
Programmation Système
Cours 4 — IPC: FIFO

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire PPS, Université Paris Diderot

2014–2015

URL http://upsilon.cc/zack/teaching/1415/progsyst/
Copyright © 2011–2015 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 1 / 41

http://upsilon.cc/zack/teaching/1415/progsyst/
http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Outline

1 FIFOs

2 FIFO-based architectures
Multiplying output streams
Client-server FIFOs

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 2 / 41

Outline

1 FIFOs

2 FIFO-based architectures
Multiplying output streams
Client-server FIFOs

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 3 / 41

Pipes — looking back

Pros:
1 very simple data transfer model with implicit synchronization on

read/write operations

2 use well-known and versatile handles: file descriptors

3 simple access control model: create before fork, all related
processes can access

4 highly portable

Cons:
1 can be used only by related processes

2 communication is kernel mediated and requires double copy

For most applications, (2) is not a big deal.
On the other hand, (1) makes impossible quite a number of
architectures (e.g. client-server among unrelated processes).

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 4 / 41

On pipes restrictions

Why can’t pipe be used for communication across
unrelated processes?

1 naming scheme -→ pipes are anonymous
ñ they are requested to the kernel and accessed via FDs
ñ there is no (handy) way to reference them from “the outside”1

2 access control
ñ “all or nothing” among related processes who see the FD
ñ . . . and “all or nothing” is too coarse-grained for unrelated

processes

1we can pass FDs around via UNIX domain sockets, but then we already have
an IPC mechanism among unrelated processes. . .
Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 5 / 41

On pipes restrictions

Why can’t pipe be used for communication across
unrelated processes?

1 naming scheme -→ pipes are anonymous
ñ they are requested to the kernel and accessed via FDs
ñ there is no (handy) way to reference them from “the outside”1

2 access control
ñ “all or nothing” among related processes who see the FD
ñ . . . and “all or nothing” is too coarse-grained for unrelated

processes

1we can pass FDs around via UNIX domain sockets, but then we already have
an IPC mechanism among unrelated processes. . .
Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 5 / 41

Named pipes

To overcome pipes limitations we need:

a naming scheme that is valid between unrelated processes
ñ

a fine-grained access control mechanism
ñ

Let’s use the filesystem!

Design choice coherent with UNIX “everything is a file” mantra.

Putting the pieces together we obtain FIFOs, AKA named pipes:

conceptually similar to pipes,

but exist on the filesystem and are accessed from it.

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 6 / 41

Named pipes

To overcome pipes limitations we need:

a naming scheme that is valid between unrelated processes
ñ idea: let’s use filesystem pathnames

a fine-grained access control mechanism
ñ idea: let’s use filesystem permission masks

Let’s use the filesystem!

Design choice coherent with UNIX “everything is a file” mantra.

Putting the pieces together we obtain FIFOs, AKA named pipes:

conceptually similar to pipes,

but exist on the filesystem and are accessed from it.

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 6 / 41

FIFOs — IPC characteristics

data transfer, byte stream IPC facility that connect processes;
the byte stream written to one end of the FIFO can be read from
the other

pathname identifiers are used to rendez-vous on FIFOs

once opened, FIFOs are referenced by file descriptor handles

accessible by unrelated processes

filesystem-persistent; they disappear when unlinked
(i.e. “deleted”) from the containing directory

highly portable: available on all known UNIX-es

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 7 / 41

FIFOs — file system details

FIFOs can be created in the shell using mkfifo(1)

a FIFO is a special file (i.e. non regular) that exists on the file
system

ñ S_ISFIFO() will return true on stat’s s_mode field
ñ lseek will fail and set errno to ESPIPE (the same happen with

pipes and sockets)

permission masks can be decided upon creation and/or
changed with chmod, as usual (thanks to uniformity)

FIFOs can be used by programs as ordinary files
ñ open, read, write, unlink, etc.
ñ . . . as long as seeking is not needed

Demo

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 8 / 41

FIFOs — file system details

FIFOs can be created in the shell using mkfifo(1)

a FIFO is a special file (i.e. non regular) that exists on the file
system

ñ S_ISFIFO() will return true on stat’s s_mode field
ñ lseek will fail and set errno to ESPIPE (the same happen with

pipes and sockets)

permission masks can be decided upon creation and/or
changed with chmod, as usual (thanks to uniformity)

FIFOs can be used by programs as ordinary files
ñ open, read, write, unlink, etc.
ñ . . . as long as seeking is not needed

Demo
Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 8 / 41

FIFO creation

Given that open and creat only allow to create regular files, we
need a different system call to create FIFOs.
mkfifo (homonymous with the command line utility) allows to do so:

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);
Returns: 0 if OK, -1 on error

mode has the same semantics of open/creat syscalls: it
specifies the desired permission mask for the FIFO

ñ it will be bitwise AND-ed with the complement of current umask

on most UNIX implementations, mkfifo is a wrapper around the
more generic mknod, that allows to create all kinds of files

ñ mkfifo(path) = mknod(path, S_IFIFO, 0)
ñ the above is in fact the only portable use of mknod

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 9 / 41

FIFO — example
#include <errno .h>
#include <fcnt l .h>
#include <sys/ stat .h>
#include <unistd .h>
#include " helpers .h"

#define BUFFSIZE 4096
#define FIFO_PATH " f i f o "
int main (void) {

int n, fd ;
char buf [BUFFSIZE] ;

i f (mkfifo (FIFO_PATH , S_IRUSR | S_IWUSR) < 0
&& errno != EEXIST)

err_sys (" f i f o error ") ;
pr in t f ("opening %s . . . \ n" , FIFO_PATH) ;
i f ((fd = open(FIFO_PATH , O_RDONLY)) < 0)

err_sys ("open error ") ;
pr in t f (" entering main loop . . . \ n") ;
while ((n = read (fd , buf , BUFFSIZE)) > 0)

i f (write (STDOUT_FILENO, buf , n) != n)
err_sys (" write error ") ;

i f (n < 0) err_sys (" read error ") ;
exit (EXIT_SUCCESS) ;

} // f i fo−cat . c
Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 10 / 41

FIFO — example (cont.)

Demo

Notes:

we create the FIFO only if needed, otherwise we reuse the
existing one (filesystem persistence)

open blocks until a writer arrives

when the last writer terminates, the reader gets a EOF

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 10 / 41

FIFOs — synchronization

The most simple use case for FIFOs is synchronization between 2
processes: 1 reading from + 1 writing to the FIFO.
FIFOs have an unusual open semantics built around it:

a process opening a FIFO for reading (O_RDONLY) will block. . .
ñ note: usually read could block waiting for data, open could not

a process opening a FIFO for writing (O_WRONLY) will block. . .

. . . until another process opens the FIFO for the complementary
action

The kernel enforces 2-peer synchronization upon FIFO open.

if the other end of the FIFO is already open (i.e. after
synchronization between 2 processes has already happened),
open will return immediately

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 11 / 41

FIFOs — non-blocking behavior

In those rare cases when you want to avoid blocking on FIFOs open,
you can request non-blocking I/O with the O_NONBLOCK open flag.

open with O_RDONLY will return immediately (opening read end)
ñ read-s on the FIFO before any connected writer will become

available won’t block, but rather return no data (coherently with
the usual discipline of non-blocking I/O)

open with O_WRONLY will return an ENXIO error until the read
end of the FIFO has already been opened

They behave differently because the consequences of writing to a
FIFO with no readers are more severe (SIGPIPE).

Table: FIFO open behavior

type flags other end open other end closed
reading — immediate success blocks
reading O_NONBLOCK immediate success immediate success
writing — immediate success blocks
writing O_NONBLOCK immediate success fails (ENXIO)

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 12 / 41

FIFOs — the O_RDWR trick

On many UNIX-es (including Linux), opening a FIFO with the O_RDWR
will never block. It will return successfully and mark both ends as
open.

used to open a FIFO for writing before a reader is available

non portable, use with caution
ñ or prefer O_NONBLOCK all together

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 13 / 41

FIFOs — multiple readers/writers

Multiple readers/writer to FIFOs are common.

The main intuition to keep in mind is that the kernel maintains a
count of the number of connected readers/writers and will not
“complain” until at least 1 reader and 1 writer exist.

as it happens with pipes, writing to a FIFO with no connected
readers will fail with EPIPE and also deliver a SIGPIPE signal to
the writer

reading to a FIFO with no connected writers will return an EOF to
the reader (as we’ve seen)

The O_RDWR trick can be used to fool the count of connected
readers/writers and ensure that both are above zero.

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 14 / 41

O_RDWR trick — example
#include <errno .h>
#include <fcnt l .h>
#include <sys/ stat .h>
#include <unistd .h>
#include " helpers .h"

#define BUFFSIZE 4096
#define FIFO_PATH " f i f o "
int main (void) {

int n, fd ;
char buf [BUFFSIZE] ;

i f (mkfifo (FIFO_PATH , S_IRUSR | S_IWUSR) < 0
&& errno != EEXIST)

err_sys (" f i f o error ") ;
pr in t f ("opening %s . . . \ n" , FIFO_PATH) ;
i f ((fd = open(FIFO_PATH , O_RDWR)) < 0) /* non portable ! */

err_sys ("open error ") ;
pr in t f (" entering main loop . . . \ n") ;
while ((n = read (fd , buf , BUFFSIZE)) > 0)

i f (write (STDOUT_FILENO, buf , n) != n)
err_sys (" write error ") ;

i f (n < 0) err_sys (" read error ") ;
exit (EXIT_SUCCESS) ;

} // f i fo−cat−tr ick . c
Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 15 / 41

O_RDWR trick — example (cont.)

Demo

Notes:

the only difference is in the O_RDWR flag

open no longer blocks

the program is now persistent: it will not die when the last
writer disappear and can serve subsequent writers

(what would happen if we connect multiple reader to the same pipe?)

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 15 / 41

Outline

1 FIFOs

2 FIFO-based architectures
Multiplying output streams
Client-server FIFOs

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 16 / 41

Outline

1 FIFOs

2 FIFO-based architectures
Multiplying output streams
Client-server FIFOs

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 17 / 41

Linear process combination

Shell pipelines p1 | . . . | pn allow to create linear combinations where
n processes (usually filters) cooperate using n− 1 UNIX pipes
(created by the shell).

the input of each process is either STDIN or the output of the
previous process in the pipeline

the output of each process is either STDOUT or the output of
the next process in the pipeline

the output of each process is consumed exactly once

Relying only on pipelines, we cannot process the output of a given
process more than once (i.e. non-linearly)

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 18 / 41

Duplicating output streams with FIFOs

Use case

We want to process STDIN first with a filter prog1 and then process
the result with two programs—prog2 and prog3—without using
temporary files.

We will use two tools:
1 tee(1) — a cat replacement that also writes to a file

ñ mnemonic: “tee” as the letter “T”
2 FIFOs

Figure: process arrangement

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 19 / 41

Duplicating output streams with FIFOs

Use case

We want to process STDIN first with a filter prog1 and then process
the result with two programs—prog2 and prog3—without using
temporary files.

We will use two tools:
1 tee(1) — a cat replacement that also writes to a file

ñ mnemonic: “tee” as the letter “T”
2 FIFOs

Figure: process arrangement

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 19 / 41

Duplicating output streams with FIFOs

Use case

We want to process STDIN first with a filter prog1 and then process
the result with two programs—prog2 and prog3—without using
temporary files.

We will use two tools:
1 tee(1) — a cat replacement that also writes to a file

ñ mnemonic: “tee” as the letter “T”
2 FIFOs

Figure: process arrangement
Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 19 / 41

Duplicating output streams with FIFOs — example

$ mkfifo f i f o
$ wc − l < f i f o &
$ ls − l | tee f i f o | sort −k5n
<snip>
$

will show the number of (non-hidden) files in the current working
directory (thanks to wc -l), as well as the details of each of them
presented in increasing size order (thanks to ls -l)

Figure: process arrangement

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 20 / 41

Duplicating output streams with FIFOs — example

$ mkfifo f i f o
$ wc − l < f i f o &
$ ls − l | tee f i f o | sort −k5n
<snip>
$

will show the number of (non-hidden) files in the current working
directory (thanks to wc -l), as well as the details of each of them
presented in increasing size order (thanks to ls -l)

Figure: process arrangement

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 20 / 41

Multiplying output streams with FIFOs

can we generalize the scheme to multiply the output
and process it n times?

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 21 / 41

Multiplying output streams with FIFOs

intuition: each FIFO/tee block allows to add one extra branch in
the pipeline

we can scale up to n extra branches with n− 1 FIFO/tee blocks

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 21 / 41

Outline

1 FIFOs

2 FIFO-based architectures
Multiplying output streams
Client-server FIFOs

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 22 / 41

Client-server FIFOs

FIFOs can be used (with some care) to implement client-server
architectures meant to run on a single machine

e.g. daemons offering system services to local programs

to find some, try find /var -type p (as root)

In its simplest form, a FIFO-based client-server architecture works as
follows:

0 a filesystem path pointing to a FIFO is agreed upon by
server/clients and used as the well-known address of the service

1 the FIFO is either persistent (e.g. created at install-time) or
created by the server at startup

2 the clients write requests to the FIFO

3 the server reads requests from the FIFO and handles them
sequentially

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 23 / 41

Client-server FIFOs — architecture

APUE, Figure 15.22

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 24 / 41

Client-server FIFOs — atomic write

Even with such a simple architecture, we need to worry about race
conditions. For all requests of size greater than 1 byte, we need to
worry about interleaving issues, since the FIFO is shared among the
server and all its clients.

the usual solution would be to do proper synchronization and
ensure that only one client at a time write its request to the FIFO

luckily, UNIX kernels also offer a simpler solution:

All write of size PIPE_BUF or less to pipes or FIFOs are guaranteed
(by POSIX) to be atomic.

if all write-s to the shared FIFO are smaller than PIPE_BUF, no
interleaving can happen

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 25 / 41

Client-server FIFOs — atomic write

Even with such a simple architecture, we need to worry about race
conditions. For all requests of size greater than 1 byte, we need to
worry about interleaving issues, since the FIFO is shared among the
server and all its clients.

the usual solution would be to do proper synchronization and
ensure that only one client at a time write its request to the FIFO

luckily, UNIX kernels also offer a simpler solution:

All write of size PIPE_BUF or less to pipes or FIFOs are guaranteed
(by POSIX) to be atomic.

if all write-s to the shared FIFO are smaller than PIPE_BUF, no
interleaving can happen

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 25 / 41

How much is PIPE_BUF?

The value is implementation-dependent, but with a guaranteed
minimum of 512 bytes.

#include <l imi ts .h>
#include <stdio .h>
#include <stdl ib .h>

int main (void) {
pr in t f (" PIPE_BUF : %d\n" , PIPE_BUF) ;
exit (EXIT_SUCCESS) ;

}

$./ pipe−buf
PIPE_BUF : 4096 # on Linux x86, 64 bits
$

It’s more than enough for most control languages, but we need to
use different IPC objects for actual atomic data transfer.

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 26 / 41

Messages within byte streams

FIFOs offer a byte stream IPC facility, while client-server
architectures often rely on separate messages. There are several
ways to do message-oriented communication using byte streams:

1 terminate each message with a delimiter character
ñ pro: easy for the sender
ñ con: might need to escape the delimiter character
ñ con: forces receiver to scan the stream one char at a time

delimiter char

datadatadata

TLPI, Figure 44-7

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 27 / 41

Messages within byte streams (cont.)

FIFOs offer a byte stream IPC facility, while client-server
architectures often rely on separate messages. There are several
ways to do message-oriented communication using byte streams:

2 prefix each message with a fixed-size header containing a
length field

ñ pro: efficient (read the header first, then the rest)
ñ con: malformed messages (hence the need of CRC or equivalent)

datalen

len bytes

len lendata data

TLPI, Figure 44-7

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 27 / 41

Messages within byte streams (cont.)

FIFOs offer a byte stream IPC facility, while client-server
architectures often rely on separate messages. There are several
ways to do message-oriented communication using byte streams:

3 use fixed-length messages
ñ pro: very simple to program
ñ con: impose a maximum message size
ñ con: padding

n bytesn bytesn bytes

data data data

TLPI, Figure 44-7

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 27 / 41

Messages within byte streams (cont.)

FIFOs offer a byte stream IPC facility, while client-server
architectures often rely on separate messages. There are several
ways to do message-oriented communication using byte streams:

In the case of pipes and FIFOs, we additionally have PIPE_BUF as
message size upper bound to avoid interleaving.

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 27 / 41

Client-server FIFOs — case study

Example

We want to implement a local server that, upon reading a “reload”
command from a FIFO, will reread the /etc/motd file from disk and
print it on stdout.

using the architecture we
have discussed. . .

. . . and fixed-length
messages

APUE, Figure 15.22
Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 28 / 41

Client-server FIFOs — case study (protocol)

#include <errno .h>
#include <fcnt l .h>
#include <str ing .h>
#include <sys/ stat .h>
#include <unistd .h>
#include " helpers .h"

#define FIFO_PATH " f i f o "
#define ACT_RELOAD 17

struct request {
int action ; /* one of ACT_* macros */

} ;

// common−1.h

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 29 / 41

Client-server FIFOs — case study (server)

#include "common−1.h"

#define BUFFSIZE 4096
#define MOTD_PATH " /etc/motd"

void print_motd (void) {
int fd , n ;
char buf [BUFFSIZE] ;
i f ((fd = open(MOTD_PATH, O_RDONLY)) < 0)

err_sys ("open error ") ;
while ((n = read (fd , buf , BUFFSIZE)) > 0)

i f (write (STDOUT_FILENO, buf , n) != n)
err_sys (" write error ") ;

close (fd) ;
}

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 30 / 41

Client-server FIFOs — case study (server) (cont.)
int main (void) {

int fd ;
struct request req ;
i f (mkfifo (FIFO_PATH , S_IRUSR | S_IWUSR) < 0 && errno != EEXIST)

err_sys (" f i f o error ") ;
i f ((fd = open(FIFO_PATH , O_RDWR)) < 0)

err_sys ("open error ") ;
print_motd () ;
for (; ;) {

i f (read (fd , &req , sizeof (struct request))
!= sizeof (struct request))

continue ; /* part ia l read or error */
switch (req . action) {
case ACT_RELOAD:

pr int f (" **** reload ****\n") ;
print_motd () ;
break ;

default :
pr in t f (" **** inva l id request ****\n") ;
break ;

}
}
exit (EXIT_SUCCESS) ;

} // server−1.c

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 30 / 41

Client-server FIFOs — case study (client)

#include "common−1.h"

int main (void) {
int fd ;
struct request req ;

i f ((fd = open(FIFO_PATH , O_WRONLY)) < 0)
err_sys ("open error ") ;

req . action = ACT_RELOAD;
i f (write (fd , &req , sizeof (struct request))

!= sizeof (struct request))
err_sys (" write error ") ;

exit (EXIT_SUCCESS) ;
} // c l ient −1.c

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 31 / 41

Client-server FIFOs — case study

Demo

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 32 / 41

Client-server FIFOs — exercise

Exercise
Add to the protocol a new action (e.g., ACT_EXIT) that clients can
send to the server to ask it to voluntarily terminate.

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 33 / 41

Client-server FIFOs — request-response

The previous architecture is not suitable for client-server
request-response architectures where the server, in response to
incoming request, has both to act and reply to the client.

why?

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 34 / 41

Client-server FIFOs — request-response

The previous architecture is not suitable for client-server
request-response architectures where the server, in response to
incoming request, has both to act and reply to the client.

The problem: we cannot send replies trough the shared FIFO,
because we don’t know which of the client will read the message.
We need a context where to correlate responses with the
corresponding requests.

Note: PIPE_BUF guarantees are unrelated from this.

To do so we can:

use the shared FIFO for incoming requests only

use client-specific FIFOs (one per client) to send back responses

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 34 / 41

Client-server request-response FIFOs — architecture

Request(PID + length)

Request

(PID + length) / tmp/ seqnum_sv

/ tmp/ seqnum_cl . 6523

Resp
onse

(se
q. #)

/ tmp/ seqnum_cl . 6514
Response(seq. #)

Client A
(PID=6514)

Server FIFO Server

Client B
(PID=6523)

Client A FIFO

Client B FIFO

TLPI, Figure 44-6

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 35 / 41

Client-server request-response FIFOs — naming

For the architecture to work, clients and server must agree on the
pathname of each client-specific FIFO.

Common solutions are:

the client tells the server where he should send the response, by
including the pathname in the request

clients and server agrees on a naming scheme based on some
client identifier, and the client sends the identifier as part of the
request

ñ e.g. we say that client-specific FIFOs will be named

/var/run/my-server/client-%d.fifo

where %d is the client PID2

2we are ignoring security issues here. . .
Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 36 / 41

Request-response FIFOs — example

Example

We want to implement a server that allocates unique sequential
identifiers to clients.

the server hold a global integer counter

the client connect to the server to request a new unique
identifier in the sequence

the server send back the next integer in the sequence and
update the global counter

We will use a client-server request-response FIFO architecture:

client → server requests are sent via a shared FIFO

server → client responses are sent via client-specific FIFOs

server → client rendez-vous happens via a PID-based naming
scheme

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 37 / 41

Request-response FIFOs — example (protocol)

#include <errno .h>
#include <fcnt l .h>
#include <signal .h>
#include <str ing .h>
#include <sys/ stat .h>
#include <unistd .h>
#include " helpers .h"

#define SRV_FIFO "seqnum−srv "
#define CLI_FIFO_TPL "seqnum−c l i .% ld "
#define CLI_FIFO_LEN (sizeof (CLI_FIFO_TPL) + 20)

struct request { /* Request (c l i en t −−> server) */
pid_t pid ; /* PID of c l i en t */

} ;

struct response { /* Response (server −−> c l i en t) */
int seqno ; /* Sequence number */

} ;

/* fifo_seqnum .h −−− based on TLPI ’ s fifo_seqnum .h
Copyright (C) Michael Kerrisk , 2010. License : GNU AGPL */

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 38 / 41

Request-response FIFOs — example (server)

#include " fifo_seqnum .h"

int main (void) {
int srv_fd , c l i _ fd ;
char c l i _ f i f o [CLI_FIFO_LEN] ;
struct request req ;
struct response res ;
int seqno = 0;

i f (mkfifo (SRV_FIFO , S_IRUSR | S_IWUSR | S_IWGRP) < 0
&& errno != EEXIST)

err_sys (" mkfifo error ") ;
i f ((srv_fd = open(SRV_FIFO , O_RDWR)) < 0)

err_sys ("open error ") ;
i f (signal (SIGPIPE , SIG_IGN) == SIG_ERR)

err_sys (" signal ") ;

for (; ;) { /* main request/response loop */
i f (read (srv_fd , &req , sizeof (struct request))

!= sizeof (struct request))
continue ;

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 39 / 41

Request-response FIFOs — example (server) (cont.)

snprintf (c l i _ f i f o , CLI_FIFO_LEN , CLI_FIFO_TPL ,
(long) req . pid) ;

i f ((c l i _ fd = open(c l i _ f i f o , O_WRONLY)) < 0) {
err_msg ("open error (c l i en t FIFO) ") ;
continue ;

}

res . seqno = seqno ;
i f (write (c l i _ fd , &res , sizeof (struct response))

!= sizeof (struct response))
err_msg (" write error (c l i en t FIFO) ") ;

i f (close (c l i _ fd) == −1)
err_msg (" close ") ;

seqno++;
}

}

/* fifo_seqnum_server . c −−− based on TLPI ’ s fifo_seqnum_server . c
Copyright (C) Michael Kerrisk , 2010. License : GNU AGPL */

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 39 / 41

Request-response FIFOs — example (client)

#include " fifo_seqnum .h"

static char c l i _ f i f o [CLI_FIFO_LEN] ;

void remove_fifo (void) {
unlink (c l i _ f i f o) ;

}

int main (void) {
int srv_fd , c l i _ fd ;
struct request req ;
struct response resp ;

snprintf (c l i _ f i f o , CLI_FIFO_LEN , CLI_FIFO_TPL , (long) getpid ()) ;
i f (mkfifo (c l i _ f i f o , S_IRUSR | S_IWUSR | S_IWGRP) == −1

&& errno != EEXIST)
err_sys (" mkfifo error ") ;

i f (atexi t (remove_fifo) != 0)
err_sys (" atexi t error ") ;

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 40 / 41

Request-response FIFOs — example (client) (cont.)

req . pid = getpid () ;
i f ((srv_fd = open(SRV_FIFO , O_WRONLY)) < 0)

err_sys ("open error (server FIFO) ") ;
i f (write (srv_fd , &req , sizeof (struct request)) !=

sizeof (struct request))
err_sys (" write error ") ;

i f ((c l i _ fd = open(c l i _ f i f o , O_RDONLY)) < 0)
err_sys ("open error (c l i en t FIFO) ") ;

i f (read (c l i _ fd , &resp , sizeof (struct response))
!= sizeof (struct response))

err_sys (" read error ") ;

pr in t f ("%d\n" , resp . seqno) ;
exit (EXIT_SUCCESS) ;

}

/* fifo_seqnum_client . c −−− based on TLPI ’ s fifo_seqnum_client . c
Copyright (C) Michael Kerrisk , 2010. License : GNU AGPL */

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 40 / 41

Request-response FIFOs — example

Demo

Stefano Zacchiroli (Paris Diderot) IPC: FIFO 2014–2015 41 / 41

	FIFOs
	FIFO-based architectures
	Multiplying output streams
	Client-server FIFOs

