they
consume resources—the (small) amounts of memory for termination
status and entries in the process table.

if you write a long running program that forks a lot, you should
take care of waiting a lot

ñ if you don’t care about termination status, pass statloc=NULL

init automatically collects termination statuses of its children

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 56 / 59

Zombie — example
#include <stdio .h>
#include <unistd .h>
#include "apue .h"

int main (void) {
pid_t pid ;
int i ;

for (i = 0; i <5; i ++) {
i f ((pid = fork ()) < 0) {

err_sys (" fork error ") ;
} else i f (pid == 0) { /* i−th chi ld */

pr int f ("bye from child %d: %d\n" , i , getpid ()) ;
exit (EXIT_SUCCESS) ;

}
/* parent does nothing */

}
sleep (10) ;
pr in t f ("bye from parent\n") ;
exit (EXIT_SUCCESS) ;

}
Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 57 / 59

Zombie — example (cont.)

Using the previous example, ps, and shell job control we can
“appreciate” zombie processes:
$./zombie &
[1] 4867
$ bye from child 0: 4868
bye from child 2: 4870
bye from child 3: 4871
bye from child 4: 4872
bye from child 1: 4869

$ ps
PID TTY TIME CMD

2597 pts/3 00:00:00 bash
4867 pts/3 00:00:00 zombie
4868 pts/3 00:00:00 zombie <defunct>
4869 pts/3 00:00:00 zombie <defunct>
4870 pts/3 00:00:00 zombie <defunct>
4871 pts/3 00:00:00 zombie <defunct>
4872 pts/3 00:00:00 zombie <defunct>
4876 pts/3 00:00:00 ps

$
bye from parent

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 58 / 59

Trivia

#include <unistd .h>

int main () {
while (1)

fork () ;
}

What happens when you run the above program?
Try it out! (or not)

Stefano Zacchiroli (Paris 7) Introduction to Process Management 6 Octobre 2011 59 / 59

	Process startup and termination
	Memory layout
	Process control

