
Programmation Système
Cours 7 — UNIX Domain Sockets

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire PPS, Université Paris Diderot

2014–2015

URL http://upsilon.cc/zack/teaching/1415/progsyst/
Copyright © 2013–2015 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 1 / 54

http://upsilon.cc/zack/teaching/1415/progsyst/
http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Outline

1 Sockets

2 Stream sockets

3 UNIX domain sockets

4 Datagram sockets

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 2 / 54

Outline

1 Sockets

2 Stream sockets

3 UNIX domain sockets

4 Datagram sockets

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 3 / 54

Sockets

Sockets are IPC objects that allow to exchange data between
processes running:

either on the same machine (host), or

on different ones over a network.

History
The UNIX socket API first appeared in 1983 with BSD 4.2. It has been
finally standardized for the first time in POSIX.1g (2000), but has
been ubiquitous to every UNIX implementation since the 80s.

Disclaimer
The socket API is best discussed in a network programming course,
which this one is not. We will only address enough general socket
concepts to describe how to use a specific socket family: UNIX
domain sockets.

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 4 / 54

Client-server setup

Let’s consider a typical client-server application scenario — no
matter if they are located on the same or different hosts.

Sockets are used as follows:

each application: create a socket
ñ idea: communication between the two applications will flow

through an imaginary “pipe” that will connect the two sockets
together

server: bind its socket to a well-known address
ñ we have done the same to set up rendez-vous points for other

IPC objects, e.g. FIFOs

client: locate server socket (via its well-known address) and
“initiate communication”1 with the server

1various kinds of communication are possible, so we will refine this later
Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 5 / 54

Socket bestiary

Sockets are created using the socket syscall which returns a file
descriptor to be used for further operations on the underlying
socket:

fd = socket(domain, type, protocol);

Each triple 〈domain, type, protocol〉 identifies a different “species” of
sockets.

For our purposes protocol will always be 0, so we don’t discuss it
further.

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 6 / 54

Communication domains

Each socket exists within a communication domain.

Each communication domain determines:

how to identify a socket, that is the syntax and semantics of
socket well-known addresses

the communication range, e.g. whether data flowing through
the socket span single or multiple hosts

Popular socket communication domains are:

IPv4 communication across hosts, using IPv4 addresses
(e.g. 173.194.40.128)

IPv6 communication across hosts, using IPv6 addresses
(e.g. 2a00:1450:4007:808::1007)

UNIX communication within the same machine, using
pathnames as addresses

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 7 / 54

Communication domains

Each socket exists within a communication domain.

Each communication domain determines:

how to identify a socket, that is the syntax and semantics of
socket well-known addresses

the communication range, e.g. whether data flowing through
the socket span single or multiple hosts

Popular socket communication domains are:

IPv4 communication across hosts, using IPv4 addresses
(e.g. 173.194.40.128)

IPv6 communication across hosts, using IPv6 addresses
(e.g. 2a00:1450:4007:808::1007)

UNIX communication within the same machine, using
pathnames as addresses ← this lecture

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 7 / 54

Communication domains — details

domain2 range transport address
format

address C
struct

AF_UNIX same host kernel pathname sockaddr_un
AF_INET any host w/

IPv4 con-
nectivity

IPv4 stack 32-bit IPv4
address +
16-bit port
number

sockaddr_in

AF_INET6 any host w/
IPv6 con-
nectivity

IPv6 stack 128-bit IPv6
address +
16-bit port
number

sockaddr_in6

fd = socket(domain, type, protocol);

2value for the first argument of the socket syscall
Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 8 / 54

Socket types

fd = socket(domain, type, protocol);

Within each socket domain you will find multiple socket types, which
offer different IPC features:

socket type
feature SOCK_STREAM SOCK_DGRAM

reliable delivery yes no
message boundaries no yes
connection-oriented yes no

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 9 / 54

Stream sockets (SOCK_STREAM)

Stream sockets provide communication channels which are:

byte-stream: there is no concept of message boundaries,
communication happens as a continuous stream of bytes

reliable: either data transmitted arrive at destination, or the
sender gets an error

bidirectional: between two sockets, data can be transmitted in
either direction
connection-oriented: sockets operate in connected pairs, each
connected pair of sockets denotes a communication context,
isolated from other pairs

ñ a peer socket is the other end of a given socket in a connection
ñ the peer address is its address

Intuition

Stream sockets are similar to pipes, but are full-duplex, isolated,
and also permit (in the Internet domains) network communication.

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 10 / 54

Datagram sockets (SOCK_DGRAM)

Datagram sockets provide communication channels which are:

message-oriented: data is exchanged at the granularity of
messages that peers send to one another; message boundaries
are preserved and need not to be enforced by applications

non-reliable: messages can get lost. Also:
ñ messages can arrive out of order
ñ messages can be duplicated and arrive multiple times

It is up to applications to detect these scenarios and react
(e.g. by re-sending messages after a timeout, adding sequence
numbers, etc.).

connection-less: sockets do not need to be connected in pairs
to be used; you can send a message to, or receive a message
from, a socket without connecting to it beforehand

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 11 / 54

TCP & UDP (preview)

In the Internet domains (AF_INET and AF_INET6):

socket communications happen over the IP protocol, in its IPv4
and IPv6 variants (Internet layer)

stream sockets use the TCP protocol (transport layer)

datagram sockets use the UDP protocol (transport layer)

You’ll see all this in network programming classes. . .

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 12 / 54

netstat(8)

$ netstat -txun

Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 1 1 128.93.60.82:53161 98.137.200.255:80 LAST_ACK
tcp 0 0 10.19.0.6:54709 10.19.0.1:2777 ESTABLISHED
tcp 0 0 128.93.60.82:53366 98.137.200.255:80 ESTABLISHED
tcp 0 0 10.19.0.6:46368 10.19.0.1:2778 ESTABLISHED
tcp 0 0 128.93.60.82:47218 74.125.132.125:5222 ESTABLISHED
tcp6 1 0 ::1:51113 ::1:631 CLOSE_WAIT
udp 0 0 127.0.0.1:33704 127.0.0.1:33704 ESTABLISHED

Active UNIX domain sockets (w/o servers)
Proto RefCnt Flags Type State I-Node Path
unix 2 [] DGRAM 23863 /var/spool/postfix/dev/log
unix 2 [] DGRAM 1378 /run/systemd/journal/syslog
unix 2 [] DGRAM 1382 /run/systemd/shutdownd
unix 2 [] DGRAM 4744 @/org/freedesktop/systemd1/notify
unix 5 [] DGRAM 1390 /run/systemd/journal/socket
unix 28 [] DGRAM 1392 /dev/log
unix 3 [] STREAM CONNECTED 138266
unix 2 [] STREAM CONNECTED 79772
unix 3 [] STREAM CONNECTED 30935
unix 3 [] STREAM CONNECTED 23037
unix 3 [] STREAM CONNECTED 416650
unix 3 [] SEQPACKET CONNECTED 135740
unix 3 [] STREAM CONNECTED 26655 /run/systemd/journal/stdout
unix 2 [] DGRAM 22969
unix 3 [] STREAM CONNECTED 29256 @/tmp/dbus-tHnZVgCvqF
unix 3 [] STREAM CONNECTED 91045 @/tmp/dbus-tHnZVgCvqF
...

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 13 / 54

Socket creation

Socket creation can be requested using socket:

#include <sys/socket.h>

int socket(int domain, int type, int protocol);
Returns: file descriptor on success, -1 on error

As we have seen, the 3 arguments specify the “species” of socket
you want to create:

domain: AF_UNIX, AF_INET, AF_INET6

type: SOCK_STREAM, SOCK_DGRAM

protocol: always 0 for our purposes3

The file descriptor returned upon success is used to further
reference the socket, for both communication and setup purposes.

3one case in which it is non-0 is when using raw sockets
Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 14 / 54

Binding sockets to a well-known address

To allow connections from others, we need to bind sockets to
well-known addresses using bind:

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
Returns: 0 on success, -1 on error

sockfd references the socket we want to bind

addrlen/addr are, respectively, the length and the structure
containing the well-known address we want to bind the socket
to

The actual type of the addr structure depends on the socket
domain. . .

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 15 / 54

Generic socket address structure

We have seen that the address format varies with the domain:

UNIX domain uses pathnames

Internet domains use IP addresses

But bind is a generic system call that can bind sockets in any
domain!
Enter struct sockaddr:

struct sockaddr {
sa_family_t sa_family ; /* address family (AF_ *) */
char sa_data [14] ; /* socket address (s ize varies

with the socket domain) */
}

each socket domain has its own variant of sockaddr

you will fill the domain-specific struct

and cast it to struct sockaddr before passing it to bind

bind will use sa_family to determine how to use sa_data

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 16 / 54

Outline

1 Sockets

2 Stream sockets

3 UNIX domain sockets

4 Datagram sockets

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 17 / 54

The phone analogy for stream sockets

Stream sockets are like phones

To communicate one application—which we call “client”—must call
the other—the “server”—over the phone. Once the connection is
established, each peer can talk to the other for the duration of the
phone call.

both: socket() → install a phone

server: bind() → get a phone number

server: listen() → turn on the phone, so that it can ring

client: connect() → turns on the phone and call the “server”,
using its number

server: accept() → pick up the phone when it rings
(or wait by the phone if it’s not ringing)

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 18 / 54

Stream socket syscalls — overview

Passive socket
(server)

blocks until
client connects

resumes

(Possibly multiple) data
transfers in either direction

Active socket
(client)

write()

read()

close()

socket()

connect()

socket()

bind()

listen()

accept()

read()

write()

close()

TLPI, Fig. 56-1

Terminology

“Server” and “client”
are ambiguous terms.
We speak more
precisely of passive
and active sockets.

sockets are
created active;
listen() makes
them passive

connect()
performs an
active open

accept()
performs a
passive open

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 19 / 54

Willingness to accept connections

listen turns an active socket into a passive one, allowing it to
accept incoming connections (i.e. performing passive opens):

#include <sys/socket.h>

int listen(int sockfd, int backlog);
Returns: 0 on success, -1 on error

sockfd references the socket we want to affect

backlog specifies the maximum number of pending
connections that the passive socket will keep

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 20 / 54

Pending connections

Passive socket
(server)

Active socket
(client)

may block, depending on
number of backlogged
connection requests

socket()

bind()

listen()

accept()

socket()

connect()

TLPI, Fig. 56-2

active opens may be
performed before the
matching passive ones

not yet accept-ed
connections are called
pending

they may increase or
decrease over time,
depending on the
serving time

with pending < backlog,
connect succeeds
immediately

with pending >=
backlog, connect
blocks waiting for an
accept

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 21 / 54

Accepting connections

You can accept connections (i.e. perform a passive open) with:

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);
Returns: file descriptor on success, -1 on error

If the corresponding active open hasn’t been performed yet, accept
blocks waiting for it. When the active open happens—or if it has
already happened—accept returns a new socket connected to the
peer socket. The original socket remains available and can be used
to accept other connections.

addr/addrlen are value-result arguments which will be filled with
the address of the peer socket. Pass NULL if not interested

note: differently from other IPC mechanisms, we might know
“who” is our peer

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 22 / 54

Connecting

To complete the puzzle, you connect (i.e. perform an active open)
with:

#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *addr, socklen_t addrlen);
Returns: 0 on success, -1 on error

sockfd is your own socket, to be used as your endpoint of the
connection

addr/addrlen specify the well-known address of the peer you
want to connect to, and are given in the same format of bind
parameters

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 23 / 54

Communicating via stream sockets

Once a connection between two peer socket is established,
communication happens via read/write on the corresponding file
descriptors:

sockfd

ApplicationA Kernel

sockfd

ApplicationB

buffer

buffer

TLPI, Fig. 56-3

close on one end will have the same effects of closing one end of a
pipe:

reading from the other end will return EOF

writing to the other end will fail with EPIPE error and send
SIGPIPE to the writing process

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 24 / 54

Outline

1 Sockets

2 Stream sockets

3 UNIX domain sockets

4 Datagram sockets

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 25 / 54

Socket addresses in the UNIX domain

We now want to give an example of stream sockets. To do so, we
can no longer remain in the abstract of general sockets, but we need
to pick a domain. We pick the UNIX domain.

In the UNIX domain, addresses are pathnames. The corresponding C
structure is sockaddr_un:

struct sockaddr_un {
sa_family_t sun_family ; /* = AF_UNIX */
char sun_path [108]; /* socket pathname,

NULL−terminated */
}

The field sun_path contains a regular pathname, pointing to a
special file of type socket (≠ pipe) which will be created at bind time.

During communication the file will have no content, it is used only
as a rendez-vous point between processes.

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 26 / 54

Binding UNIX domain sockets — example

const char *SOCK_PATH = " /tmp/srv_socket " ;
int srv_fd ;
struct sockaddr_un addr ;

srv_fd = socket (AF_UNIX , SOCK_STREAM, 0) ;
i f (srv_fd < 0)

err_sys (" socket error ") ;

memset(&addr , 0, sizeof (struct sockaddr_un)) ;
/* ensure that a l l f ie lds , including non−standard ones ,

are i n i t i a l i z ed to 0 */
addr . sun_family = AF_UNIX ;
strncpy (addr . sun_path , SOCK_PATH, sizeof (addr . sun_path) − 1) ;

/* we copy one byte less , ensuring a tra i l ing 0 ex ists */

i f (bind (srv_fd , (struct sockaddr *) &addr ,
sizeof (struct sockaddr_un)) < 0)

err_sys (" bind error ") ;

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 27 / 54

Binding UNIX domain socket — caveats

the actual filesystem entry is created at bind time
ñ if the file already exists, bind will fail
ñ it’s up to you to remove stale sockets as needed

ownership/permissions on the file are determined as usual
(effective user id, umask, etc.)

ñ to connect to a socket you need write permission on the
corresponding file

stat().st_mode == S_IFSOCK and ls shows:

/var/run/systemd$ ls −l F shutdownd
srw−−−−−−− 1 root root 0 dic 9 19:34 shutdownd=

you can’t open() a UNIX domain socket, you must connect() to it

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 28 / 54

Client-server stream socket — example

To experiment with stream sockets in the UNIX domain we will write
a client-server echo application where:

the client connects to the server and transfers its entire
standard input to it

the server accepts a connection, and transfers all the data
coming from it to standard output

the server is iterative: it processes one connection at a time,
reading all of its data (potentially infinite) before processing
other connections

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 29 / 54

Client-server stream socket example — protocol

#include <errno .h>
#include <sys/un.h>
#include <sys/socket .h>
#include <unistd .h>
#include " helpers .h"

#define SRV_SOCK_PATH " /tmp/stream_srv_socket "

#define BUFFSIZE 1024

#define SRV_BACKLOG 100

/* end of stream−proto .h */

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 30 / 54

Client-server stream socket example — server

#include " stream−proto .h"

int main (int argc , char **argv) {
struct sockaddr_un addr ;
int srv_fd , c l i _ fd ;
ssize_t bytes ;
char buf [BUFFSIZE] ;

i f ((srv_fd = socket (AF_UNIX , SOCK_STREAM, 0)) < 0)
err_sys (" socket error ") ;

memset(&addr , 0, sizeof (struct sockaddr_un)) ;
addr . sun_family = AF_UNIX ;
strncpy (addr . sun_path , SRV_SOCK_PATH,

sizeof (addr . sun_path) − 1) ;
i f (unlink (addr . sun_path) < 0 && errno != ENOENT)

err_sys (" unlink error ") ;
i f (bind (srv_fd , (struct sockaddr *) &addr ,

sizeof (struct sockaddr_un)) < 0)
err_sys (" bind error ") ;

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 31 / 54

Client-server stream socket example — server (cont.)

i f (l i s ten (srv_fd , SRV_BACKLOG) < 0)
err_sys (" l i s ten error ") ;

for (; ;) {
i f ((c l i _ fd = accept (srv_fd , NULL, NULL)) < 0)

err_sys (" accept error ") ;

while ((bytes = read (c l i _ fd , buf , BUFFSIZE)) > 0)
i f (write (STDOUT_FILENO, buf , bytes) != bytes)

err_sys (" write error ") ;
i f (bytes < 0)

err_sys (" read error ") ;

i f (close (c l i _ fd) < 0)
err_sys (" close error ") ;

}
}
/* end of stream−server . c */

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 32 / 54

Client-server stream socket example — client

#include " stream−proto .h"

int main (int argc , char **argv) {
struct sockaddr_un addr ;
int srv_fd ;
ssize_t bytes ;
char buf [BUFFSIZE] ;

i f ((srv_fd = socket (AF_UNIX , SOCK_STREAM, 0)) < 0)
err_sys (" socket error ") ;

memset(&addr , 0, sizeof (struct sockaddr_un)) ;
addr . sun_family = AF_UNIX ;
strncpy (addr . sun_path , SRV_SOCK_PATH,

sizeof (addr . sun_path) − 1) ;
i f (connect (srv_fd , (struct sockaddr *) &addr ,

sizeof (struct sockaddr_un)) < 0)
err_sys (" connect error ") ;

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 33 / 54

Client-server stream socket example — client (cont.)

while ((bytes = read (STDIN_FILENO , buf , BUFFSIZE)) > 0)
i f (write (srv_fd , buf , bytes) != bytes)

err_sys (" write error ") ;
i f (bytes < 0)

err_sys (" read error ") ;

exit (EXIT_SUCCESS) ;
}
/* end of stream−c l i en t . c */

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 34 / 54

Client-server stream socket example

Demo

Notes:

the server accepts multiple connections, iteratively

we can’t directly open its socket (e.g. using shell redirections)

the server exits at first failure. Exercise: make it more robust

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 35 / 54

Outline

1 Sockets

2 Stream sockets

3 UNIX domain sockets

4 Datagram sockets

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 36 / 54

The mail analogy for datagram sockets

Datagram sockets are like letters

To communicate applications send letters to (the mailboxes of) their
peers.

both: socket() → install a mailbox

both:4 bind() → get a postal address

peer A: sendto() → send a letter to peer B, writing to her postal
address

peer B: recvfrom() → check mailbox to see if a letter has
arrived, waiting for it if that’s not the case

ñ each letter is stamped with the sender address, so peer B can
write back to peer A even if A’s address is not public

As it might happen with the postal system, letters can be reordered
during delivery and might not arrive. Additionally, with datagram
sockets “letters” can be duplicated.

4whether you need bind to receive messages depends on the domain
Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 37 / 54

Datagram socket syscalls — overview

Client

Server

(Possibly multiple) data
transfers in either direction

socket()

bind()

recvfrom()

sendto()

close()

sendto()

recvfrom()

close()

socket()

TLPI, Fig. 56-4

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 38 / 54

Sending datagrams

The sendto syscall is used to send a single datagram to a peer:

#include <sys/socket.h>

ssize_t sendto(int sockfd, void *buffer, size_t length,
int flags,
const struct sockaddr *dest_addr, socklen_t addrlen);

Returns: bytes sent on success, -1 on error

the first 3 arguments and return value are as per write

flags can be specified to request socket-specific features

dest_addr/addrlen specify the destination address

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 39 / 54

Receiving datagrams

The recvfrom is used to receive a single datagram from a peer:

#include <sys/socket.h>

ssize_t recvfrom(int sockfd, void *buffer, size_t length
int flags,
struct sockaddr *src_addr, socklen_t *addrlen);

Returns: bytes received on success, 0 on EOF, -1 on error

the first 3 arguments and return value are as per read
ñ note: recvfrom always fetch exactly 1 datagram, regardless of
length; if length it’s too short the message will be truncated

flags are as in sendto

dest_addr/addrlen are value-result arguments that will be
filled with the sender address; pass NULL if not interested

If no datagram is available yet, recvfrom blocks waiting for one.

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 40 / 54

UNIX domain datagram sockets

Whereas in general datagram sockets are not reliable, datagram
sockets in the UNIX domain are reliable. All messages are:

either delivered or reported as missing to the sender

non-reordered

non-duplicated

To be able to receive datagrams (e.g. replies from a server), you
should name client sockets using bind.

To be able to send datagrams you need write permission on the
corresponding file.

On Linux you can send quite large datagrams (e.g. 200 KB, see
/proc/sys/net/core/wmem_default and the socket(7)
manpage). On other UNIX you find limits as low as 2048 bytes.

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 41 / 54

Client-server datagram socket — example

To experiment with datagram sockets in the UNIX domain we will
write a client/server application where:

the client takes a number of arguments on its command line
and send them to the server using separate datagrams

for each datagram received, the server converts it to uppercase
and send it back to the client

the client prints server replies to standard output

For this to work we will need to bind all involved sockets to
pathnames.

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 42 / 54

Client-server datagram socket example — protocol

#include <ctype .h>
#include <errno .h>
#include <sys/un.h>
#include <sys/socket .h>
#include <unistd .h>
#include " helpers .h"

#define SRV_SOCK_PATH " /tmp/uc_srv_socket "
#define CLI_SOCK_PATH " /tmp/uc_cli_socket .% ld "

#define MSG_LEN 10

/* end of uc−proto .h , based on TLPI L ist ing 57−5,
Copyright (C) Michael Kerrisk , 2010. License : GNU AGPL−3+ */

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 43 / 54

Client-server datagram socket example — server
#include "uc−proto .h"

int main (int argc , char *argv []) {
struct sockaddr_un srv_addr , cl i_addr ;
int srv_fd , i ;
ssize_t bytes ;
socklen_t len ;
char buf [MSG_LEN] ;

i f ((srv_fd = socket (AF_UNIX , SOCK_DGRAM, 0)) < 0)
err_sys (" socket error ") ;

memset(&srv_addr , 0, sizeof (struct sockaddr_un)) ;
srv_addr . sun_family = AF_UNIX ;
strncpy (srv_addr . sun_path , SRV_SOCK_PATH,

sizeof (srv_addr . sun_path) − 1) ;
i f (unlink (srv_addr . sun_path) < 0 && errno != ENOENT)

err_sys (" unlink error ") ;
i f (bind (srv_fd , (struct sockaddr *) &srv_addr ,

sizeof (struct sockaddr_un)) < 0)
err_sys (" bind error ") ;

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 44 / 54

Client-server d.gram socket example — server (cont.)

for (; ;) {
len = sizeof (struct sockaddr_un) ;
i f ((bytes = recvfrom (srv_fd , buf , MSG_LEN, 0,

(struct sockaddr *) &cli_addr , &len)) < 1)
err_sys (" recvfrom error ") ;

pr in t f (" server received %ld bytes from %s\n" ,
(long) bytes , cl i_addr . sun_path) ;

for (i = 0; i < bytes ; i ++)
buf [i] = toupper ((unsigned char) buf [i]) ;

i f (sendto (srv_fd , buf , bytes , 0 ,
(struct sockaddr *) &cli_addr , len) != bytes)

err_sys (" sendto error ") ;
}

}
/* end of uc−server . c , based on TLPI L ist ing 57−6,

Copyright (C) Michael Kerrisk , 2010. License : GNU AGPL−3+ */

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 45 / 54

Client-server datagram socket example — client
#include "uc−proto .h"

int main (int argc , char *argv []) {
struct sockaddr_un srv_addr , cl i_addr ;
int srv_fd , i ;
s ize_t len ;
ssize_t bytes ;
char resp [MSG_LEN] ;

i f (argc < 2)
err_quit ("Usage : uc−c l i en t MSG. . . ") ;

i f ((srv_fd = socket (AF_UNIX , SOCK_DGRAM, 0)) < 0)
err_sys (" socket error ") ;

memset(&cli_addr , 0, sizeof (struct sockaddr_un)) ;
c l i_addr . sun_family = AF_UNIX ;
snprintf (c l i_addr . sun_path , sizeof (c l i_addr . sun_path) ,

CLI_SOCK_PATH, (long) getpid ()) ;
i f (bind (srv_fd , (struct sockaddr *) &cli_addr ,

sizeof (struct sockaddr_un)) == −1)
err_sys (" bind error ") ;

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 46 / 54

Client-server d.gram socket example — client (cont.)
memset(&srv_addr , 0, sizeof (struct sockaddr_un)) ;
srv_addr . sun_family = AF_UNIX ;
strncpy (srv_addr . sun_path , SRV_SOCK_PATH,

sizeof (srv_addr . sun_path) − 1) ;
for (i = 1; i < argc ; i ++) {

len = str len (argv [i]) ;

i f (sendto (srv_fd , argv [i] , len , 0,
(struct sockaddr *) &srv_addr ,
sizeof (struct sockaddr_un)) != len)

err_sys (" sendto error ") ;
i f ((bytes = recvfrom (srv_fd , resp , MSG_LEN,

0, NULL, NULL)) < 0)
err_sys (" recvfrom error ") ;

pr in t f (" response %d: %.*s\n" , i , (int) bytes , resp) ;
}
unlink (cl i_addr . sun_path) ;
exit (EXIT_SUCCESS) ;

}
/* end of uc−c l i en t . c , based on TLPI L ist ing 57−7,

Copyright (C) Michael Kerrisk , 2010. License : GNU AGPL−3+ */
Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 47 / 54

Client-server datagram socket example

Demo

Notes:

the server is persistent and processes one datagram at a time,
no matter the client process, i.e. there is no notion of
connection

messages larger than 10 bytes are silently truncated

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 48 / 54

Simpler APIs for datagram sockets — receiving

If you are not interested in the address of the sender, you can
receive a datagram using recv, a simpler API than recvfrom:

#include <sys/socket.h>

ssize_t recv(int sockfd, void *buffer, size_t length, int flags);
Returns: bytes received on success, 0 on EOF, -1 on error

If you don’t care about flags either, you can go further and use
plain old read on the socket file descriptor:

#include <unitstd.h>

ssize_t read(int fd, void *buffer, size_t length, int flags);
Returns: bytes read on success, 0 on EOF, -1 on error

The kernel will guarantee that read() return as soon as a datagram
is received (note: this is the usual read semantics, which can
generally return before having read length bytes).

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 49 / 54

Simpler APIs for datagram sockets — receiving

If you are not interested in the address of the sender, you can
receive a datagram using recv, a simpler API than recvfrom:

#include <sys/socket.h>

ssize_t recv(int sockfd, void *buffer, size_t length, int flags);
Returns: bytes received on success, 0 on EOF, -1 on error

If you don’t care about flags either, you can go further and use
plain old read on the socket file descriptor:

#include <unitstd.h>

ssize_t read(int fd, void *buffer, size_t length, int flags);
Returns: bytes read on success, 0 on EOF, -1 on error

The kernel will guarantee that read() return as soon as a datagram
is received (note: this is the usual read semantics, which can
generally return before having read length bytes).
Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 49 / 54

Simpler APIs for datagram sockets — sending

Can we simplify in the same way sending datagrams?

Not entirely:

when receiving, we can say “I don’t care about sender’s address,
let’s look at the payload”

when sending, we cannot say “I don’t care about receiver’s
address”

To achieve the same API simplicity we need two separate phases:
1 connecting the sending socket to a destination address

ñ need to be done only once (per destination)
2 sending datagrams, to the previously connected destination

ñ repeated for each datagram to be sent (to the same destination)

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 50 / 54

Simpler APIs for datagram sockets — sending

Can we simplify in the same way sending datagrams?
Not entirely:

when receiving, we can say “I don’t care about sender’s address,
let’s look at the payload”

when sending, we cannot say “I don’t care about receiver’s
address”

To achieve the same API simplicity we need two separate phases:
1 connecting the sending socket to a destination address

ñ need to be done only once (per destination)
2 sending datagrams, to the previously connected destination

ñ repeated for each datagram to be sent (to the same destination)

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 50 / 54

Connected datagram sockets — sending

Datagram sockets are (and remain) connectionless.

But we can use connect on them to associate to them a predefined
destination. This will allow to send datagrams without having to
specify the destination each time; the predefined one will be
implicitly used.

#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *addr, socklen_t addrlen);
Returns: 0 on success, -1 on error

Datagram sockets on which connect has been used are called
connected datagram sockets (as opposed to unconnected ones).

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 51 / 54

Simpler APIs for datagram sockets — sending (cont.)

Once a datagram socket is connected, we can use increasing simpler
APIs for sending datagrams, similar to what we have seen for
receiving.

We no longer need to specify dest_addr, so:

#include <sys/socket.h>

ssize_t send(int sockfd, const void *buffer, size_t length, int flags);
Returns: bytes sent on success, -1 on error

And if we don’t care about flags either:

#include <unitstd.h>

ssize_t write(int fd, const void *buf, size_t count);
Returns: bytes written on success, -1 on error

Each write() call will result in a separate datagram being sent.

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 52 / 54

Connected datagram sockets — receiving

We have seen that on sockets used to send datagrams, connect
provides a default, implicit destination.
You can use connect also on sockets used to receive datagrams.

The effect is that of setting an implicit sender filter: only datagrams
sent by that sender can be received via the socket.

Note that connected datagram sockets are asymmetric (or, better,
not necessarily symmetric): if one peer does connect and the other
doesn’t, only the peer who did will see the effects.

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 53 / 54

Connected datagram sockets

Summary

Connected datagram sockets allow to simplify the code of
applications that need to exchange several datagrams among the
same peers.

Stefano Zacchiroli (Paris Diderot) UNIX Domain Sockets 2014–2015 54 / 54

	Sockets
	Stream sockets
	UNIX domain sockets
	Datagram sockets

