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Programming layered architectures

The architectures of modern computing systems are massively
layered. When programming, we target specific layers.

E.g.:

n virtual architectures / virtual machines. . .

4 application level (business-oriented, frameworks, 4GL, . . . )

3 system level (system languages, system calls, 3GL, . . . )

2 assembly level (assembly languages, interrupts, 2GL, . . . )

1 hardware level (firmware, microcode, 1GL, . . . )

Each level is characterized by (or highly correlated with):

mechanisms and APIs to interact with lower layers

apt programming languages (and their generations)
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Which layer to target

The choice of layer reveals important trade-offs.

1 Performances. Targeting a lower layer might grant better
performances.

Writing a performance critical routine in assembly might provide
a several order of magnitude speed improvement when
compared to programming higher layers.

This technique is often used for performance critical code such
as device drivers, multimedia, crytpo-code, etc.
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Which layer to target (cont.)

The choice of layer reveals important trade-offs.

2 Portability. Targeting a higher layer usually guarantees better
portability, in particular better than all lower layer equivalents
that might be generated from the chosen layer.

E.g.: a block of standard ISO C 99 code can be compiled using
gcc to more than 70 different target processors.
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Which layer to target (cont.)

The choice of layer reveals important trade-offs.

3 Maintainability. Targeting a higher layer usually makes writing
code easier and the resulting code more maintainable than if it
were written targeting lower layers.

This is largely a consequence of the involved programming
languages.
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System programming

System programming is the art of writing system software.

— Robert Love

System software is “low level” software that interfaces directly with:

the kernel of the operating system

core system libraries (we’ll be more precise in a bit)
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System software — examples

Some examples of system software you use daily:

shell

compiler

interpreter

debugger

(text editor)

system services
ñ cron
ñ print spool
ñ power mgmt
ñ session mgmt
ñ backup
ñ . . .

network services
ñ HTTP server
ñ MTA
ñ DBMS
ñ . . .

Try:

$ ps -auxw

most of it is system-level software.
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System programming — why bother?

there are drawbacks in targeting the system level
ñ performances, maintainability, portability, etc.

recent years have witnessed a shift from system- to application
programming

ñ platforms such as Java and .NET, as well as 4GL and 5GL
languages, hide the system level to the programmer, in the
quest for the “run everywhere” mantra

ñ many programmers spend most—if not all—of their time doing
application programming

Why bother learning system programming?

?
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Why system programming

1 legacy code—such as system utilities—is not going away any
time soon; in some cases it is also basis for standardization
(e.g. UNIX utilities)

ñ in the Free Software world, the majority of existing code (50%+ of
Debian) is system-level C code1

2 new system-level tasks born on a regular basis, to cope with
application-level evolution

Example

ñ an increasing number of new applications is written in JavaScript, for
the Web, desktops (!), and mobiles (!!)

ñ therefore we need new and better JavaScript (JIT) compilers; most of
their code is system-level code

1Gonzalez-Barahona et al. 2009,
http://dx.doi.org/10.1007/s10664-008-9100-x
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Why system programming (cont.)

3 even application-level programming benefits a great deal from
system programming knowledge

ñ understanding system behavior and performance bottlenecks
ñ deciding when to drop-down at the system level
ñ debugging portability issues
ñ . . .

fluency in system programming will make you
better application developers
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UNIX system programming

This course is about UNIX system programming.

We address system programming in UNIX® systems as well as
“UNIX-like” implementations (e.g. Linux, FreeBSD, etc.), following
various UNIX-related standards.

This is not an introductory course about UNIX system programming

prerequisites:
ñ UNIX proficiency as a user
ñ topics covered by course “Systèmes” L3

we review today and in the first TDs some of that material:
ñ UNIX concepts
ñ UNIX syscalls for I/O
ñ system programming concepts

it’s up to you to catch up with the rest!
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Operating systems in a nutshell

An operating system is the software environment that provides
services needed to run final user programs. E.g.:

program execution

hardware access (e.g. read from disk, play a sound)

file system access (e.g. open, close, read, write a file)

memory access (e.g. allocation, memory mapping)

network access (e.g. connect to a server, wait for connections)

The kernel of an operating system is the software layer that control
the hardware and create the environment in which programs can
run.

The kernel layer is usually thin—when compared to an entire
operating system—and self-contained.
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UNIX architecture

APUE, Figure 1.1

layered architecture,
with a UNIX kernel at
its core

not all layers are
strictly encapsulated
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UNIX architecture — some details

System calls (or “syscalls” for short)
provide the interface (API) for programs
to access kernel services.

operating systems before UNIX used
to define the system call API in
assembly, UNIX started doing so in C

the implementation of system calls
is part of the kernel code (AKA
“kernel-space code”)

ñ for now, we assume that we can
invoke system calls as if they were
ordinary C functions
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UNIX architecture — some details (cont.)

The standard C library (“library
routines” in figure) implement basic
functionalities needed by almost all
programs.

E.g.:
ñ buffered I/O
ñ fine-grained memory allocation
ñ time management

those functionalities are usually
implemented “lifting” system call API
to richer interfaces

the implementation is not part of the
kernel code (AKA “user-space code”)
and hence can be replaced more
easily (but still. . . )
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UNIX architecture — some details (cont.)

The shell is a specific application used
interactively by system users to start and
control programs.

historically, shells have been—and
still are, for power users—an
interactive equivalent of the system
call API

the advent of higher-level wrappers
to start applications (e.g. desktop
environments) have partially
replaced shells.
Arguably they are just a different
kind of shells
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UNIX architecture — some details (cont.)

Applications are the programs
typically used for the productivity of the
final user.

Note how applications can be built
accessing various layers of what’s under
them:

kernel services
(via the system call API)

the shell

standard C library

other intermediate libraries (not
shown)
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Filesystem

UNIX directory structure (excerpt):

/

/bin
/sbin
/etc
/dev
/home
/mnt
/lib
/root
/tmp

/usr

/usr/bin
/usr/include
/usr/lib
/usr/local

/var

/var/log
/var/mail
/var/spool
/var/tmp

/proc
/opt
/media
/srv
/boot
/sys

hierarchical file system with a single
root

“everything is a file” mantra
ñ directory are files mapping file

names to (nameless) files

(regular) file = data + metadata:
ñ type
ñ permissions
ñ size
ñ owner
ñ . . .

relevant syscalls: stat
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File and path names

within directories, files are associated to filenames
ñ i.e. filenames are local to a specific directory and contain no “/”
ñ special values: “.” (current dir), “..” (parent dir)

pathnames are used to identify files filesystem-wide
ñ pathnames do contain “/”

Path resolution (OCaml-like pseudocode)

L i s t . fo ld_ le f t
( fun cur_ f i l e name −>

i f not ( i s_d i r cur_ f i l e ) then raise Invalid_path ;
try

L i s t . assoc name ( dir_content ( opendir cur_ f i l e ) )
with Not_found −> raise File_not_found )

root_dir ( * needed to bootstrap ; known by the kernel * )
path ( * e .g . [ " usr " ; " l i b " ; " ocaml " ; " pcre " ; " pcre . mli " ] * )

path resolution is performed implicitly by the kernel
ñ can be performed explicitly via syscalls, e.g. opendir

Stefano Zacchiroli (Paris Diderot) Introduction 2013–2014 16 / 60



File and path names

within directories, files are associated to filenames
ñ i.e. filenames are local to a specific directory and contain no “/”
ñ special values: “.” (current dir), “..” (parent dir)

pathnames are used to identify files filesystem-wide
ñ pathnames do contain “/”

Path resolution (OCaml-like pseudocode)

L i s t . fo ld_ le f t
( fun cur_ f i l e name −>

i f not ( i s_d i r cur_ f i l e ) then raise Invalid_path ;
try

L i s t . assoc name ( dir_content ( opendir cur_ f i l e ) )
with Not_found −> raise File_not_found )

root_dir ( * needed to bootstrap ; known by the kernel * )
path ( * e .g . [ " usr " ; " l i b " ; " ocaml " ; " pcre " ; " pcre . mli " ] * )

path resolution is performed implicitly by the kernel
ñ can be performed explicitly via syscalls, e.g. opendir

Stefano Zacchiroli (Paris Diderot) Introduction 2013–2014 16 / 60



File descriptors

Definition (file descriptor)

A file descriptor (fd) is a small non-negative integer used by the
kernel to reference a file used by a running program.

fd are unique only within a process

〈fd, process〉 pairs act as keys to reference internal kernel data
structures

Typical file descriptor “protocol”
1 each time the kernel opens/creates a file for a process, it

returns a file descriptor to it

2 subsequent actions on that file requires that the process passes
the corresponding file descriptor back to the kernel

According to the “everything is a file” UNIX mantra, this protocol is used
for way more than regular file manipulations
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Open files and the kernel

APUE, Figure 3.6

each process file descriptor points to an in-kernel file table entry
each file table entry points to in-kernel equivalent of
on-filesystem file information and associated metadata

ñ in particular: the current file offset
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Standard file descriptors

Due to how process creation works on UNIX, shells are de facto
responsible to setup part of the initial environment of new
processes. To that end, shells conventionally open 3 file descriptors
at process creation:

standard input default fd where to read input from

standard output default fd where to write output to

standard error default fd where to write error output to

Typical values for standard file descriptors are given in <unistd.h>:

/* Standard f i l e descriptors . */
#define STDIN_FILENO 0 /* Standard input . */
#define STDOUT_FILENO 1 /* Standard output . */
#define STDERR_FILENO 2 /* Standard error output . */
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File descriptors — syscalls

file opening: open

new file creation: creat

fd closing: close

fd manipulation: dup, dup2, fcntl, . . .

Stefano Zacchiroli (Paris Diderot) Introduction 2013–2014 20 / 60



Unbuffered I/O

syscalls are available for basic, unbuffered,1 I/O:

read content from file to memory: read

write content from memory to file: write

Read and write operations are chunked.

Every operation implicitly move the file offset by the amount of data
read/written.
Explicit displacement of the file offset is provided by the lseek
syscall.

1actually, there is some buffering, but it happens in kernel-space; this kind of
I/O is better defined “user-space unbuffered”
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Unbuffered I/O — example: cat

#include <stdio .h>
#include <stdl ib .h>
#include <unistd .h>

#define BUFFSIZE 4096

int main ( void ) {
int n;
char buf [ BUFFSIZE ] ;
while ( ( n = read ( STDIN_FILENO , buf , BUFFSIZE ) ) > 0)

i f ( write (STDOUT_FILENO, buf , n ) != n) {
perror ( " write error " ) ;
exit ( EXIT_FAILURE ) ;

}
i f (n < 0) {

perror ( " read error " ) ;
exit ( EXIT_FAILURE ) ;

}
exit ( EXIT_SUCCESS ) ;

}
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Unbuffered I/O — example: cat (cont.)

chunking forces us to loop and fix a buffer size

thanks to implicit moves, no explicit file offset accounting is
needed

data is copied to/from user/kernel-space at each read/write
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Programs and processes

Definition (programs and processes)

a program is an executable file residing on the filesystem

a process is an instance of a program in execution

Note: several different process instances of the same program might
exist in memory at the same time.

each process is associated to:
ñ a numeric process ID
ñ an address space (. . . )
ñ a thread of control (or more. . . )

program execution—resulting in a new process—is requested to
the kernel using the fork/exec (family of) syscalls

We will get back to this in lecture “process management”.
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Programs and processes — demo

#include <stdio .h>
#include <stdl ib .h>
#include <unistd .h>

int main ( int argc , char **argv ) {
pr in t f ( " hello , world from process %d\n" , getpid ( ) ) ;
exit ( EXIT_SUCCESS ) ;

}

$ gcc -Wall -o hello-pid hello-pid.c
$ ./hello-pid
hello, world from process 21195
$ ./hello-pid
hello, world from process 21196
$ ./hello-pid
hello, world from process 21199
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Multi-process I/O — file sharing

What happens when independent processes act on the same file?

APUE, Figure 3.7
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Sharing resources among processes

It seems processes can share resources, such as the v-node table in
the previous (degenerate) example.

Can they share more?

Yes.

E.g.:

related processes can share file table entries

processes can share specific memory regions of their own
address space (e.g. memory mapping, shared memory)

pushing it to the extreme, multiple “processes” can share by
default their entire address space by the means of threads
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Threads

By default, each process has only one thread of control (or “thread”),
i.e. only one set of instructions being executed at any given time.

Additional threads can be added at runtime.

All threads within a process share:

address space

file descriptors

stacks (note the plural)

Each thread has its own:

thread ID (unique only within the owning process)

stack (but others’ stacks can be accessed !)

processor status

instruction pointer

thread-local storage (to be requested explicitly)
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Threads (cont.)

pro concurrent work on common data, without having to
pass data around or setup shared memory regions; all
data is “shared by default”

pro different threads can run in parallel on multiprocessor /
multicore systems

con synchronization issues to avoid memory corruption;
they might get very intricated (in non- purely-functional
programming paradigms)

We will get back to this in lecture “pthreads”.
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System calls

Definition (system call)

A system call is a controlled entry point into the kernel, used by
programs to request a service.

during syscall execution, the processor state changes from user
mode to kernel mode → so that protected kernel memory can
be used

the set of available system calls is fixed for a given platform;
each syscall is identified by a unique number

each system call accepts arguments and possibly return values,
bridging user space and kernel space

. . . but syscall code (in the kernel) is not linked directly with user
programs. How can they invoke syscalls then?
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System call invocation

1 programs trigger syscalls by invoking wrapper functions
provided by the standard C library (with which they can link)

2 before actual syscall invocation, arguments shall be put in
specific registers; the wrapper fill those registers copying from
user space

3 the wrapper fills a predefined register with the syscall number
ñ %eax on x86-32 architectures

4 the wrapper executes a trap machine instruction
ñ 0x80 on x86-32

5 the kernel invoke its syscall dispatcher routine
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System call invocation (cont.)

6 the syscall dispatcher:
i. saves processor status on the kernel stack
ii. looks up the syscall code in its syscall table
iii. executes the syscall code, passing and returning arguments via

the kernel stack
iv. restore processor status
v. put on the process stack the syscall return value
vi. return to the wrapper function

7 if the return value of the syscall dispatcher indicates an error,
the wrapper function sets errno to the error value
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System call invocation — example

TLPI, Figure 3-1
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System call invocation — putting it all together

“All this seems pretty complicated.”
When developing and debugging how can we know which is which?

E.g.: is foo(42)

a syscall?

a wrapper from the standard C library?

another user-space library function?
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strace

To understand the interaction among user- and kernel-level code,
and the role played by system calls, experimenting with existing
programs is invaluable.

strace allows to trace syscall invocations.

From the strace(1) manpage:

strace - trace system calls and signals

strace [ command [ arg... ] ]

[. . . ] strace runs the specified command until it exits. It intercepts and records
the system calls which are called by a process [. . . ]. The name of each system
call, its arguments and its return value are printed on standard error [. . . ].

strace is a useful diagnostic, instructional, and debugging tool. [. . . ] Students,
hackers and the overly-curious will find that a great deal can be learned about a
system and its system calls by tracing even ordinary programs. [. . . ]

Stefano Zacchiroli (Paris Diderot) Introduction 2013–2014 33 / 60



A “Hello, World!” journey

#include <stdio .h>
#include <stdl ib .h>

int main ( int argc , char **argv ) {
pr in t f ( " hello , world\n" ) ;
exit ( EXIT_SUCCESS ) ;

}

which system calls are invoked by the most famous C code
example?

what are the respective roles of user- and kernel-level code?

Let’s strace it. . .
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A “Hello, World!” journey (cont.)

$ strace ./hello
execve("./hello", ["./hello"], [/* 51 vars */]) = 0
brk(0) = 0x1c25000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f734db26000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=143995, ...}) = 0
mmap(NULL, 143995, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f734db02000
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
open("/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300\357\1\0\0\0\0\0"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=1570832, ...}) = 0
mmap(NULL, 3684440, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f734d585000
mprotect(0x7f734d6ff000, 2097152, PROT_NONE) = 0
mmap(0x7f734d8ff000, 20480, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x17a000) = 0x7f734d8ff000
mmap(0x7f734d904000, 18520, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7f734d904000
close(3) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f734db01000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f734db00000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f734daff000
arch_prctl(ARCH_SET_FS, 0x7f734db00700) = 0
mprotect(0x7f734d8ff000, 16384, PROT_READ) = 0
mprotect(0x7f734db28000, 4096, PROT_READ) = 0
munmap(0x7f734db02000, 143995) = 0
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 5), ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f734db25000
write(1, "hello, world\n", 13) = 13
exit_group(0) = ?
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A “Hello, World!” journey (cont.)

Here is a tiny part of the journey, annotated with actors:

a new process, created by the shell uses the execve syscall to execute
our program

the kernel reads the object code from the “hello” binary program and
start executing it

. . .

the “hello” process invokes the printf function from the standard C
library (libc)

the libc invokes the write syscall to print on the screen

the kernel prints on the console

. . .

(process) invokes exit

(libc) invokes the exit_group syscall

(kernel) terminates the process
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Manual sections help too

When looking at code, help to understand where specific functions
are implemented might come from sections of the UNIX
programming manual.

The table below shows the section numbers of the
manual followed by the types of pages they contain.

1 Executable programs or shell commands
2 System calls (functions provided by the kernel)
3 Library calls (functions within program libraries)
4 Special files
5 File formats and conventions
6 Games
7 Miscellaneous
8 System administration commands
9 Kernel routines [Non standard]

— man(1)
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Interlude — Error handling

Error checking mantra

Thou shalt always check the return code of system calls for error.

Usually, when such an error occurs the following happens:
1 the syscall wrapper function returns a negative value

ñ or NULL, for functions returning pointers

2 errno is set to further explain the error (why?)

Example

open returns -1 upon failure, but there are about 15 possible
different reasons for the failure.
errno discriminates among them.
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errno discriminates among them.
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errno

<errno.h> defines:

the errno symbol

constants (all starting with ‘E’) corresponding to error classes,
which can be compared with errno for equality

Some examples from errno(3):
EACCES permission denied

EAGAIN resource temporarily unavailable

EBUSY device or resource busy

EINTR interrupted function call

EINVAL invalid argument

ENOENT no such file or directory

ENOSPC no space left on device

EPRM operation not permitted

EPIPE broken pipe

sounds familiar?
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errno — tips and pitfalls

errno is usually believed to be global and unique, but it’s
actually thread local for multi-threaded processes

ñ allow to have thread-local error contexts

errno is not cleared by functions that do not fail; the previous
value, possibly erroneous, remains

ñ you should check errno only if an error has actually occurred
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errno — tips and pitfalls (cont.)

the following code is b0rked:

i f ( somecall ( ) == −1) {
pr in t f ( " somecall ( ) fa i led \n" ) ;
i f ( errno == ENOENT) { . . . }

}

Why?

Many functions set errno upon failure, so we might be checking
the errno of someone else than somecall().
The fix (if you really have to print before testing errno) is to
“backup” errno to a separate variable and test the saved value
against <errno.h> constants:

i f ( somecall ( ) == −1) {
int errsv = errno ;
pr int f ( " somecall ( ) fa i led \n" ) ;
i f ( errsv == ENOENT) { . . . }

}
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Interlude — helper functions

To keep examples short, we’ll introduce various helper functions (or
“helpers”). Here is the first one:

#include <stdio .h>
#include <stdl ib .h>

void err_sys ( const char *msg) {
perror (msg) ;
exit ( EXIT_FAILURE ) ;

}

perror print a given error message together with a human
readable version of errno (message + “: ” + errno description)

ñ this is why errno descriptions sounded familiar. . .

We will #include "helpers.h" in code examples when using helpers.
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Interlude — helper functions (cont.)

A couple more helpers. . .

#include <stdio .h>
#include <stdl ib .h>

void err_msg ( const char *msg) {
perror (msg) ;

}

void err_quit ( const char *msg) {
pr in t f ( "%s\n" , msg) ;
exit ( EXIT_FAILURE ) ;

}
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Helper functions — example

#include <unistd .h>
#include " helpers .h"

#define BUFFSIZE 4096

int main ( void ) {
int n;
char buf [ BUFFSIZE ] ;

while ( ( n = read ( STDIN_FILENO , buf , BUFFSIZE ) ) > 0)
i f ( write (STDOUT_FILENO, buf , n ) != n)

err_sys ( " write error " ) ;
i f (n < 0)

err_sys ( " read error " ) ;

exit ( EXIT_SUCCESS ) ;
}
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The standard C library

We’ve seen that the standard C library (“libc” for short) contains
syscall wrappers. It contains much more than that.

many libc functions do not use syscalls at all

some libc functions just lift syscalls API to handier APIs
ñ e.g.: time and timezone management

some libc functions performs substantial extra work
ñ memory allocation

« syscall-level: sbrk (it just moves address space boundary)
« libc-level: malloc/free (bookkeeping of allocated blocks)

ñ standard I/O: buffering, higher-level operations (e.g. read a line)
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Standard I/O — example

Same example, with C (buffered) standard I/O:

#include " helpers .h"
#define BUFFSIZE 4096

int main ( void ) {
char buf [ BUFFSIZE ] ;

while ( fgets ( buf , BUFFSIZE , stdin ) )
i f ( fputs ( buf , stdout ) == EOF)

err_sys ( " fputs error " ) ;
exit ( EXIT_SUCCESS ) ;

}

note the double copy phenomenon:
1 at each loop iteration data is copied to/from internal buffers of

the C standard library implementation
2 upon buffer flushing, read/write are used
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Which libc am I using?

Several libc implementations are available, popular ones:
glibc — the GNU C library — www.gnu.org/software/libc/
eglibc — the Embedded GLIBC — www.eglibc.org

$ ldd ‘which ls ‘ | grep l ibc
l ibc . so.6 => / l i b /x86_64−linux−gnu/ l ibc . so.6 (0x00007fb406fbc000 )

$ / l i b /x86_64−linux−gnu/ l ibc . so.6
GNU C Library ( Debian EGLIBC 2.13−21) stable release version 2.13,
by Roland McGrath et a l .
Copyright (C) 2011 Free Software Foundation , Inc .
This i s free software ; see the source for copying conditions .
There is NO warranty ; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.
Compiled by GNU CC version 4.4.6.
Compiled on a Linux 3.0.0 system on 2011−09−13.
Available extensions :

crypt add−on version 2.1 by Michael Glad and others
GNU Libidn by Simon Josefsson
Native POSIX Threads Library by Ulr ich Drepper et a l
BIND−8.2.3−T5B

l ibc ABIs : UNIQUE IFUNC
For bug reporting instructions , please see : <http ://www. debian . org/Bugs/>.
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UNIX genealogy

System III & V family

BSD (Berkeley Software Distribution)

FreeBSD

NetBSD

OpenBSD

SunOS

Solaris

NextStep
MacOS X

Xenix OS

GNU Project

GNU/Linux

Commercial UNIX

HP-UX

AIX

UnixWare

IRIX 

BSD family

1970 1980 1990 2000 Time

Microsoft/SCO

Richard Stallman

Darwin

GNU/Hurd K16

Linus Torvalds

Andrew S. Tanenbaum

Minix

7.2

5.0

4.5

10 5/09

5.7
3.3

2.6.30.1

3.1.3a

11i v3

6.17.1.4 MP4

6.5.30

4.1.3

Research UNIX 10

Bell Labs: Ken Thompson,
Dennis Ritchie, et al.

Bill Joy

Sun Microsystems

AT&T

IBM

SGI

Univel/SCO

Apple Computer

http://en.wikipedia.org/wiki/File:Unix_history.svg
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UNIX standardization

Originally, portability across UNIX-es has been quite good.
During the UNIX wars of the 80s, the situation started getting worse.

Due to that, many high-profile users—including the US
government—started pushing for UNIX standardization.

Many (competing) standards ensued.
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UNIX standardization

ANSI C
(1989)

[C89, ISO C 90]

POSIX.1
(1988, IEEE)

[POSIX 1003.1]

POSIX.1
(1990, ISO)

POSIX.1b
(1993)
Realtime

POSIX.1c
(1995)
Threads

POSIX.2
(1992)

Shell & utilities

POSIX.1g
(2000)
Sockets

XPG3
(1989)

XPG4
(1992)

XPG4v2
(1994)

[SUS, UNIX
95, Spec1170]

SUSv2
(1997)

[UNIX 98,
XPG5]

POSIX.1-2001 / SUSv3
(2001, Austin CSRG)

[UNIX 03]

POSIX.1
(1996, ISO)

ISO C 99
(1999)

XNS
(4, 5, 5.2)

POSIX.1d
(1999)

Additional real-
timeextensions

POSIX.1j
(2000)

Advanced real-
timeextensions

POSIX.1-2008 / SUSv4
(2008, Austin CSRG)

TLPI, Figure 1-1
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ISO C

The C standard defines:

syntax and semantics of the C language
the C standard library

Relevant timeline:

1989 approved by ANSI (“ANSI C”)
1990 approved by ISO, unchanged
1999 updated by ISO (“C99”)

new keyword restrict for pointer declarations.
Inform the compiler that the object referenced by a
pointer is accessible only via that pointer within the
containing scope (i.e. no pointer aliasing)
not yet fully supported by compilers

2011 updated by ISO (“C11”)
type-generic macros, thread local storage, unicode,
anonymous structs/unions, . . .
more optional features, to ease compliance (. . . )
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IEEE POSIX

“Portable Operating System Interface”

family of UNIX-related standards by IEEE, updated overtime

notion of “POSIX compliance”, which has worked pretty well

Relevant timeline:

1988 IEEE 1003.1 — syscall API

1990 approved by ISO with the name “POSIX.1”, unchanged

1993–2000 updated by IEEE, real-time extensions

1996 updated by ISO, includes pthreads (“POSIX threads”)

2001 great merger, combines several standards

ISO/IEEE POSIX branches
shell and utilities
ISO C standard library

Stefano Zacchiroli (Paris Diderot) Introduction 2013–2014 52 / 60



Single UNIX Specification (SUS)

Initially a superset of POSIX.1, specifying additional optional
interfaces known as X/Open System Interface (XSI). E.g.:

encryption

real-time threads

XSI STREAMS

. . .

SUS defines extra interfaces and also “annotates” all POSIX.1
interfaces as either mandatory or optional for XSI conformance.

The UNIX® trademark
The UNIX trademark, owned by Open Group, uses SUS as a criteria to
define “UNIX systems”. To be called “UNIX system”, a system must
pass XSI conformance.
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Some UNIX(-like) implementations

UNIX System V (SysV) proprietary UNIX by AT&T (now SCO)
ñ release 4 conformed to both POSIX 1003.1 and SUS

BSD (Berkeley Software Distribution)
ñ now evolved into FreeBSD / NetBSD / OpenBSD
ñ origin of the liberal licensing movement

Linux, started in 1991 by Linus Torvalds
ñ nowadays the most popular UNIX-like system
ñ considered to be both POSIX.1 and SUSv4 compliant

« no formal conformance though, due to the distribution model

Mac OS X mixture of Mach kernel and FreeBSD

Solaris UNIX system by Sun Microsystems (now Oracle)
ñ historically proprietary, mixed fortune in open sourcing
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Objectives

Learn UNIX system programming concepts and core APIs.
Learn how to learn more.

Specific topics:

process management

inter process communication (IPC)
ñ signal handling
ñ pipes
ñ FIFOs
ñ (UNIX domain sockets)
ñ shared memory
ñ synchronization
ñ System V POSIX IPC
ñ (D-Bus)

threads
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General info

Équipe pédagogique

chargé de cours: Stefano Zacchiroli

chargé de TD et projet: Juliusz Chroboczek

Horaires

jeudi 13h30-15h30, cours magistral, amphi 3BD

lundi 13h30-15h30, TD (groupe A), salle 2032

vendredi 13h30-15h30, TD (groupe B), salles 2032

Calendrier

16 septembre 2013 - début de cours

23 septembre 2013 - début de TD

Homepage

http://upsilon.cc/zack/teaching/1314/progsyst/
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Mailing list

Tous les étudiants doivent s’abonner à la liste de diffusion
m1progsyst:

https://listes.sc.univ-paris-diderot.fr/sympa/info/m1progsyst

toute annonce concernant le cours sera envoyée à cette liste

toute question concernant le cours doit être envoyée à cette liste
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Validation

Le cours sera évalué:

pour 50% par un projet2

pour 50% par un examen

Le projet consistera à développer un logiciel, en utilisant les
concepts et les techniques de programmation systèmes que nous
découvrirons.

2qui n’est pas du contrôle continu donc obligatoire
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