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Looking back

We have already seen the notion of thread,
at the very beginning of this course. . .
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Redux: multi-process I/O — file sharing

What happens when independent processes act on the same file?

APUE, Figure 3.7
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Redux: sharing resources among processes

It seems processes can share resources, such as the v-node table in
the previous (degenerate) example.
Can they share more?

Yes.

related processes can share file table entries

we now have seen how to do this (e.g. via fork inheritance). . .

processes can share specific memory regions of their own
address space (e.g. memory mapping, shared memory)

. . . and this (e.g. via mmap or shmat. . . )

pushing it to the extreme, multiple “processes” can share by
default their entire address space by the means of threads

. . . how about this?
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Redux: threads

By default, each process has only one thread of control (or “thread”),
i.e. only one set of instructions being executed at any given time.

Additional threads can be added at runtime.
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Threads and processes

Like processes, threads:

are a mechanism to allow applications to perform concurrent
tasks. . .

ñ e.g. doing CPU-intensive calculations. . . while updating the user
interface

possibly in a truly concurrent manner (as opposed to time
sharing) on a multiprocessor system

ñ e.g. doing CPU-intensive calculations. . . while waiting for I/O

Unlike processes:

threads are all executed in the same address space
ñ whereas processes had one address space each, copy-on-write’d

from the parent

Intuition
new process = new execution point + new address space

new thread = new execution point
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Why bother?
We have seen that, thanks to copy-on-write, fork is very fast.
Why bother with threads?

sharing information requires work — that’s why we have spent
one semester studying IPC mechanisms. . .

we can be faster than fork — even with COW, the kernel has to
duplicate the page table (and more)
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Why bother with threads?

sharing information requires work — that’s why we have spent
one semester studying IPC mechanisms. . .

we can be faster than fork — even with COW, the kernel has to
duplicate the page table (and more)

With threads:

thread creation is much faster than process creation, ≈10x:1

100’000 fork 22.27s
100’000 vfork 3.52s
100’000 “thread creations” 2.97s

we have sharing by default — global or heap variables are
accessible by all threads

drawback: we will need synchronization—badly and heavily—to
avoid race conditions and memory corruption

1on Linux 2.6.27, x86-32. Source: TLPI §28.3 (2010)
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Memory layout (approx.)
Virtual memory address

(hexadecimal)

argv, environ

Uninitialized data (bss)

Initialized data

Text (program code)

0xC0000000

Stack for main thread

Heap

0x08048000

0x40000000
TASK_UNMAPPED_BASE

0x00000000

Stack for thread 1

Stack for thread 2

Stack for thread 3

Shared libraries,
shared memory

main thread executing here

thread 1 executing here

thread 3 executing here

thread 2 executing here

in
cr

ea
si

n
g 

vi
rt

ua
l a

dd
es

se
s

TLPI, Figure 29-1

Example

4 threads in execution
ñ the main one + 3 extra

. . . with 4 independent
execution points

ñ i.e. 4 independent program
counter (PC) values

. . . with 4 independent stacks

. . . all sharing the same
address space
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Sharing. . .

Some shared traits, among threads of the same process:

address space

pid, parent pid, and most user info
ñ e.g. credentials, group, session, . . .

open file descriptors

most file system info
ñ e.g. current working directory, file locks, . . .

signal dispositions
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. . . or not sharing

Some non-shared traits, private to each thread of the same process:

thread ID

stack
ñ note: this means local variables are not shared either
ñ no encapsulation enforcement, though; beware of pointers

(black) magic

errno

signal mask

thread-local storage
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Pthreads API

Pthreads = POSIX thread API
In the 80–90s various APIs existed to do thread programming on
UNIX. POSIX.1c (1995) blessed Pthreads (“POSIX threads”) as the
standard thread API on UNIX. Later on, Pthreads have also been
integrated into SUSv3.

Main parts of Pthreads:

abstract data types (pthread_t, pthread_mutex_t, . . . )

thread management (creation, “wait”, cancellation, . . . )

mutex

condition variables

much more (read/write locks, memory barriers, . . . )

very large and complex API! we will only scratch the surface. . .
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errno and threads

1 errno is a global integer variable

2 errno depends on function return values

3 threads = independent execution points + same address space

FAIL. or not. . .

Gory details

in threaded programs ernno is actually a macro

. . . that expands to a function call

. . . which returns a modifiable lvalue

Bottom line
errno has been adapted to cope well with threads: each thread has
its own errno. Don’t worry about it.

Stefano Zacchiroli (Paris Diderot) POSIX Threads 2013–2014 14 / 68



errno and threads

1 errno is a global integer variable

2 errno depends on function return values

3 threads = independent execution points + same address space

FAIL.

or not. . .

Gory details

in threaded programs ernno is actually a macro

. . . that expands to a function call

. . . which returns a modifiable lvalue

Bottom line
errno has been adapted to cope well with threads: each thread has
its own errno. Don’t worry about it.

Stefano Zacchiroli (Paris Diderot) POSIX Threads 2013–2014 14 / 68



errno and threads

1 errno is a global integer variable

2 errno depends on function return values

3 threads = independent execution points + same address space

FAIL. or not. . .

Gory details

in threaded programs ernno is actually a macro

. . . that expands to a function call

. . . which returns a modifiable lvalue

Bottom line
errno has been adapted to cope well with threads: each thread has
its own errno. Don’t worry about it.

Stefano Zacchiroli (Paris Diderot) POSIX Threads 2013–2014 14 / 68



Return value convention

Usual convention

success: return 0 (or some positive informative value)

failure: return -1; set errno

Pthread API convention

success: return 0

failure: return errno value > 0

Why? Because.
(and also because every errno access in threaded programs costs you a
function call overhead)
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Thread-specific helper functions

void err_msg_p ( int errnum, const char *msg) {
char buf [ BUFSIZ ] ;

i f ( s t rer ror_r ( errnum, buf , BUFSIZ ) != 0)
fp r in t f ( stderr , "%s : Unknown error %d\n" ,

msg, errnum ) ;
else

fp r in t f ( stderr , "%s : %s\n" , msg, buf ) ;
}

void err_sys_p ( int errnum, const char *msg) {
err_msg_p (errnum, msg) ;
exit ( EXIT_FAILURE ) ;

}

Sample usage:

pthread_t thread ;
int s ;
s = pthread_func(&thread , . . . ) ;
i f ( s != 0)

err_sys_p ( s , " pthread_func " ) ;
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Compiling with Pthreads (on Linux)

On Linux, programs using Pthreads must be compiled passing the
-pthread option to the C compiler:

–pthread
Adds support for multithreading with the pthreads

library. This option sets flags for both the preprocessor and
linker.

— manpage CC(1)

Why?

Intuition: you need to tell the compiler toolchain to do all sort of
thread-specific treatments, like the errno trick.
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Thread creation

The main thread exists by default. We can add extra threads with:

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start)(void *), void *arg);

Returns: 0 on success, positive errno on error

What does the function prototype tell us?

start points to the thread code (i.e. a function)
arg will be passed as argument to start

ñ the new thread will start executing start(arg)
ñ the calling thread will continue execution after pthread_create
ñ the usual “who goes first?” race condition applies

thread will be filled with a thread ID identifying the just created
thread, before pthread_create returns
attr can be used to specify new thread attributes [. . . ]
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Thread termination

A thread terminates its execution when:

its “main” function terminates (using return or implicitly)

the thread is canceled using pthread_cancel (. . . )

any of the thread calls exit → all threads will terminate (!)

the thread calls pthread_exit:

#include <pthread.h>

void pthread_exit(void *retval);
Returns: does not return

retval will be available for inspection by other threads

note: the thread creation/termination API is more expressive
than fork/exit (why?)
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Thread “waiting”

After the thread-equivalent of fork, let’s see waitpid’s:

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);
Returns: 0 on success, positive errno on error

calling thread will block until thread terminates

if not NULL, retval will get a copy of thread return value

Notable differences with respect to wait(pid)

threads are peers not parents/children: anyone can join anyone

there is no direct equivalent of wait, to join with any thread
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Pthreads — example
#include <pthread .h>
#include " helpers .h"
void *tmain ( void *arg ) {

char *msg = ( char * ) arg ;
pr in t f ( " [ thread ] %s " , msg) ;
return ( ( void * ) str len (msg ) ) ;

}
int main ( int argc , char **argv ) {

pthread_t t ;
int s ;
void * res ;

pr in t f ( " creating thread . . . \ n" ) ;
s = pthread_create (&t , NULL,

tmain , ( void * ) " Hello , world !\n" ) ;
i f ( s != 0) err_sys_p ( s , " pthread_create " ) ;
s = pthread_join ( t , &res ) ;
i f ( s != 0) err_sys_p ( s , " pthread_join " ) ;
pr in t f ( " thread returned %ld\n" , ( long ) res ) ;
exit ( EXIT_SUCCESS ) ;

} /* end of hello_pthread . c */
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Pthreads — example (cont.)

Demo

argument passing between threads (forth and back)

judicious casting to return integers (still dangerous, though. . . )

Stefano Zacchiroli (Paris Diderot) POSIX Threads 2013–2014 21 / 68



Pthreads — larger example
#include <pthread .h>
#include " helpers .h"

void *tmain ( void *arg ) {
long id = ( long ) arg ;

pr in t f ( " [ thread %ld ] Hello , World !\n" , id ) ;
return ( ( void * ) id ) ;

}

int main ( int argc , char **argv ) {
int s ;
long i , threads_no ;
pthread_t * ts = NULL; // pthread_t array

i f ( argc != 2)
err_quit ( "Usage : hellos_pthread THREAD_NO" ) ;

threads_no = atol ( argv [ 1 ] ) ; // TODO: error checking

ts = cal loc ( threads_no , sizeof ( pthread_t ) ) ;
i f ( ts == NULL) err_sys ( " malloc " ) ;
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Pthreads — larger example (cont.)

for ( i = 0; i < threads_no ; i ++) {
pr in t f ( " creating thread %ld . . . \ n" , i ) ;
s = pthread_create ( ts + i , NULL,

tmain , ( void * ) i ) ;
i f ( s != 0) err_msg_p ( s , " pthread_create " ) ;

}

for ( i = 0; i < threads_no ; i ++) {
void * res ;
s = pthread_join ( ts [ i ] , &res ) ;
i f ( s != 0) err_msg_p ( s , " pthread_join " ) ;
pr in t f ( " thread %ld returned %ld\n" , i , ( long ) res ) ;

}

free ( ts ) ;
exit ( EXIT_SUCCESS ) ;

} /* end of hellos_pthread . c */
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Pthreads — larger example (cont.)

Demo

starts all threads before joining, to maximize parallelism

needs explicit thread (id) management

execution is non deterministic, as expected
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Zombie threads

Definition (thread zombie)

A thread is said to be a zombie thread if it has terminated and no
other thread has collected its return value (with pthread_join) yet.

Zombie threads pose very similar problems to zombie
processes—waste of system resources and, eventually, thread ID
exhaustion (making impossible to create new threads).

Stefano Zacchiroli (Paris Diderot) POSIX Threads 2013–2014 23 / 68



Detaching threads

To avoid thread zombies:

use pthread_join judiciously, or

make the thread non-joinable using:

#include <pthread.h>

int pthread_detach(pthread_t thread);
Returns: 0 on success, positive errno on error

Non-joinable threads are automatically reaped at termination (but it
is no longer possible to collect their return values).

Note: at exit, joinable and non-joinable threads are terminated all
alike.
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Thread identity

When doing thread management, it might come handy to answer the
question “Who am I ?”

#include <pthread.h>

pthread_t pthread_self(void);
Returns: thread ID of the calling thread

#include <pthread.h>

int pthread_equal(pthread_t t1, pthread_t t2);
Returns: nonzero value if t1 and t2 are equal, 0 otherwise

Note: pthread_t is an abstract data type, with different
implementations on different UNIX. You can’t use == on pthread_t
values, and there is no portable way of printing them.

you need a printable thread id?
pass one to your threads as we did in the example!
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Threads and critical sections

Reminder:

Definition (critical section)
A critical section is a code snippet that accesses a shared resource
and that shall be executed atomically with respect to other (kernel
scheduling) “entities” (KSE) accessing the same shared resource.

Up to now:

entities = processes

shared resources = those sharable between processes
ñ specific memory pages, file descriptors, SysV structures, etc.

Now we add:

entities = threads

shared resources = all non-local variables by default (!)
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Threads and critical sections — example

Let’s consider a simple example:

a process address space contains the global variable
static long glob = 0;

2 threads of the same process wants to increment the global
variable in parallel, as follows:

void *tmain ( void *arg ) {
long loc ;

loc = glob ;
loc++;
glob = loc ;

}

What could possibly go wrong?

To experimentally observe the problem, we will use 2 threads and
iterate the variable update code an increasing number of times. . .
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Threads and critical sections — example (cont.)

#include <pthread .h>
#include " helpers .h"

static long glob = 0;

void *tmain ( void *arg ) {
long n = ( long ) arg ;
long i , loc ;

for ( i = 0; i < n ; i ++) {
loc = glob ;
loc++;
glob = loc ;

}

return NULL;
}
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Threads and critical sections — example (cont.)
int main ( int argc , char **argv ) {

pthread_t t1 , t2 ;
int s ;
long n;
i f ( argc != 2)

err_quit ( "Usage : pthread_race ITERATIONS" ) ;
n = atol ( argv [ 1 ] ) ; // TODO: error checking

s = pthread_create (&t1 , NULL, tmain , ( void * ) n ) ;
i f ( s != 0) err_sys_p ( s , " pthread_create ( t1 ) " ) ;
s = pthread_create (&t2 , NULL, tmain , ( void * ) n ) ;
i f ( s != 0) err_sys_p ( s , " pthread_create ( t2 ) " ) ;

s = pthread_join ( t1 , NULL ) ;
i f ( s != 0) err_sys_p ( s , " pthread_join ( t1 ) " ) ;
s = pthread_join ( t2 , NULL ) ;
i f ( s != 0) err_sys_p ( s , " pthread_join ( t2 ) " ) ;

pr in t f ( " glob = %ld ( expected : %ld )\n" , glob , n * 2) ;
exit ( EXIT_SUCCESS ) ;

} /* end of pthread_race . c */
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Threads and critical sections — example (cont.)

Demo
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Threads and critical sections — example (cont.)

Repeatedly:
l oc = gl ob;

l oc++;
gl ob = l oc;

time slice
expires

time slice
begins

Thread 2Thread 1

l oc = gl ob;

Repeatedly:
l oc = gl ob;

l oc++;
gl ob = l oc;

l oc++;
gl ob = l oc;

Current
value of

glob

2001

3000

2000

time slice
begins

time slice
ends

Executing

on CPU

Waiting

for CPU

Key

TLPI, Figure 30-1

Exercise

Why does it work
properly for a
small enough
number of
iterations?

Exercise

Would replacing
the 3-instruction
update with
glob++ solve the
problem?
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Thread mutex

As usual, to enforce critical
sections, we need some mutual
exclusion mechanism.

The Pthreads API offers mutex as
a fast synchronization mechanism
to enforce mutual exclusion
between threads.

Terminology and “protocol”:
1 threads lock mutex

ñ AKA: “acquire”

2 critical section
3 threads unlock mutex

ñ AKA: “release”

lock mutex M

access shared resource

unlock mutex M

lock mutex M

access shared resource

unlock mutex M

blocks

unblocks, lock granted

Thread A Thread B

TLPI, Figure 30-2

Figure : sample interaction between
2 threads trying to access the same
mutex (and shared resource)
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Creating mutex

Pthread mutex creation depends on whether you want to allocate
them statically (i.e. in a global variable) or dynamically (i.e. in a
malloc-ed memory area).

Static mutex allocation is easier, just declare a global variable:

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER ;

Drawback: you will get a mutex initialized with various default
mutex attributes.
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Creating mutex (cont.)

Dynamic mutex allocation is more flexible and is achieved using:

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

Returns: 0 on success, positive errno on error

where mutex points to dynamic memory (i.e. either allocated on
the heap with malloc or a local variable allocated on the stack)

attr (when non NULL) allows to specify desired non-default
mutex attributes
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Destroying mutex

Dynamically allocated mutex should be destroyed when no longer
needed using:

#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);
Returns: 0 on success, positive errno on error

For your health:

destroy a mutex only when it is unlocked, and

no other thread will lock it further in the future
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Mutex types

The most relevant mutex attribute is the mutex type. On it depend
the results of the following corner case operations:

1 trying to lock a mutex already locked by yourself
2 trying to unlock a mutex that is not locked
3 trying to unlock a mutex locked by others

Mutex types:

PTHREAD_MUTEX_NORMAL (1) → deadlock; (2),(3) → undefined

PTHREAD_MUTEX_ERRORCHECK error checking on all operations
(hence: slower mutex): (1),(2),(3) → error

ñ deadlocks involving multiple threads are still possible though

PTHREAD_MUTEX_RECURSIVE reference counting: (1) → increase
counter; (2) → decrease counter, “unlock” when the counter
reaches 0, error when trying to get it below 0; (3) → error

See: pthread_mutexattr_settype man page.
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Mutex lock/unlock

Locking/unlocking mutex is straightforward using:

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);
Returns: 0 on success, positive errno on error

*_lock and *_unlock have the obvious semantics. *_trylock is
the non-blocking equivalent of *_lock.

For a more fancy (and seldomly needed) feature, see also
pthread_mutex_timedlock (timed equivalent of *_lock).
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Mutex — example
#include <pthread .h>
#include " helpers .h"

static long glob = 0;
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER ;

void *tmain ( void *arg ) {
long n = ( long ) arg ;
long i , loc ;
int s ;
for ( i = 0; i < n ; i ++) {

s = pthread_mutex_lock(&mtx ) ; // begin CS
i f ( s != 0) err_sys_p ( s , " pthread_mutex_lock " ) ;
loc = glob ;
loc++;
glob = loc ;
s = pthread_mutex_unlock(&mtx ) ; // end CS
i f ( s != 0) err_sys_p ( s , " pthread_mutex_unlock " ) ;

}
return NULL;

}
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Mutex — example (cont.)
int main ( int argc , char **argv ) { // main unchanged

pthread_t t1 , t2 ;
int s ;
long n;
i f ( argc != 2)

err_quit ( "Usage : pthread_race ITERATIONS" ) ;
n = atol ( argv [ 1 ] ) ; // TODO: error checking

s = pthread_create (&t1 , NULL, tmain , ( void * ) n ) ;
i f ( s != 0) err_sys_p ( s , " pthread_create ( t1 ) " ) ;
s = pthread_create (&t2 , NULL, tmain , ( void * ) n ) ;
i f ( s != 0) err_sys_p ( s , " pthread_create ( t2 ) " ) ;

s = pthread_join ( t1 , NULL ) ;
i f ( s != 0) err_sys_p ( s , " pthread_join ( t1 ) " ) ;
s = pthread_join ( t2 , NULL ) ;
i f ( s != 0) err_sys_p ( s , " pthread_join ( t2 ) " ) ;

pr in t f ( " glob = %ld ( expected : %ld )\n" , glob , n * 2) ;
exit ( EXIT_SUCCESS ) ;

} /* end of pthread_mutex . c */
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Mutex — example (cont.)

Demo
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Mutex performances

“lies, damned lies, and benchmarks”, but FWIW:2

20’000’000 (20M) POSIX lock/unlock = 20.00s

20M SysV semop = 12.00s

20M flock lock/unlock = 3.46s

pthread_mutex 10M (i.e. 20M mutex lock/unlock) = 1.65s

pthread_race 10M = 0.15s

ñ to give the wrong answer!

Note: in the specific case of pthread_mutex, mutex operations
dominate over the actual critical section code, because the critical
section code does almost nothing.
That’s not the usual scenario.

2on Linux x86-64, Intel i5, quad-core, 2.5 GHz
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Producer-consumer problem

The producer-consumer (P-C) problem is a paradigmatic case in the
theory of multi-process synchronization.

a producer process works hard to produce discrete goods
(bread, some computation result, etc). Each time a new unit is
ready, the producer adds it to some shared storage containing
available goods

a consumer process works hard to consume goods. Each time
he is ready, the consumer removes some available good from
the shared storage

The producer-consumer problem is used to show many
synchronization issues, including race conditions.

Many variants: limited/unlimited storage size, one/many producers,
one/many consumers, etc.
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Producer-consumer with mutex

Example (simple producer-consumer)

Unlimited storage, 1 producer, 1 consumer.

We already know how to avoid the most obvious race condition in
this scenario, i.e. non-atomic, concurrent updates to the shared
storage of goods.

Let’s see a naive implementation that uses Pthread mutex.
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P-C with mutex — example (producer)

#include <pthread .h>
#include <unistd .h>
#include " helpers .h"

static long goods = 0; // n . of available items
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER ;

void *producer ( void *arg ) { // producer thread
int s ;
for ( ; ; ) {

sleep ( 1 ) ; // takes time to produce
s = pthread_mutex_lock(&mtx ) ;
i f ( s != 0) err_sys_p ( s , " pthread_mutex_lock " ) ;
goods++;
s = pthread_mutex_unlock(&mtx ) ;
i f ( s != 0) err_sys_p ( s , " pthread_mutex_unlock " ) ;

}
return NULL;

}
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P-C with mutex — example (consumer)

int main ( int argc , char **argv ) { // consumer thread
int s ;
pthread_t t ;

s = pthread_create (&t , NULL, producer , NULL ) ;
i f ( s != 0) err_sys_p ( s , " pthread_create " ) ;

for ( ; ; ) {
s = pthread_mutex_lock(&mtx ) ;
i f ( s != 0) err_sys_p ( s , " pthread_mutex_lock " ) ;
while (goods > 0) {

goods−−;
pr in t f ( "consuming . . . good!\n" ) ;

}
s = pthread_mutex_unlock(&mtx ) ;
i f ( s != 0) err_sys_p ( s , " pthread_mutex_unlock " ) ;

}

exit ( EXIT_SUCCESS ) ;
} /* end of pc−naive . c */
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P-C with mutex — example

Demo

what’s wrong with this implementation?

time-wise, the process is producer-bound: it takes time to
produce, but no time (or much less) to consume

but the consumer is polling (draining CPU, battery, etc), just to
discover whether goods are available or not
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Condition variables

We can solve this and similar problems with condition variables.

Intuition
A condition variable is a rendez-vous point where observers
interested in the state of a shared resource can wait for some
condition to be verified; complementary, others can notify waiting
threads that the condition in question is verified.

The following operations can be performed on condition variables:

wait block until a notification arrives

signal send a notification

condition variables are always used in conjunction with mutex
to guarantee mutual exclusion on the shared resource

condition variables are stateless
ñ i.e. if no thread is waiting when a notification happens, the

notification is lost
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Creating condition variables

As with mutex, you can create condition variables either in static
memory, using

pthread_cond_t mtx = PTHREAD_COND_INITIALIZER ;

or in dynamic memory with

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

Returns: 0 on success, positive errno on error

See pthread_condattr_* syscalls for more info about condition
variable attributes.
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Acting on condition variables

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);
Returns: 0 on success, positive errno on error

*_wait does the following steps, in order:3

1 unlock mutex
2 suspend execution of the calling thread until cond is signaled
3 lock mutex again

3we will see in a bit why
Stefano Zacchiroli (Paris Diderot) POSIX Threads 2013–2014 47 / 68



Acting on condition variables (cont.)

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);
Returns: 0 on success, positive errno on error

*_signal inform at least one of the waiting threads to wake up

Use case: it doesn’t matter which thread will perform a task, as long as
one does; e.g. worker pool.

*_broadcast inform all waiting threads to wake up

Use case: all waiting threads need to do something in reaction to the
event, e.g.: publish/subscribe.
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Acting on condition variables (cont.)

#include <pthread.h>
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P-C with condition variables — example

Let’s redo the producer-consumer example using condition variables
to avoid polling.

Idea:

a single condition variable avail, meaning “goods are available”

if no goods are available, the consumer will wait on avail

each time the producer produces something, it signals avail to
awake the consumer (if he is asleep)
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P-C with condition variables — example (producer)
#include <pthread .h>
#include " helpers .h"

static long goods = 0; // n . of available items
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER ;
static pthread_cond_t ava i l = PTHREAD_COND_INITIALIZER ;

void *producer ( void *arg ) { // producer thread
int s ;
for ( ; ; ) {

sleep ( 1 ) ; // takes time to produce
s = pthread_mutex_lock(&mtx ) ;
i f ( s != 0) err_sys_p ( s , " pthread_mutex_lock " ) ;
goods++;
s = pthread_mutex_unlock(&mtx ) ;
i f ( s != 0) err_sys_p ( s , " pthread_mutex_unlock " ) ;
s = pthread_cond_signal (& ava i l ) ;
i f ( s != 0) err_sys_p ( s , " pthread_cond_signal " ) ;

}
return NULL;

}
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P-C with condition variables — example (consumer)
int main ( int argc , char **argv ) { // consumer thread

int s ;
pthread_t t ;
s = pthread_create (&t , NULL, producer , NULL ) ;
i f ( s != 0) err_sys_p ( s , " pthread_create " ) ;
for ( ; ; ) {

s = pthread_mutex_lock(&mtx ) ;
i f ( s != 0) err_sys_p ( s , " pthread_mutex_lock " ) ;
while (goods == 0) {

s = pthread_cond_wait (& avai l , &mtx ) ;
i f ( s != 0) err_sys_p ( s , " pthread_cond_wait " ) ;

}
while (goods > 0) {

goods−−;
pr in t f ( "consuming . . . good!\n" ) ;

}
s = pthread_mutex_unlock(&mtx ) ;
i f ( s != 0) err_sys_p ( s , " pthread_mutex_unlock " ) ;

}
exit ( EXIT_SUCCESS ) ;

} /* end of pc−cond . c */
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P-C with condition variables — example

Demo

no polling, by design

consumer awaken only when needed

CPU back under control
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Wait subtleties (1)

Here is how we would like to use condition variables:
pthread_mutex_lock(&mtx ) ;

i f ( /* shared resource i s *not* in desired state */ )
pthread_cond_wait (&cond , &mtx ) ;

/* desired state of shared resource reached ;
work on shared resource */

pthread_mutex_unlock(&mtx ) ;

shared resource access must be mutex-protected, in particular:
ñ the state test
ñ the actual work

but we cannot block while holding the mutex
ñ otherwise other threads won’t be able to change shared resource

to the state we need to wakeup → deadlock
⇒ the unlock; wait; lock semantics

ñ with atomic execution of the wait; lock part (why?)
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Wait subtleties (2)

Let’s look again at this code:

pthread_mutex_lock(&mtx ) ;

i f ( /* shared resource i s *not* in desired state */ )
pthread_cond_wait (&cond , &mtx ) ;

/* desired state of shared resource reached ;
work on shared resource */

pthread_mutex_unlock(&mtx ) ;

What if:

other threads executing the same code are woken up together
with me, but execute first?
spurious wakeups happens? (i.e. waking up even if nobody has
signaled)

You’ll end up executing as if the condition were satisfied, while
that’s not necessarily the case. FAIL.
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Wait subtleties (2) (cont.)

Bottom line: you should always recheck the predicate associated to a
condition variable immediately after wakeup

if it’s not satisfied, wait again

Condition variable wait recipe
pthread_mutex_lock(&mtx ) ;

while ( /* shared resource i s *not* in desired state */ )
pthread_cond_wait (&cond , &mtx ) ;

/* desired state of shared resource reached ;
work on shared resource */

pthread_mutex_unlock(&mtx ) ;

Intuition / design principle

Think of condition variables as expressing the possibility that a
predicate is verified, rather than the certainty of it.
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Destroying condition variable

As it happened with mutex, dynamically allocated condition variable
should be destroyed when no longer needed using:

#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t *cond);
Returns: 0 on success, positive errno on error

For your health: destroy a condition variable only when no threads
are waiting on it.
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Thread safety

Definition (thread-safe function)

A function is said to be thread-safe if it can be “safely” invoked by
multiple threads concurrently, i.e. without inducing race conditions,
data corruption, or other synchronization problems.

Conversely, your threads should not invoke thread-unsafe functions,
without explicit synchronization among them—e.g. by using mutex
to ensure that only one thread at a time invokes the function.
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Thread unsafety — example

Here is an example of a non thread-safe function, as a degenerate
case of the synchronization example we’ve seen:

static int glob = 0;

void do_something ( void ) {
int loc ;
/* do something useful . . . */
loc = glob ;
loc++;
glob = loc ;
/* do something else . . . */

}

concurrent use of this function by multiple threads makes the
final value of glob unpredictable
common cause of unsafety: global variables / static memory

ñ precisely because they are global, shared resources among all
threads, i.e. the basic ingredient of race conditions
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Thread safety approaches

Ideally, we want all functions we use to be thread safe.
So, how do we make a function thread-safe?

1 use (and write) only reentrant functions

Definition (reentrant function)

A function is reentrant if it does not access global variables and
static memory, i.e. it only accesses parameters and local variables

ñ local variables are allocated on the stack
ñ we have one-stack per thread
ñ no more shared resources! → no more race conditions!!

Unfortunately, that is not always possible:

intrinsically global data structures
ñ e.g. malloc & friends’ lists of free/available heap memory

old, standard functions with non-reentrant interfaces
ñ e.g. returning a pointer to statically allocated memory
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Thread safety approaches (cont.)

2 serialize usage of non thread-safe functions using mutex

static int glob = 0;
pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

void do_something ( void ) {
int loc ;
pthread_mutex_lock(mtx);
/* do something useful . . . */
loc = glob ;
loc++;
glob = loc ;
/* do something else . . . */
pthread_mutex_unlock(mtx);

}

similar to Java’s synchronized methods

drawback: might greatly reduce the parallelism of your program
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Thread safety approaches (cont.)

3 protect critical-section snippets with mutex

static int glob = 0;
pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

void do_something ( void ) {
int loc ;
/* do something useful . . . */
pthread_mutex_lock(mtx);
loc = glob ;
loc++;
glob = loc ;
pthread_mutex_unlock(mtx);
/* do something else . . . */

}

drawback: hard to get right

How about functions written by others. . . ?
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Thread-safe POSIX functions

POSIX requires all functions to be thread-safe, with the exception of:

asctime basename catgets crypt ctermid ctime dbm_clearerr dbm_close
dbm_delete dbm_error dbm_fetch dbm_firstkey dbm_nextkey dbm_open

dbm_store dirname dlerror drand48 ecvt encrypt endgrent endpwent endutxent
fcvt ftw gcvt getc_unlocked getchar_unlocked getdate getenv getgrent getgrgid

getgrnam gethostbyaddr gethostbyname gethostent getlogin getnetbyaddr
getnetbyname getnetent getopt getprotobyname getprotobynumber getprotoent

getpwent getpwnam getpwuid getservbyname getservbyport getservent
getutxent getutxid getutxline gmtime hcreate hdestroy hsearch inet_ntoa l64a

lgamma lgammaf lgammal localeconv localtime lrand48 mrand48 nftw
nl_langinfo ptsname putc_unlocked putchar_unlocked putenv pututxline rand

readdir setenv setgrent setkey setpwent setutxent strerror strsignal strtok system
tmpnam ttyname unsetenv wcrtomb wcsrtombs wcstombs wctomb

note: they could be thread-safe, in specific implementations
thread-safe by default is quite nice!
for some of them, SUSv3 introduced thread-safe equivalent

ñ e.g. compare rand/rand_r, getlogin/getlogin_r, . . .
see pthreads(7) for more details
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Pthreads — going further

To reiterate:

[ Pthreads is a ] very large and complex API! we will only
scratch the surface. . .

Let’s see an overview of what you’re missing.
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Thread-specific data & thread-local storage

Let’s assume you have a function with a non thread-safe interface
and you want to make it thread-safe.

Using thread-specific data you can do so without using mutex.

thread-specific data is a standard API that allows threads to
transparently use thread-specific copies of static variables

An easier to use alternative is thread-local storage. Just declare:

s ta t i c __thread buf [ BUFSIX ] ;

and each thread will get its own copy of the variable.
However, this is not portable, but supported at least on Linux,
Solaris, FreeBSD.
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Thread cancellation

You want to do some thread orchestration where a master thread
create slave threads and might need to destroy them in response to
external events (e.g. user request).
Implementing this with what we’ve seen is cumbersome, e.g.:

shared data structure “list of threads that should die”

master threads add entries (e.g. thread IDs) to it

slave threads periodically check the list and terminate
voluntarily if their thread ID show up there

With thread cancellation a thread can ask another to terminate:

either at the next synchronization point, or

abruptly

Not particularly sane way of managing threads. . . , hard to get right.

more info
pthread_cancel(3), pthreads(7)
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Threads and signals

Don’t do that.

General idea:

signals can target individual threads or the process as a whole

signal dispositions are global, but signal masks are per-thread

good model: delegate signal management to a single thread,
protect all other threads with masks

bonus point: as the signal management thread has nothing else
to do, make it handle signal synchronously with:

#include <signal.h>

int sigwait(const sigset_t *set, int *sig);
Returns: 0 on success, positive errno on error
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Threads vs processes

Threads, pros:

sharing data between threads (of the same process) is easy

thread creation is faster than process creation
ñ context switch between threads might be faster, too

Threads, cons:

address space is shared by default among threads → larger
surface for race conditions; therefore you need:

ñ judicious synchronization between threads
ñ judicious use of thread-safe functions

poor isolation: a bug in one thread can very easily damage the
state of other threads

threads compete for virtual address space
ñ thread stacks and thread-local storage can deplete available

virtual addresses (especially on 32bit architectures)
ñ this is not the case for processes, as each process has its own

address space
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