
Génie Logiciel Avancé
Cours 7 — Kick-starting and Maintaining TDD

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire PPS, Université Paris Diderot

2014–2015

URL http://upsilon.cc/zack/teaching/1415/gla/
Copyright © 2013–2015 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 1 / 49

http://upsilon.cc/zack/teaching/1415/gla/
http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Reminder

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 2 / 49

Reminder (cont.)

GOOS, Figure 5.2

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 2 / 49

Outline

1 Kick-starting TDD

2 Maintaining TDD — part 1
Test smells
Test readability
Constructing complex test data
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 3 / 49

Outline

1 Kick-starting TDD

2 Maintaining TDD — part 1
Test smells
Test readability
Constructing complex test data
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 4 / 49

TDD — the bigger picture

It is tempting to use only unit tests to implement TDD, but:

you might end up having a lot of unused well-tested units

you don’t know where to start, nor when to stop

That’s why TDD leverages both acceptance (outer feedback loop)
and unit tests (inner feedback loop):

GOOS, Figure 1.2

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 5 / 49

TDD — the bigger picture

It is tempting to use only unit tests to implement TDD, but:

you might end up having a lot of unused well-tested units

you don’t know where to start, nor when to stop

That’s why TDD leverages both acceptance (outer feedback loop)
and unit tests (inner feedback loop):

GOOS, Figure 1.2

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 5 / 49

End-to-end testing

Acceptance tests should exercise the system end-to-end

black-box testing at system level
ñ no instantiation/invocation of internal objects
ñ use the system via its interfaces (user interface, external API,

parsing its output and producing its inputs, etc.)

test both the system and its processes
ñ build
ñ deployment in a realistic environment

« don’t trust the results of acceptance tests run in development
environments

ñ any other qualification mechanism
« e.g. static analyses, stress testing, benchmark, etc.

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 6 / 49

Testing, quality, feedback

External quality: how
well the system meets
the needs of its users

Internal quality: how
well the system meets
the needs of its
developers

e.g. good design:
low coupling & high
cohesion

it is often harder to
push for internal
than external quality,
but we need to do so
to cope with changes

GOOS, Figure 1.3

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 7 / 49

First feature paradox

Writing the first acceptance test at the beginning of a project is
problematic:

we want to test end-to-end the system and its processes
but we don’t have yet the tooling to make the test fail

To get out of the paradox we compromise a bit, implementing a
walking skeleton to kick start TDD.

Definition (walking skeleton)

An implementation of the smallest possible part of real functionality
that we can automatically build, deploy, and test end-to-end.

To implement the walking skeleton we need to automate a lot of
processes. That will force us to understand them better.

Example

The walking skeleton of a DBMS-backed web application will just
show a static “Hello, World” web page.

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 8 / 49

First feature paradox

Writing the first acceptance test at the beginning of a project is
problematic:

we want to test end-to-end the system and its processes
but we don’t have yet the tooling to make the test fail

To get out of the paradox we compromise a bit, implementing a
walking skeleton to kick start TDD.

Definition (walking skeleton)

An implementation of the smallest possible part of real functionality
that we can automatically build, deploy, and test end-to-end.

To implement the walking skeleton we need to automate a lot of
processes. That will force us to understand them better.

Example

The walking skeleton of a DBMS-backed web application will just
show a static “Hello, World” web page.

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 8 / 49

Walking skeleton

(Some of the) tasks to be completed as part of a walking skeleton:

create a VCS repository, check in the code
ñ requirements: choose Version Control System, choose hosting

automate the build process
ñ requirement: choose build tool (e.g. Ant, Maven)
ñ note: “just click a button in Eclipse” ≠ automation

automate deployment in a realistic environment
ñ requirement: choose packaging/deployment mechanisms

automate test execution
ñ requirement: choose test framework
ñ again: “just click a button in Eclipse” ≠ automation

. . .

iteration 0: implement, deploy, test first feature

Yes, it’s a lot of work!

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 9 / 49

Kick-starting TDD

GOOS, Figure 4.2

Note: “Broad-Brush Design” ≠ “Big Design Up Front (BDUF)”

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 10 / 49

TDD as a whole

Periodically reassess both your understanding of the problem and
the toolchain

GOOS, Figure 4.2

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 11 / 49

TDD as a whole

Periodically reassess both your understanding of the problem and
the toolchain

GOOS, Figure 4.3

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 11 / 49

Test suites organization

unit and integration test suites
ñ should always pass
ñ should run fast

acceptance test suite
ñ catch regressions
ñ should always pass
ñ might take longer to run

new acceptance test suite
ñ corresponds work in progress
ñ will keep on failing during inner loop iterations

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 12 / 49

Outline

1 Kick-starting TDD

2 Maintaining TDD — part 1
Test smells
Test readability
Constructing complex test data
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 13 / 49

Listen to the tests

you encounter a feature
which is difficult to test

don’t work around that,
investigate why it is the case

often, that leads to missed
refactoring from previous
iterations of the inner loop

ñ potential future
maintenance problem

take the chance and do the
refactoring GOOS, Figure 5.3

More generally: notice test smells and let them guide your design (if
the feature is yet to be implemented) or your refactoring (otherwise)

note: in the following, most of the code examples are from the GOOS book

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 14 / 49

Sommaire

1 Kick-starting TDD

2 Maintaining TDD — part 1
Test smells
Test readability
Constructing complex test data
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 15 / 49

Tell, don’t ask

“Train wreck” code: series of getters chained together like the
carriages in a train:

((EditSaveCustomizer) master . getModelisable ()
. getDockablePanel ()

. getCustomizer ())
. getSaveItem () . setEnabled (Boolean . FALSE . booleanValue ()) ;

what it actually means:

master . allowSavingOfCustomisations () ;

“Tell, don’t ask” principle

Don’t ask (recursively) access to objects internals that allow you to
perform a specific operation. Rather, tell the (outermost) object to
do something on your behalf; let it do the same, recursively, as
needed.

This makes your tests (and code in general) more resistant to
changes in object organization.
Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 16 / 49

Tell, don’t ask (cont.)

When you really have to ask, do so explicitly via well-defined query
methods (i.e. queries that have clear names and well-defined
semantics):

public void reserveSeats (ReservationRequest request) {
for (Carriage carriage : carriages) {

i f (carriage . getSeats () . getPercentReserved () < percentReservedBarrier) {
request . reserveSeatsIn (carriage) ;
return ;

} }
request . cannotFindSeats () ; }

⇓
public void reserveSeats (ReservationRequest request) {

for (Carriage carriage : carriages) {
i f (carriage .hasSeatsAvailableWithin(percentReservedBarrier)) {

request . reserveSeatsIn (carriage) ;
return ;

} }
request . cannotFindSeats () ; }

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 17 / 49

Object relationships

When writing tests and designing OO systems, the following
classification of object relationships come in handy [GOOS]:

Dependencies: services that the object requires from its peers so it
can perform its responsibilities. Object cannot function
without these services. It should not be possible to
create the object without them.

Notifications: peers that need to be kept up to date with the object’s
activity. Notifications are fire-and-forget (i.e. can be
lost) and the notifier doesn’t care about which peers are
listening.

Adjustments: peers that adjust the object’s behaviour to the wider
needs of the system. E.g. policy objects (cfr. the
strategy design pattern).

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 18 / 49

Singletons are dependencies

public boolean acceptRequest (Request request) {
f inal Date now = new Date();
i f (dateOfFirstRequest == null) {

dateOfFirstRequest = now;
} else i f (f irstDateIsDifferentFrom (now)) {

return false ;
}
// process the request
return true ;

}

@Test public void rejectsRequestsNotWithinTheSameDay () {
receiver . acceptRequest (FIRST_REQUEST) ;
// the next day ← how do we implement this?
assertFalse (" too late now" ,

receiver . acceptRequest (SECOND_REQUEST)) ;
}

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 19 / 49

Singletons are dependencies (cont.)

Problem: singletons hide dependencies — not surprising at all, as
singletons are global variables.
Solution: make the dependency explicit.

public boolean acceptRequest (Request request) {
f inal Date now = clock.now();
i f (dateOfFirstRequest == null) {

dateOfFirstRequest = now;
} else i f (f irstDateIsDifferentFrom (now)) {

return false ;
}
// process the request
return true ;

}
@Test public void rejectsRequestsNotWithinTheSameDay () {

Receiver receiver = new Receiver(stubClock);
stubClock . setNextDate (TODAY) ;
receiver . acceptRequest (FIRST_REQUEST) ;
stubClock . setNextDate (TOMORROW) ;
assertFalse (" too late now" , receiver . acceptRequest (SECOND_REQUEST)) ;

}

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 20 / 49

Singletons are dependencies (cont.)

Problem: singletons hide dependencies — not surprising at all, as
singletons are global variables.
Solution: make the dependency explicit.

public boolean acceptRequest (Request request) {
f inal Date now = clock.now();
i f (dateOfFirstRequest == null) {

dateOfFirstRequest = now;
} else i f (f irstDateIsDifferentFrom (now)) {

return false ;
}
// process the request
return true ;

}
@Test public void rejectsRequestsNotWithinTheSameDay () {

Receiver receiver = new Receiver(stubClock);
stubClock . setNextDate (TODAY) ;
receiver . acceptRequest (FIRST_REQUEST) ;
stubClock . setNextDate (TOMORROW) ;
assertFalse (" too late now" , receiver . acceptRequest (SECOND_REQUEST)) ;

}
Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 20 / 49

Singletons are dependencies (cont.)

The general problem highlighted by singletons is that hiding
dependencies (e.g. via global variables) does not make them
disappear. They are still there, ready to strike back—e.g. when, to
test the code, you need to change/fake them.

Dependencies — golden rule

An object should only deal with values that are either local
(i.e. created and managed within its scope) or passed in explicitly
(e.g. at construction or method invocation-time).

This is the key rule to achieve context independent objects.

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 21 / 49

Bloated constructor

By adding one dependency at a time we might end up with:

public class MessageProcessor {
public MessageProcessor (MessageUnpacker unpacker ,

AuditTrai l auditor ,
CounterPartyFinder counterpartyFinder ,
LocationFinder locationFinder ,
DomesticNotifier domesticNotifier ,
ImportedNotifier importedNotifier)

{ /* set the f i e lds here */ }

public void onMessage (Message rawMessage) {
UnpackedMessage unpacked =

unpacker . unpack (rawMessage , counterpartyFinder) ;
auditor . recordReceiptOf (unpacked) ;
// some other ac t i v i ty here
i f (locationFinder . isDomestic (unpacked)) {

domesticNotifier . not i fy (unpacked . asDomesticMessage ()) ;
} else {

importedNotifier . not i fy (unpacked . asImportedMessage ())
}

}Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 22 / 49

Bloated constructor (cont.)

Solution #1: look for objects that are always used together ⇒ they
probably denote a single concept that should be factorized out.

counterpartyFinder always used with unpacker? then

UnpackedMessage unpacked = unpacker.unpack(rawMessage);

locationFinder + 2 notifiers always used together? then

public MessageProcessor (MessageUnpacker unpacker ,
AuditTrai l auditor ,
MessageDispatcher dispatcher)
// much better!

{ /* set the f i e lds here */ }

public void onMessage (Message rawMessage) {
UnpackedMessage unpacked =

unpacker . unpack (rawMessage) ;
auditor . recordReceiptOf (unpacked) ;
// some other ac t i v i ty here
dispatcher . dispatch (unpacked) ;

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 23 / 49

Confused object

public class Handset {
public Handset (Network network , Camera camera , Display display ,

DataNetwork dataNetwork , AddressBook addressBook ,
Storage storage , Tuner tuner , . . .)

{ /* set the f i e lds here */ }
public void placeCallTo (DirectoryNumber number) {

network . openVoiceCallTo (number) ;
}
public void takePicture () {

Frame frame = storage . allocateNewFrame () ;
camera . takePictureInto (frame) ;
display . showPicture (frame) ;

}
public void showWebPage(URL ur l) {

display . renderHtml (dataNetwork . retrievePage (ur l)) ;
}
public void showAddress (SearchTerm searchTerm) {

display . showAddress (addressBook . findAddress (searchTerm)) ;
}
public void playRadio (Frequency frequency) {

tuner . tuneTo (frequency) ;
tuner . play () ;

}
// . . .

}Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 24 / 49

Confused object (cont.)

Another instance of bloated constructor.

Different problem: the object has too many responsibilities.

Solution #2: split distinct objects, each one with a single
responsibility, possibly assemblying objects back using containers
where needed. The resulting objects can now be tested separately
and more easily — in particular test setup is much easier.

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 25 / 49

Alleged dependencies

public class RacingCar {
private final Track track ;
private Tyres tyres ;
private Suspension suspension ;
private Wing frontWing ;
private Wing backWing ;
private double fuelLoad ;
private CarListener l i s tener ;
private DrivingStrategy driver ;
public RacingCar (Track track , DrivingStrategy driver , Tyres tyres ,

Suspension suspension , Wing frontWing , Wing backWing ,
double fuelLoad , CarListener l i s tener)

{
this . track = track ;
this . dr iver = driver ;
this . tyres = tyres ;
this . suspension = suspension ;
this . frontWing = frontWing ;
this . backWing = backWing ;
this . fuelLoad = fuelLoad ;
this . l i s tener = l i s tener ;

}
}

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 26 / 49

Alleged dependencies (cont.)

Another instance of bloated constructor.
Different problem: the object declares unneeded dependencies,
i.e. some of them are not real dependencies. Objects can in fact be
instantiated without providing them.
Solution #3: make arguments optional and rely on sane default
values and getters/setters.

private DrivingStrategy driver = DriverTypes . borderlineAggressiveDriving () ;
private Tyres tyres = TyreTypes . mediumSlicks () ;
private Suspension suspension = SuspensionTypes . mediumStiffness () ;
private Wing frontWing = WingTypes .mediumDownforce () ;
private Wing backWing = WingTypes .mediumDownforce () ;
private double fuelLoad = 0.5;
private CarListener l i s tener = CarListener .NONE;

public RacingCar (Track track) { this . track = track ; }

public void setSuspension (Suspension suspension) { /* . . . */
public void setTyres (Tyres tyres) { /* . . . */
public void setEngine (Engine engine) { /* . . . */
public void setListener (CarListener l i s tener) { /* . . . */

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 27 / 49

Sommaire

1 Kick-starting TDD

2 Maintaining TDD — part 1
Test smells
Test readability
Constructing complex test data
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 28 / 49

Test readability

In general, we strive for readable (production) code.

developers spend more time reading code than writing it

readable code ⇒ code that is easy to change/debug/fix

For the same reasons, we want readable tests.

tests break for valid reasons (refactoring, regressions, etc.)

when that happens we want to be able to fix them easily

otherwise TDD becomes a burden; we will be tempted to:
ñ @Ignore specific tests
ñ drop TDD as a whole

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 29 / 49

Test readability (cont.)

On the other hand: test readability has different goals than
(production) code readability

Production code readability

Production code should be abstract on the values it manipulates, but
concrete about how it gets the job done

Test readability

Tests describe what the production code does; test should read as
declarative descriptions of what is being tested

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 29 / 49

Test names describe feature

public class TargetObjectTest // very bad convention
// no information conveyed

@Test public void test1 () {
@Test public void test2 () {
@Test public void test3 () {

public class TargetObjectTest { // bad convention too
// you should test features , not methods

@Test public void isReady () { [. . .]
@Test public void choose () { [. . .]
@Test public void choose1 () { [. . .]

public class TargetObject {
public void isReady () { [. . .]
public void choose (Picker picker) { [. . .]

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 30 / 49

TestDox

A good naming convention for test is known as TestDox.
each test name reads like a sentence
each test has the target class as implicit subject

E.g.:
a List holds items in the order they were added
a List can hold multiple references to the same item
a List throws an exception when removing a missing item

public class ListTests {
@Test public void
holdsItemsInTheOrderTheyWereAdded () { //

@Test public void
canHoldMultipleReferencesToTheSameItem () { //

@Test public void
throwsAnExceptionWhenRemovingAnItemItDoesntHold () { //

Note: we don’t care about name length. Test names are discovered
via reflection, we never have to type them.
Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 31 / 49

TestDox — IDE support

Once a convention like TestDox is adopted, IDE support can be
added to it, e.g.:

GOOS, Figure 21.1

Figure: TestDox IntelliJ plug-in

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 32 / 49

Canonical test structure

1 Setup: prepare the test context (environment, input, etc.)
2 Execute: call target code
3 Verify: check visible effects of target code
4 Teardown: (optional) cleanup leftover state that could break test

isolation

Leaving teardown implicit, an equivalent mnemonic is Arrange, Act,
Assert.

public class StringTemplateTest {
@Test public void expandsMacrosSurroundedWithBraces () {

StringTemplate template =
new StringTemplate (" { a } { b } ") ; // 1. setup

HashMap<String , Object> macros = new HashMap<String , Object > () ;
macros . put ("a " , "A") ;
macros . put ("b" , "B") ;

Str ing expanded = template .expand(macros) ; // 2. execute
assertEquals (expanded , "AB") ; // 3. assert

} // 4. (no) teardown
}
Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 33 / 49

Canonical test structure (cont.)

Recommended test writing order:
1 start by writing the test name (helps to clarify the goal)

2 write target code invocation

3 write assertions
4 fill in the gaps, i.e. setup and teardown

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 34 / 49

Literals and variables

Test code tends to be more concrete than production code
⇒ test code tends to have more literal values.

Book book = catalog . lookup (666);
assertNull (book) ;

Problem: a literal value does not describe its role
(unless it’s really really obvious, which is almost never the case).
Solution: use constants with self-describing names instead of literals

public static f inal int INVALID_BOOK_ID = 666;

Book book = catalog . lookup (INVALID_BOOK_ID) ;
assertNull (book) ;

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 35 / 49

Sommaire

1 Kick-starting TDD

2 Maintaining TDD — part 1
Test smells
Test readability
Constructing complex test data
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 36 / 49

Complex test data

@Test public void
chargesCustomerForTotalCostOfAllOrderedItems () {

Order order = new Order (
new Customer (" Sherlock Holmes" ,

new Address ("221b Baker Street " ,
"London" ,
new PostCode ("NW1" , "3RX")))) ;

order . addLine (new OrderLine (" Deerstalker Hat " , 1)) ;
order . addLine (new OrderLine ("Tweed Cape" , 1)) ;
// . . .

}

Effects:

tests with complex setup logic ⇒ hard to read

tests which will break often, not for good reasons
ñ changes in constructor arguments, object structure, etc.

How can we be more resilient to this kind of changes?

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 37 / 49

Object mother pattern

Order order = ExampleOrders . newDeerstalkerAndCapeOrder () ;

Good for readability!

. . . but doesn’t scale well to increase in variability:

Order order1 =
ExampleOrders . newDeerstalkerAndCapeAndSwordstickOrder () ;

Order order2 = ExampleOrders . newDeerstalkerAndBootsOrder () ;

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 38 / 49

Test data builders

A better solution is to apply the builder pattern to test data.

We create a test data builder that has:

a field for each constructor parameter, set to sane defaults

chainable public methods for overwriting its default values

a build() factory method, to be called last

Note: this is essentially a functional version of the builder pattern.

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 39 / 49

Test data builders — example
public class OrderBuilder {

private Customer customer = new CustomerBuilder () . build () ;
private List <OrderLine> l ines = new ArrayList <OrderLine > () ;
private BigDecimal discountRate = BigDecimal .ZERO;
public static OrderBuilder anOrder() {

return new OrderBuilder () ; }
public OrderBuilder withCustomer (Customer customer) {

this . customer = customer ;
return this ; }

public OrderBuilder withOrderLines (OrderLines l ines) {
this . l ines = l ines ;
return this ; }

public OrderBuilder withDiscount (BigDecimal discountRate) {
this . discountRate = discountRate ;
return this ; }

public Order build () {
Order order = new Order (customer) ;
for (OrderLine l ine : l ines) {

order . addLine (l ine) ;
order . setDiscountRate (discountRate) ; }

return order ;
} }Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 40 / 49

Test data builders — example (cont.)

Order order1 = new OrderBuilder () . build () ;

Order order2 = newOrderBuilder () . withDiscount (6 .7) . build () ;

tests are more readable, due to reduced syntactic noise

the default case is simple, the non-default cases stand-off

tests are protected against changes in object structure

errors are easier to spot, e.g.:

TestAddresses .newAddress ("221b Baker Street " , "London" , "NW1 6XE") ;

vs

new AddressBuilder ()
. withStreet ("221b Baker Street ")
. withStreet2 ("London")
. withPostCode ("NW1 6XE")
. build () ;

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 41 / 49

Creating similar objects

We can use test data builders to factorize the creation of similar
objects:

Order orderWithSmallDiscount = new OrderBuilder ()
. withLine (" Deerstalker Hat " , 1)
. withLine ("Tweed Cape" , 1)
. withDiscount (0.10)
. build () ;

Order orderWithLargeDiscount = new OrderBuilder ()
. withLine (" Deerstalker Hat " , 1)
. withLine ("Tweed Cape" , 1)
. withDiscount (0.25)
. build () ;

⇓
OrderBuilder hatAndCape = new OrderBuilder ()

. withLine (" Deerstalker Hat " , 1)

. withLine ("Tweed Cape" , 1) ;

I.e.: builders as higher-order functions (take #1)

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 42 / 49

Creating similar objects — side-effects FAIL!

Order orderWithDiscount = hatAndCape . withDiscount (0 .10) . build () ;
Order orderWithGiftVoucher =

hatAndCape . withGiftVoucher ("abc ") . build () ;

Will you get a discount for orderWithGiftVoucher?

Yes :-(
Solution #1: copy constructor

Order orderWithDiscount = new OrderBuilder(hatAndCape)
. withDiscount (0 .10) . build () ;

Order orderWithGiftVoucher = new OrderBuilder(hatAndCape)
. withGiftVoucher ("abc ") . build () ;

Solution #2: factory method that returns the builder

Order orderWithDiscount =
hatAndCape.but() . withDiscount (0 .10) . build () ;

Order orderWithGiftVoucher =
hatAndCape.but() . withGiftVoucher ("abc ") . build () ;

I.e. builders as higher-order functions (take #2)

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 43 / 49

Creating similar objects — side-effects FAIL!

Order orderWithDiscount = hatAndCape . withDiscount (0 .10) . build () ;
Order orderWithGiftVoucher =

hatAndCape . withGiftVoucher ("abc ") . build () ;

Will you get a discount for orderWithGiftVoucher?
Yes :-(
Solution #1: copy constructor

Order orderWithDiscount = new OrderBuilder(hatAndCape)
. withDiscount (0 .10) . build () ;

Order orderWithGiftVoucher = new OrderBuilder(hatAndCape)
. withGiftVoucher ("abc ") . build () ;

Solution #2: factory method that returns the builder

Order orderWithDiscount =
hatAndCape.but() . withDiscount (0 .10) . build () ;

Order orderWithGiftVoucher =
hatAndCape.but() . withGiftVoucher ("abc ") . build () ;

I.e. builders as higher-order functions (take #2)
Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 43 / 49

Combining builders

Nested .build() invocations are hard to read (syntactic noise,
again). We can avoid them by passing builders around, instead of
the objects built by them.

Order orderWithNoPostcode = new OrderBuilder ()
. withCustomer (

new CustomerBuilder ()
. withAddress (new AddressBuilder () . withNoPostcode () . build ())
. build ())

. build () ;

⇓
Order order = new OrderBuilder ()

. withCustomer (
new CustomerBuilder ()

. withAddress (new AddressBuilder().withNoPostcode()))
. build () ;

I.e. builders as higher-order functions (take #3)

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 44 / 49

Sommaire

1 Kick-starting TDD

2 Maintaining TDD — part 1
Test smells
Test readability
Constructing complex test data
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 45 / 49

Diagnostic — reminder

GOOS, Figure 5.2

Test readability was
concerned with a static
quality of tests as
documentation.

Test diagnostics is
concerned with a dynamic
quality: how informative
their runtime results are.

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 46 / 49

Explanatory assertions

Customer customer = order . getCustomer () ;
assertEquals ("573242" , customer . getAccountId ()) ;
assertEquals (16301, customer . getOutstandingBalance ()) ;

// result in test fa i lures l i ke :
ComparisonFailure : expected:<[16301]> but was:<[16103]>

⇓
assertEquals ("account id" , "573242" , customer . getAccountId ()) ;
assertEquals ("outstanding balance" , 16301,

customer . getOustandingBalance ()) ;

// result in :
ComparisonFailure :
outstanding balance expected:<[16301]> but was:<[16103]>

which one do you prefer?

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 47 / 49

Self-describing values

As an alternative, we can instrument values to be self-describing

Date startDate = new Date(1000);
Date endDate = new Date(2000);

// result in :
ComparisonFailure : expected : <Thu Jan 01 01:00:01 GMT 1970>

but was : <Thu Jan 01 01:00:02 GMT 1970>

it is correct, but doesn’t tell us the meaning of these dates for the
purposes of the test ⇓
Date startDate = namedDate(1000, " startDate ") ;
Date endDate = namedDate(2000, "endDate") ;

Date namedDate(long timeValue , f inal String name) {
return new Date (timeValue) {

public String toString () { return name; } } ;
}

// result in :
ComparisonFailure : expected : <startDate> but was : <endDate>

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 48 / 49

Obviously canned value

Sometimes you cannot instrument values to become self-describing

e.g.: primitive data types in Java

In those cases, try to use obviously canned values, i.e. values that
when read will trigger reactions like “this cannot possibly be a
correct value”, e.g.:

negative values (where everyone would expect a positive one)

Integer.MAX_VALUE

. . .

Stefano Zacchiroli (Paris Diderot) Maintaining TDD 2014–2015 49 / 49

	Kick-starting TDD
	Maintaining TDD — part 1
	Test smells
	Test readability
	Constructing complex test data
	Test diagnostics

