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Virtual memory again

With virtual memory management (VMM) the OS adds an indirection
layer between virtual memory pages and physical memory frames.
The address space of a process is made of virtual memory pages,
decoupling it from direct access to physical memory.

We have seen the main ingredients of VMM:
1 virtual pages, that form processes’ virtual address space

2 physical frames

3 the page table maps pages of the resident set to frames

when a page p 6∈ resident set is accessed, VMM swap it in from disk.
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Virtual memory again (cont.)

TLPI, Figure 6-2

Stefano Zacchiroli (Paris 7) Memory mapping 24 novembre 2011 5 / 56



Backing store

Definition (datum, backing store)

In memory cache arrangements:

a datum is an entry of the memory we want to access, passing
through the cache

the backing store is the (usually slower) memory where a datum
can be retrieved from, when it cannot be found in the (usually
faster) cache, i.e. when a cache miss happens

On UNIX, the ultimate backing store of virtual memory pages is
usually the set of non-resident pages available on disk, that have
been swapped out in the past.
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Memory mapping
A UNIX memory mapping is a
virtual memory area that has
an extra backing store layer,
which points to an external
page store.

Processes can manipulate
their memory
mappings—request new
mappings, resize or delete
existing mappings, flush
them to their backing store,
etc.

Alternative intuition: a
memory mapping is
dynamically allocated
memory with peculiar
read/write rules.
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Memory mapping types

Memory mappings can be of two different types, depending on the
ultimate page backing store.

1 a file mapping maps a memory region to a region of a file
ñ backing store = file
ñ as long as the mapping is established, the content of the file can

be read from or written to using direct memory access (“as if
they were variables”)

2 an anonymous mappings maps a memory region to a fresh
“virtual” memory area filled with 0

ñ backing store = zero-ed memory area
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Having memory mapped pages in common

Thanks to virtual memory management, different processes can
have mapped pages in common.

More precisely, mapped pages in different processes can refer to
physical memory pages that have the same backing store.

That can happen in two ways:
1 through fork, as memory mappings are inherited by children

2 when multiple processes map the same region of a file
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Shared vs private mappings

With mapped pages in common, the involved processes might see
changes performed by others to mapped pages in common,
depending on whether the mapping is:

private mapping in this case modifications are not visible to other
processes.

pages are initially the same, but modification are
not shared, as it happens with copy-on-write
memory after fork
private mappings are also known as copy-on-write
mappings

shared mapping in this case modifications to mapped pages in
common are visible to all involved processes

i.e. pages are not copied-on-write

Stefano Zacchiroli (Paris 7) Memory mapping 24 novembre 2011 10 / 56



Memory mapping zoo

Summarizing:

memory mappings can have files or “zero” as backing store

memory mappings can be private or shared

A total of 4 different flavors of memory mappings:

visibility /
backing store

file mapping anon. mapping

private private file mapping private anon. mapping
shared shared file mapping shared anon. mapping

Each of them is useful for a range of different use cases.
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mmap

The mmap syscall is used to request the creation of memory
mappings in the address space of the calling process:

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

Returns: starting address of the mapping if OK, MAP_FAILED on error

The mapping specification is given by:
length, that specifies the length of the desired mapping
flags, that is a bit mask of flags that include

MAP_PRIVATE request a private mapping
MAP_SHARED request a shared mapping
MAP_ANONYMOUS request an anonymous mapping

ñ MAP_ANONYMOUSa anonymous mapping
« fd must be -1 for anonymous mappings

ñ one of MAP_PRIVATE, MAP_SHARED must be specified
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mmap (cont.)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

addr gives an address hint about where, in the process address
space, the new mapping should be placed. It is just a hint and it is
very seldomly used. To not provide one, pass NULL.

For file mappings, the mapped file region is given by:

fd: file descriptor pointing to the desired backing file

offset: absolute offset pointing to the beginning of the file
region that should be mapped

ñ the end is given implicitly by length
ñ to map the entire file, use offset == 0
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mmap (cont.)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

The desired memory protection for the requested mapping must be
given via prot, which is a bitwise OR of:

PROT_READ pages may be read
PROT_WRITE pages may be write
PROT_EXEC pages may be executed
PROT_NONE pages may not be accessed at all

either PROT_NONE or a combination of the others must be given.
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mmap (cont.)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

The desired memory protection for the requested mapping must be
given via prot, which is a bitwise OR of:

PROT_READ pages may be read
PROT_WRITE pages may be write
PROT_EXEC pages may be executed
PROT_NONE pages may not be accessed at all

either PROT_NONE or a combination of the others must be given.

What can PROT_NONE be used for?
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mmap (cont.)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

The desired memory protection for the requested mapping must be
given via prot, which is a bitwise OR of:

PROT_READ pages may be read
PROT_WRITE pages may be write
PROT_EXEC pages may be executed
PROT_NONE pages may not be accessed at all

either PROT_NONE or a combination of the others must be given.

PROT_NONE use case: put memory fences around memory areas that
we do not want to be trespassed inadvertently

Stefano Zacchiroli (Paris 7) Memory mapping 24 novembre 2011 14 / 56



mmap — example

#include <fcnt l .h>
#include <sys/mman.h>
#include <sys/ stat .h>
#include <unistd .h>
#include "apue .h"

int main ( int argc , char **argv ) {
int fd ;
struct stat f info ;
void *fmap;

i f ( argc != 2) err_quit ( "Usage : mmap−cat FILE " ) ;
i f ( ( fd = open( argv [1 ] , O_RDONLY) ) < 0)

err_sys ( "open error " ) ;
i f ( f s ta t ( fd , &f info ) < 0)

err_sys ( " f s ta t error " ) ;

fmap = mmap(NULL, f info . st_size , PROT_READ, MAP_PRIVATE , fd , 0 ) ;
i f ( fmap == MAP_FAILED)

err_sys ( "mmap error " ) ;
i f ( write (STDOUT_FILENO, fmap, f info . st_size ) != f info . st_size )

err_sys ( " write error " ) ;
exit ( EXIT_SUCCESS ) ;

} /* end of mmap−cat . c */
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mmap — example (cont.)

Demo
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munmap

The converse action of mmap—unmapping—is performed by munmap:

#include <sys/mman.h>

int munmap(void *addr, size_t length);
Returns: 0 if OK, -1 otherwise

The memory area between the addresses addr and addr+length
will be unmapped as a result of munmap. Accessing it after a
successful munmap will (very likely) result in a segmentation fault.
Usually, an entire mapping is unmapped, e.g.:

i f ( ( addr = mmap(NULL, length , /* . . . */ ) ) < 0)
err_sys ( "mmap error " ) ;

/* access memory mapped region via addr */

i f (munmap( addr , length ) < 0)
err_sys ( "munmap error " ) ;
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munmap on region (sub-)multiples

munmap does not force to unmap entire regions, one by one

1 unmapping a region that contains no mapped page will have no
effect and return success

2 unmapping a region that spans several mappings will unmap all
contained mappings

ñ and ignore non mapped areas, as per previous point

3 unmapping only part of an existing mapping will
ñ either reduce mapping size, if the unmapped part is close to one

edge of the existing mapping;
ñ or split it in two, if the unmapped part is in the middle of the

existing mapping
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File mappings

File mapping recipe
1 fd = open(/* .. */);

2 addr = mmap(/* .. */, fd, /* .. */);

Once the file mapping is established, access to the (mapped region
of the) underlying file does not need to pass through fd anymore.
However, the FD might still be useful for other actions that can still
be performed only via FDs:

changing file size

file locking

fsync / fdatasync

. . .

Thanks to file pervasiveness, we can use file mapping on device files

e.g.: disk device files, /dev/mem, . . . (not all devices support it)
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File mapping and memory layout

All kinds of memory mappings are placed in the large memory area
in between the heap and stack segments.

The return value of mmap points to the start of the created memory
mapping (i.e. its lowest address) and the mapping grows above it
(i.e. towards higher addresses).

For file mappings, the mapped file region starts at offset and is
length bytes long. The mapped region in memory will have the
same size (modulo alignment issues. . . ).
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File mapping and memory layout (cont.)

APUE, Figure 14.31
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File mapping and memory protection

The requested memory protection (prot, flags) must be
compatible with the file descriptor permissions (O_RDONLY, etc.).

FD must always be open for reading

if PROT_WRITE and MAP_SHARED are given, the file must be open
for writing
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Private file mapping (#1)

Effects:

the content of the mapping is initialized from file by reading the
corresponding file region

subsequent modifications are handled via copy-on-write
ñ they are invisible to other processes
ñ they are not saved to the backing file

Use cases
1 Initializing process segments from the corresponding sections

of a binary executable
ñ initialization of the text segment from program instructions
ñ initialization of the data segment from binary data

either way, we don’t want runtime changes to be saved to disk

This use case is implemented in the dynamic loader/linker and
rarely needed in other programs.
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Private file mapping (#1)

Effects:

the content of the mapping is initialized from file by reading the
corresponding file region

subsequent modifications are handled via copy-on-write
ñ they are invisible to other processes
ñ they are not saved to the backing file

Use cases
2 Simplifying program input logic

ñ instead of a big loop at startup time to read input, one mmap call
and you’re done

ñ runtime changes won’t be saved back, though
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Private file mapping — example (segment init.)

A real life example can be found in: glibc’s dynamic loading code.

Demo
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Private file mapping — example (input logic)
#include <fcnt l .h>
#include <stdio .h>
#include <stdl ib .h>
#include <str ing .h>
#include <sys/mman.h>
#include <sys/ stat .h>
#include "apue .h"

int main ( int argc , char **argv ) {
int fd ;
struct stat f info ;
void *fmap;
char *match ;
i f ( argc != 3) err_quit ( "Usage : substring STRING FILE " ) ;

i f ( ( fd = open( argv [2 ] , O_RDONLY) ) < 0) err_sys ( "open error " ) ;
i f ( f s ta t ( fd , &f info ) < 0) err_sys ( " f s ta t error " ) ;
/* " input " a l l f i l e at once */
fmap = mmap(NULL, f info . st_size , PROT_READ, MAP_PRIVATE , fd , 0 ) ;
match = s t r s t r ( ( char * ) fmap, argv [ 1 ] ) ;

pr in t f ( " str ing%s found\n" , match == NULL ? " NOT" : " " ) ;
exit (match == NULL ? EXIT_FAILURE : EXIT_SUCCESS ) ;

} /* end of grep−substring . c */
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Private file mapping — example (input logic) (cont.)

Demo

Notes:

example similar to mmap-cat.c, but here we put it into use

thanks to the byte array abstraction we can easily look for a
substring with strstr without risking that our target gets split
in two different BUFSIZ chunks
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Shared file mapping (#2)

Effects:

processes mapping the same region of a file share physical
memory frames

ñ more precisely: they have virtual memory pages that map to the
same physical memory frames

additionally, the involved physical frames have the mapped file
as ultimate backing store

ñ i.e. modifications to the (shared) physical frames are saved to
the mapped file on disk
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Shared file mapping (#2) (cont.)
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pagetable

PT entries
for mapped
region

ProcessB
pagetable

PT entries
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Mapped
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Physical
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Mapped
region of

file

Openfile

I/ O managed

bykernel

TLPI, Figure 49-2
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Shared file mapping (#2) (cont.)

Use cases
1 memory-mapped I/O, as an alternative to read/write

ñ as in the case of private file mapping, but here it works for both
reading and writing data

2 interprocess communication, with the following characteristics:
ñ data-transfer (not byte stream)
ñ with filesystem persistence
ñ among unrelated processes
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Memory-mapped I/O

Given that:
1 memory content is initialized from file

2 changes to memory are reflected to file

we can perform I/O by simply changing bytes of memory.

Access to file mappings is less intuitive than sequential read/write
operations

the mental model is that of working on your data as a huge byte
array (which is what memory is, after all)

a best practice to follow is that of defining struct-s that
correspond to elements stored in the mapping, and copy them
around with memcpy & co
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Memory-mapped I/O — example

We will redo the distributed scheme to assign global sequential
unique identifiers to concurrent programs.

we will use memory-mapped I/O

we will do fcntl-based locking as before
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Memory-mapped I/O — example (protocol)

#include <fcnt l .h>
#include <fcnt l .h>
#include <str ing .h>
#include <sys/mman.h>
#include <sys/ stat .h>
#include <time .h>
#include <unistd .h>
#include "apue .h"

#define DB_FILE " counter . data "
#define MAGIC "42"
#define MAGIC_SIZ sizeof (MAGIC)

struct glob_id {
char magic [ 3 ] ; /* magic string "42\0" */
time_t ts ; /* last modification timestamp */
long val ; /* global counter value */

} ;
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Memory-mapped I/O — example (library)

int glob_id_verify_magic ( int fd , struct glob_id * id ) {
struct f lock lock ;
int rc ;

lock . l_type = F_RDLCK; /* read lock */
lock . l_whence = SEEK_SET ; /* abs . posit ion */
lock . l _ s t a r t = 0; /* from begin . . . */
lock . l_ len = MAGIC_SIZ ; /* . . . to magic ’ s end */
pr int f ( " acquiring read lock . . . \ n" ) ;
i f ( f cn t l ( fd , F_SETLKW, &lock ) < 0)

err_sys ( " f cn t l error " ) ;

rc = strncmp ( id−>magic , MAGIC, 3 ) ;
lock . l_type = F_UNLCK;
pr int f ( " releasing read lock . . . \ n" ) ;
i f ( f cn t l ( fd , F_SETLK , &lock ) < 0)

err_sys ( " f cn t l error " ) ;

return rc ;
}
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Memory-mapped I/O — example (library) (cont.)

void glob_id_write ( struct glob_id * id , long val ) {
memcpy( id−>magic , MAGIC, MAGIC_SIZ ) ;
id−>ts = time (NULL ) ;
id−>val = val ;

}

/* end of mmap−uid−common.h */
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Memory-mapped I/O — example (DB init/reset)

#include "mmap−uid−common.h"

int main ( void ) {
int fd ;
struct stat f info ;
struct glob_id * id ;
struct f lock lock ;

i f ( ( fd = open( DB_FILE , O_RDWR | O_CREAT | O_TRUNC,
S_IRUSR | S_IWUSR ) ) < 0)

err_sys ( "open error " ) ;
i f ( ftruncate ( fd , sizeof ( struct glob_id ) ) < 0)

err_sys ( " ftruncate error " ) ;
i f ( f s ta t ( fd , &f info ) < 0)

err_sys ( " f s ta t error " ) ;
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Memory-mapped I/O — example (DB init/reset) (cont.)

id = ( struct glob_id * ) mmap(NULL, f info . st_size ,
PROT_READ | PROT_WRITE , MAP_SHARED, fd , 0 ) ;

lock . l_type = F_WRLCK; /* write lock */
lock . l_whence = SEEK_SET ; /* abs . posit ion */
lock . l _ s t a r t = 0; /* from begin . . . */
lock . l_ len = 0; /* . . . to EOF */
pr int f ( " acquiring write lock . . . \ n" ) ;
i f ( f cn t l ( fd , F_SETLKW, &lock ) < 0)

err_sys ( " f cn t l error " ) ;

glob_id_write ( id , ( long ) 0 ) ;
exit ( EXIT_SUCCESS ) ;

}
/* end of mmap−uid−reset . c */
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Memory-mapped I/O — example (client)

#include "mmap−uid−common.h"

int main ( void ) {
int fd ;
struct stat f info ;
struct glob_id * id ;
struct f lock lock ;

i f ( ( fd = open( DB_FILE , O_RDWR) ) < 0)
err_sys ( "open error " ) ;

i f ( f s ta t ( fd , &f info ) < 0)
err_sys ( " f s ta t error " ) ;

id = ( struct glob_id * ) mmap(NULL, f info . st_size ,
PROT_READ | PROT_WRITE , MAP_SHARED, fd , 0 ) ;

pr in t f ( " checking magic number . . . \ n" ) ;
i f ( glob_id_verify_magic ( fd , id ) < 0) {

pr in t f ( " inva l id magic number: abort .\n" ) ;
exit ( EXIT_FAILURE ) ;

}
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Memory-mapped I/O — example (client) (cont.)

lock . l_type = F_WRLCK; /* write lock */
lock . l_whence = SEEK_SET ; /* abs . posit ion */
lock . l _ s t a r t = MAGIC_SIZ ; /* from magicno . . . */
lock . l_ len = 0; /* . . . to EOF */
pr int f ( " acquiring write lock . . . \ n" ) ;
i f ( f cn t l ( fd , F_SETLKW, &lock ) < 0)

err_sys ( " f cn t l error " ) ;

pr in t f ( " got id : %ld\n" , id−>val ) ;

sleep ( 5 ) ;

glob_id_write ( id , id−>val + 1) ;

exit ( EXIT_SUCCESS ) ;
}
/* end of mmap−uid−get . c */
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Memory-mapped I/O — example

Demo
Notes:

the glob_id structure now includes the magic string
ñ TBH, there was no real reason for not having it before. . .
ñ as a consequence, file sizes increases a bit, due to padding for

memory alignment reasons

we keep the FD around
ñ to do file locking
ñ resize the file upon creation

« no, lseek is not enough to change file size

the I/O logics is simpler

let’s see the diffs. . .
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Memory-mapped I/O — advantages

performance gain: 1 memory copy
ñ with read/write I/O each action involves 2 memory copies:

1 between user-space and kernel buffers + 1 between kernel
buffers and the I/O device

ñ with memory-mapped I/O only the 2nd copy remains
ñ flash exercise: how many copies for standard I/O?

performance gain: no context switch
ñ no syscall and no context switch is involved in accessing

mapped memory
ñ page faults are possible, though

reduced memory usage
ñ we avoid user-space buffers → less memory needed
ñ if memory mapped region is shared, we use only one set of

buffers for all processes

seeking is simplified
ñ no need of explicit lseek, just pointer manipulation
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Memory-mapped I/O — disadvantages

memory garbage
ñ the size of mapped regions is a multiple of system page size
ñ mapping regions which are way smaller than that can result in a

significant waste of memory

memory mapping must fit in the process address space
ñ on 32 bits systems, a large number of mappings of various sizes

might result in memory fragmentation
ñ it then becomes harder to find continuous space to grant large

memory mappings
ñ the problem is substantially diminished on 64 bits systems

there is kernel overhead in maintaining mappings
ñ for small mappings, the overhead can dominate the advantages
ñ memory mapped I/O is best used with large files and random

access
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ñ memory mapped I/O is best used with large files and random

access
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Memory alignment

The notion of memory alignment, refers to the relation between
memory addresses as used by programs and memory addresses as
used by the hardware.
A variable that is located at a memory address which is a multiple of
the variable size is said to be naturally aligned, e.g.:

a 32 bit (4 bytes) variable is naturally aligned if its located at an
address which is a multiple of 4
a 64 bit (8 bytes) variable is naturally aligned if its located at an
address which is a multiple of 8

All memory allocated “properly” (i.e. via the POSIX APIs through
functions like malloc, calloc, mmap, . . . ) is naturally aligned.
The risks of unaligned memory access depend on the hardware:

it might result in traps, and hence in signals that kill the process
it might work fine, but incur in performance penalties

Portable applications should avoid unaligned memory access.
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posix_memalign

The notion of alignment is more general than natural alignment.
We might want to allocate memory aligned to chunks larger than the
variable size.
POSIX.1d standardized the posix_memalign function to allocate
heap memory aligned to arbitrary boundaries:

#include <stdlib.h>

int posix_memalign(void **memptr, size_t alignment, size_t size);
Returns: 0 if OK; EINVAL or ENOMEM on error

we request an allocation of size bytes. . .

. . . aligned to a memory address that is a multiple of alignment
ñ alignment must be a power of 2 and a multiple of
sizeofvoid *
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posix_memalign (cont.)

The notion of alignment is more general than natural alignment.
We might want to allocate memory aligned to chunks larger than the
variable size.
POSIX.1d standardized the posix_memalign function to allocate
heap memory aligned to arbitrary boundaries:

#include <stdlib.h>

int posix_memalign(void **memptr, size_t alignment, size_t size);
Returns: 0 if OK; EINVAL or ENOMEM on error

on success, memptr will be filled with a pointer to freshly
allocated memory; otherwise the return value is either EINVAL
(conditions on alignment not respected) or ENOMEM (not
enough memory to satisfy request)

ñ note: the above are return values, errno is not set
allocated memory should be freed with free
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posix_memalign — example
#include <stdio .h>
#include <stdl ib .h>
#include <str ing .h>
#include <unistd .h>
#include "apue .h"

int main ( int argc , char **argv ) {
int rc ;
void *mem;

i f ( argc < 3) err_quit ( "Usage : memalign SIZE ALIGNMENT" ) ;

i f ( ( rc = posix_memalign(&mem,
atoi ( argv [2 ] ) , atoi ( argv [ 1 ] ) ) ) != 0) {

pr in t f ( "posix_memalign error : %s\n" , s trerror ( rc ) ) ;
exit ( EXIT_FAILURE ) ;

}
pr in t f ( " address : %ld (%p)\n" , ( long ) mem, mem) ;
exit ( EXIT_SUCCESS ) ;

}
/* end of memalign . c */
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posix_memalign — example (cont.)

Demo
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Page alignment

As we have seen, the size of memory pages defines the granularity
at which virtual memory operates.
A memory page is the smallest chunk of memory that can have
distinct behavior from other chunks.

swap-in / swap-out is defined at page granularity

ditto for memory permission, backing store, etc.

mmap operates at page granularity

each mapping is composed by a discrete number of pages

new mappings are returned page aligned
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Determining page size

There are various way to determine the page size.

A non-portable way of determining page size at compile-time is to
rely on implementation-specific constants, such as Linux’s
PAGE_SIZE that is defined in <asm/page.h>

As it might change between compilation and execution, it is better to
determine the page size at runtime. To determine that and many
other limits at runtime, POSIX offers sysconf:

#include <unistd.h>

long sysconf(int name);
Returns: the requested limit if name is valid; -1 otherwise

The sysconf name to determine page size is _SC_PAGESIZE, which
is measured in bytes.
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Determining page size — example

#include <stdio .h>
#include <stdl ib .h>
#include <unistd .h>

int main ( void ) {
pr in t f ( "page size : %ld btyes\n" , sysconf ( _SC_PAGESIZE ) ) ;

exit ( EXIT_SUCCESS ) ;
} /* end of pagesize . c */

On a Linux x86, 64 bits system:

$ ./ pagesize
page size : 4096 btyes
$

Stefano Zacchiroli (Paris 7) Memory mapping 24 novembre 2011 42 / 56



mmap and page alignment

For maximum portability, mmap’s arguments addr and offset must
be page aligned.1

Exercise

Note that offset is the file offset. Contrary to addr it does not refer
directly to memory. Why should it be page aligned then? Why can’t
we map unaligned file regions to aligned memory regions?

In the most common case, the requirement is trivial to satisfy:

addr == NULL no address hint, do as you please

offset == 0 map since the beginning of the file

1SUSv3 mandate page-alignment. SUSv4 states that implementations
can decide whether it’s mandatory or not. The net result is the same: for
maximum portability, be page-aligned.
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File mapping and page alignment

Interactions among page alignment and mapping or file sizes might
be tricky. Two cases deserve special attention.

1 requested mapping size < page size
ñ as mappings are made of entire pages, the size of the mapping

is rounded up to the next multiple of page size
ñ access beyond the actual mapping boundary will result in
SIGSEGV, killing the process by default
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File mapping and page alignment (cont.)

2 mapping extends beyond EOF
ñ due to explicit request of mapping size rounding, a mapping

might extend past end of file
ñ the reminder of the page is accessible, initialized to 0, and

shared with other processes (for MAP_SHARED)
ñ changes past EOF will not be written back to file

« . . . until the file size changes by other means
ñ if more entire pages are included in the mapping past EOF,

accessing them will result in SIGBUS (as a warning)
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Memory synchronization

As an IPC facility, we use file mapping for filesystem-persistent data
transfer. To that end, we need to be concerned about:

interprocess synchronization
ñ when are page changes made visible to other processes?

easy: given that processes have virtual frames that point to the same
page, changes are immediately visible to all involved processes

memory-file synchronization
ñ when are modified pages written to file?
ñ when are pages read from file?

these questions are particularly relevant for applications that
mix memory-mapped with read/write I/O
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Memory synchronization (cont.)
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msync

The msync syscall can be used to control synchronization between
memory pages and the underlying mapped file:

#include <sys/mman.h>

int msync(void *addr, size_t length, int flags);
Returns: 0 if OK, -1 otherwise

addr and length identify (part of) the mapping we want to sync

flags is a bitwise OR of:

MS_SYNC request synchronous file write
MS_ASYNC request asynchronous file write
MS_INVALIDATE invalidate cached coies of mapped data

addr must be page aligned; length will be rounded up
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Memory → file synchronization

We can use msync to perform memory → file synchronization, i.e. to
flush changes from the mapped memory to the underlying file.

doing so ensures that applications read-ing the file will see
changes performed on the memory mapped region

The degree of persistence guarantees offered by msync varies:

with synchronous writes (MS_SYNC), msync will return only after
the involved pages have been written to disk

ñ i.e. the memory region is synced with disk

with asynchronous writes (MS_ASYNC) msync ensures that
subsequent read-s on the file will return fresh data, but only
schedules disk writes without waiting for them to happen

ñ i.e. the memory region is synced with kernel buffer cache

Intuition
msync(..., MS_SYNC) ≈ msync(..., MS_ASYNC) + fdatasync(fd)
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File → memory synchronization

Regarding the initial loading, the behavior is implementation
dependent.
The only (obvious) guarantee is that loading from file to memory will
happen in between the mmap call and 1st memory access.

portable applications should not rely on any specific load timing

on Linux, page loading is lazy and will happen at first page
access, at page-by-page granularity

Subsequent loading — e.g. a process write to a mapped file, when
will the change be visible to processes mapping it? — can be
controlled using msync’s MS_INVALIDATE flag.

access to pages invalidated with MS_INVALIDATE will trigger
page reload from the mapped file
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Unified virtual memory system

Several UNIX implementations provide Unified Virtual Memory (UVM)
(sub)systems. With UVM memory mappings and the kernel buffer
cache share physical memory pages.

Therefore the implementation guarantees that the views of a file
1 as a memory-mapped region

2 and as a file accessed via I/O syscalls

are always coherent.

With UVM MS_INVALIDATE is useless and the only useful use of
msync is to flush data to disk, to ensure filesystem persistence.

Whether a system offers UVM or not is an implementation-specific
“detail”.

Linux implements UVM
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Private anonymous mapping (#3)

Effects:

each request of a new private anonymous mapping gives a fresh
memory area that shares no pages with other mappings

obtained memory is initialized to zero

child processes will inherit private anonymous mappings, but
copy-on-write will ensure that changes remain process-local

ñ and that are minimized

Use cases
1 allocation of initialized memory, similar to calloc

ñ in fact, malloc implementations often use mmap when allocating
large memory chunks

Note: on several UNIX-es, anonymous mappings (both private and
shared) can alternatively be obtained by file mapping /dev/zero.
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mmap allocation — example (library)

#include <errno .h>
#include <stdio .h>
#include <sys/mman.h>
#include <unistd .h>
#include "apue .h"

struct l i s t {
int val ;
struct l i s t *next ;

} ;

static struct l i s t * l i s t _bot ;
static struct l i s t * l i s t _ top ;
static long l i s t _ s i z ;
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mmap allocation — example (library) (cont.)

int l i s t _ i n i t ( long len ) {
l i s t _ top = ( struct l i s t * ) mmap(NULL, len * sizeof ( struct l i s t ) ,

PROT_READ | PROT_WRITE , MAP_PRIVATE | MAP_ANONYMOUS,
−1, 0) ;

i f ( l i s t _ top == MAP_FAILED)
return −1;

l i s t _bot = l i s t _ top ;
l i s t _ s i z = len ;
pr int f ( " l i s t _ i n i t : top=%p, len=%ld\n" , l is t_top , len ) ;
return 0;

}

struct l i s t * l i s t _ a l l o c ( ) {
long siz = ( l i s t _ top − l i s t _bot ) / sizeof ( struct l i s t ) ;
i f ( s iz >= l i s t _ s i z ) {

errno = ENOMEM;
return NULL;

}
l is t_top−>next = NULL;
pr int f ( " al located %p\n" , l i s t _ top ) ;
return l i s t _ top ++;

}
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mmap allocation — example (library) (cont.)

struct l i s t * l i s t _ f r ee ( ) {
/* l e f t as an exercise */
return NULL;

}

struct l i s t * l ist_add ( struct l i s t * l , int val ) {
struct l i s t * e l t ;
i f ( ( e l t = l i s t _ a l l o c ( ) ) == NULL)

return NULL;
el t−>val = val ;
e l t−>next = l ;
return e l t ;

}

void v i s i t _ l i s t ( const char * label , struct l i s t * l ) {
pr in t f ( " [%s ] v i s i t l i s t : " , label ) ;
while ( l != NULL) {

pr in t f ( "%d " , l−>val ) ;
l = l−>next ;

}
pr in t f ( " \n" ) ;

}

/* end of mmap− l i s t .h */
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mmap allocation — example

#include "mmap− l i s t .h"

int main ( void ) {
struct l i s t * l = NULL;
pid_t pid ;

i f ( l i s t _ i n i t (1000) < 0) err_sys ( " l i s t _ i n i t error " ) ;
i f ( ( l = l ist_add ( l , 42)) == NULL

| | ( l = l ist_add ( l , 17)) == NULL
| | ( l = l ist_add ( l , 13)) == NULL)

err_sys ( " l ist_add " ) ;
v i s i t _ l i s t ( "common" , l ) ;

i f ( ( pid = fork ( ) ) < 0) err_sys ( " fork error " ) ;
i f ( pid > 0) { /* parent */

l = l ist_add ( l , 7 ) ;
v i s i t _ l i s t ( " parent " , l ) ;

} else { /* chi ld */
l = l ist_add ( l , 5 ) ;
v i s i t _ l i s t ( " chi ld " , l ) ;

}

exit ( EXIT_SUCCESS ) ;
} /* end of mmap− l i s t . c */
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mmap allocation — example (cont.)

Demo

Notes:

proof of concept example of ad hoc memory management
ñ . . . the importance of being libc!

virtual memory addresses are preserved through fork

copy-on-write ensures that processes do not see changes made
by others
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Shared anonymous mapping (#4)

Effects:

as with private anonymous mappings: each request gives a
fresh area of initialized memory

the main difference is that now pages are not copied-on-write
ñ if the virtual pages become shared among multiple processes,

the underlying physical memory frames become shared as well
ñ note: the only way for this to happen is via fork inheritance

Use cases
1 Interprocess communication

ñ data-transfer
ñ among related processes (no longer unrelated)
ñ with process persistence (no longer filesystem)
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mmap-based IPC — example

#include <fcnt l .h>
#include <sys/mman.h>
#include <sys/wait .h>
#include <unistd .h>
#include "apue .h"

int main ( void ) {
int *addr ;

addr = mmap(NULL, sizeof ( int ) , PROT_READ | PROT_WRITE ,
MAP_SHARED | MAP_ANONYMOUS, −1, 0) ;

i f ( addr == MAP_FAILED)
err_sys ( "mmap error " ) ;

*addr = 42;

switch ( fork ( ) ) {
case −1:

err_sys ( " fork error " ) ;
break ;
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mmap-based IPC — example (cont.)

case 0: /* chi ld */
pr int f ( " chi ld : %d\n" , *addr ) ;
( * addr )++;
break ;

default : /* parent */
i f ( wait (NULL) == −1)

err_sys ( " wait error " ) ;
pr in t f ( " parent : %d\n" , *addr ) ;

}

i f (munmap( addr , sizeof ( int ) ) == −1)
err_sys ( "munmap error " ) ;

exit ( EXIT_SUCCESS ) ;
}

/* End of mmap−ipc . c */
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mmap-based IPC — example (cont.)

Demo

Notes:

the mapping is shared through fork

it is used as a data transfer facility from child to parent

as with all shared memory solutions, synchronization is
mandatory: in this case it is obtained via wait
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