
Conduite de Projet
Cours 8 — Test-Driven Development

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire IRIF, Université Paris Diderot

2015–2016

URL http://upsilon.cc/zack/teaching/1516/cproj/
Copyright © 2013–2016 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 1 / 78

http://upsilon.cc/zack/teaching/1516/cproj/
http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Outline

1 Development processes and testing

2 xUnit & Check

3 Test-Driven Development

4 Bootstrapping TDD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 2 / 78

Test-Driven Development (TDD)

Test-Driven Development, or TDD, is an iterative software
development process which uses very short development cycles and
leverages tests to provide constant feedback to software developers.

Goal: “clean code that works”, i.e., develop better software, less
stressfully.

The “Test-Driven Development” expression is often (ab)used to talk
about 2 distinct things:

the TDD development process
the xUnit family of testing frameworks

ñ e.g., JUnit, [Python] unittest, cppUnit, OUnit, NUnit, PHPUnit, . . .

which have been designed to support the TDD development
process, but can also be used when adopting different
development process

We’ll cover both in this lecture.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 3 / 78

Test-Driven Development (TDD)

Test-Driven Development, or TDD, is an iterative software
development process which uses very short development cycles and
leverages tests to provide constant feedback to software developers.

Goal: “clean code that works”, i.e., develop better software, less
stressfully.
The “Test-Driven Development” expression is often (ab)used to talk
about 2 distinct things:

the TDD development process
the xUnit family of testing frameworks

ñ e.g., JUnit, [Python] unittest, cppUnit, OUnit, NUnit, PHPUnit, . . .

which have been designed to support the TDD development
process, but can also be used when adopting different
development process

We’ll cover both in this lecture.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 3 / 78

Test-Driven Development (TDD)

Test-Driven Development, or TDD, is an iterative software
development process which uses very short development cycles and
leverages tests to provide constant feedback to software developers.

Goal: “clean code that works”, i.e., develop better software, less
stressfully.
The “Test-Driven Development” expression is often (ab)used to talk
about 2 distinct things:

the TDD development process
the xUnit family of testing frameworks

ñ e.g., JUnit, [Python] unittest, cppUnit, OUnit, NUnit, PHPUnit, . . .

which have been designed to support the TDD development
process, but can also be used when adopting different
development process

We’ll cover both in this lecture.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 3 / 78

Outline

1 Development processes and testing

2 xUnit & Check

3 Test-Driven Development

4 Bootstrapping TDD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 4 / 78

Reminder — Development process

Definition (Software development process)

A software development process is a structured set of activities
which lead to the production of some software.

Some software development activities:
1 requirement specification

2 design

3 implementation
4 verification
5 maintenance

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 5 / 78

Reminder — Waterfall model

Requirements

Design

Implementation

Verification

Maintenance

https://en.wikipedia.org/wiki/File:

Waterfall_model_(1).svg

that’s the theory

in practice:
ñ feedback loops
ñ increasingly more costly
ñ that need to be prevented

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 6 / 78

https://en.wikipedia.org/wiki/File:Waterfall_model_(1).svg
https://en.wikipedia.org/wiki/File:Waterfall_model_(1).svg

Reminder — Waterfall model

Requirements

Design

Implementation

Verification

Maintenance

https://en.wikipedia.org/wiki/File:

Waterfall_model_(1).svg

that’s the theory

in practice:
ñ feedback loops
ñ increasingly more costly
ñ that need to be prevented

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 6 / 78

https://en.wikipedia.org/wiki/File:Waterfall_model_(1).svg
https://en.wikipedia.org/wiki/File:Waterfall_model_(1).svg

Reminder — Iterative development

A family of models where development happens incrementally,
through repeated iterations of development activities.

Initial
Planning

Planning

Requirements Analysis & Design

Implementation

Deployment

Testing

Evaluation

https://commons.wikimedia.org/wiki/File:Iterative_development_model.svg

Key benefit: feedback loop.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 7 / 78

https://commons.wikimedia.org/wiki/File:Iterative_development_model.svg

V-Model

Not really a software development model.

Verification
and

Validation
Project

Definition

Concept of
Operations

Requirements
and

Architecture

Detailed
Design

Integration,
Test, and

Verification

System
Verification

and Validation

Operation
and

Maintenance

Project
Test and

Integration

ImplementationImplementation

Time

https://en.wikipedia.org/wiki/File:Systems_Engineering_Process_II.svg

Rather a (simplistic) view on the waterfall model that correlates the
initial “definition” phases with the final “delivery” ones.

The V-model helps to think about test purposes.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 8 / 78

https://en.wikipedia.org/wiki/File:Systems_Engineering_Process_II.svg

A hierarchy of tests

Disclaimers:

there are other hierarchies/taxonomies, on different angles

terminology is not clear cut (as it often happens in SWE)

the granularity trend—from small to big—however matters and
is agreed upon

Test hierarchy

acceptance Does the whole system work?

integration Does our code work against (other) code (we
can’t change)?

unit Do our code units a do the right thing and are
convenient to work with?

a. in a broad sense: might be classes, objects, modules, etc. depending
on the available abstraction mechanisms

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 9 / 78

Acceptance test

Does the whole system work?

Acceptance tests represent features that the system should have.
Both their lack and their misbehaviour imply that the system is not
working as it should. Intuition:

1 feature → 1+ acceptance test(s)

1 user story → 1+ acceptance test(s) (when using user stories)

Exercise (name 2+ acceptance tests for this “user login” story)

After creating a user, the system will know that you are that user when
you login with that user’s id and password; if you are not authenticated,
or if you supply a bad id/password pair, or other error cases, the login
page is displayed. If a CMS folder is marked as requiring authentication,
access to any page under that folder will result in an authentication
check. http://c2.com/cgi/wiki?AcceptanceTestExamples

Preview: we will use acceptance tests to guide feature development
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 10 / 78

http://c2.com/cgi/wiki?AcceptanceTestExamples

Integration test

Does our code work against (other) code (we can’t change)?

“Code we can’t change” =
3rd party libraries/framework

ñ be them proprietary or Free/Open Source Software
code developed by other teams that we don’t “own”

ñ (strict code ownership is bad, though)
code that we do not want/cannot modify in the current phase of
development, for whatever reason

Example

our BankClient should not call the getBalance method on
BankingService before calling login and having verified that it
didn’t throw an exception

xmlInitParser should be called before any other parsing function
of libxml2

the DocBook markup returned by CMSEditor.save should be
parsable by PDFPublisher’s constructor

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 11 / 78

Unit test

Do our code units do the right thing and are convenient to
work with?

Before implementing any unit of our software, we have (to have) an
idea of what the code should do. Unit tests show convincing
evidence that—in a limited number of cases—it is actually the case. 1

Example (some unit tests for a List module)

calling List.length on an empty list returns 0

calling List.length on a singleton list returns 1

calling List.last after List.append returns the added element

calling List.head on an empty list throws an exception

calling List.length on the concatenation of two lists returns the
sum of the respective List.lengths

. . .

1. remember: tests reveal bugs, but don’t prove their absence!
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 12 / 78

Unit test

Do our code units do the right thing and are convenient to
work with?

Before implementing any unit of our software, we have (to have) an
idea of what the code should do. Unit tests show convincing
evidence that—in a limited number of cases—it is actually the case. 1

Example (some unit tests for a List module)
calling List.length on an empty list returns 0

calling List.length on a singleton list returns 1

calling List.last after List.append returns the added element

calling List.head on an empty list throws an exception

calling List.length on the concatenation of two lists returns the
sum of the respective List.lengths

. . .

1. remember: tests reveal bugs, but don’t prove their absence!
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 12 / 78

Tests in the V-Model

https://en.wikipedia.org/wiki/File:V-model.JPG

For TDD we will “hack” unit, integration, acceptance tests, and use
them in an arguably more clever way. . .

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 13 / 78

https://en.wikipedia.org/wiki/File:V-model.JPG

Tests in the V-Model

https://en.wikipedia.org/wiki/File:V-model.JPG

For TDD we will “hack” unit, integration, acceptance tests, and use
them in an arguably more clever way. . .
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 13 / 78

https://en.wikipedia.org/wiki/File:V-model.JPG

Outline

1 Development processes and testing

2 xUnit & Check

3 Test-Driven Development

4 Bootstrapping TDD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 14 / 78

xUnit

xUnit collectively refers to a set of frameworks for automated unit
testing which share a common test coding style.

Each xUnit framework includes:

test case abstraction used to define tests

test suite abstraction used to organize test in test suites

assertion API to implement test case oracles to verify outcomes

test fixture mechanisms to factorize test initialization and clean up
code

test runner end-user program to discover and (selectively) run test
suites

test result formatters summarize test results and present them for
human consumption

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 15 / 78

xUnit implementations

Teting frameworks that adhere to the xUnit paradigm exist for most
languages and platforms, e.g.: 2

SUnit (Smalltalk)

JUnit (Java)

CppUnit (C++)

OUnit (OCaml)

Test::Unit (Ruby)

HUnit (Haskell)

NUnit (.NET)

unittest (Python)

Check (C)

2. https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 16 / 78

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

Check

Check 3 is one of the most well-known unit testing framework for the
C programming language.

Features overview

C library

xUnit style

fixtures

address space isolation

autotools integration

mocking

References

API reference: https://libcheck.github.io/check/doc/
doxygen/html/check_8h.html

source code (LGPL): https://github.com/libcheck/check/

Check examples in the following slides have been adapted from the Check manual. Copyright © 2001–2014 Arien

Malec, Branden Archer, Chris Pickett, Fredrik Hugosson, and Robert Lemmen. License: GNU GFDL, version 1.2 or

any later version.

3. https://libcheck.github.io/check/
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 17 / 78

https://libcheck.github.io/check/doc/doxygen/html/check_8h.html
https://libcheck.github.io/check/doc/doxygen/html/check_8h.html
https://github.com/libcheck/check/
https://libcheck.github.io/check/

Code organization for testing

Logical organization

structure the code to be tested as a library. . .

. . . with a well-defined API

corollary: almost empty main(), that just calls the main API
entry point

Unit testing encourages to think at your API early in the project
life-cycle, as your unit tests become your first client code.

Physical organization Up to you, but typically:

src/ (top-level dir): library code + main()

tests/ (top-level dir): Check tests
ñ #include "../src/mylib.h" or equivalent

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 18 / 78

SUT — money.h

#ifndef MONEY_H
#define MONEY_H

typedef struct Money Money;

Money *money_create (int amount, char *currency) ;
void money_free (Money * m) ;

int money_amount(Money * m) ;
char *money_currency (Money * m) ;

#endif /* MONEY_H */

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 19 / 78

SUT — money.c I

#include <stdl ib .h>
#include "money.h"

struct Money {
int amount ;
char *currency ;

} ;

void money_free (Money *m) {
free (m) ;
return ;

}

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 20 / 78

SUT — money.c II

Money *money_create (int amount, char *currency) {
Money *m;

i f (amount < 0)
return NULL;

m = malloc (sizeof (Money)) ;
i f (m == NULL)

return NULL;

m−>amount = amount ;
m−>currency = currency ;

return m;
}

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 21 / 78

SUT — money.c III

int money_amount(Money *m) {
return m−>amount ;

}

char *money_currency (Money *m) {
return m−>currency ;

}

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 22 / 78

Unit test skeleton

the smallest units of executable tests in Check are unit tests

unit tests are defined in regular .c files, using suitable
preprocessor macros

#include <check .h>

START_TEST (test_name)
{

/* unit test code */
}
END_TEST

Exercise

find the macro definitions of START_TEST and END_TEST and
describe what they do

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 23 / 78

Hello, world

#include <check .h> // test ing framework
#include " . . / src/money.h" // SUT

START_TEST (test_money_create) {
Money *m; // setup

m = money_create (5 , "USD") ; // exercise SUT

// test oracle
ck_assert_int_eq (money_amount(m) , 6) ;
ck_assert_str_eq (money_currency (m) , "USD") ;

money_free (m) ; // clean up
}
END_TEST

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 24 / 78

Assertion API

For basic data types, pre-defined “typed” assertions are available and
can be used as simple and readable test oracles:

ck_assert_int_eq asserts that two signed integers values are equal;
display a suitable error message upon failure

ck_assert_int_{ne,lt,le,gt,ge} like ck_assert_int_eq, but using
different comparison operators

ck_assert_uint_* like ck_assert_int_*, but for unsigned integers

ck_assert_str_* like ck_assert_int_*, but for char * string values,
using strcmp() for comparisons

ck_assert_ptr_{eq,ne} like ck_assert_int_*, but for void * pointers

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 25 / 78

Assertion API

For basic data types, pre-defined “typed” assertions are available and
can be used as simple and readable test oracles:

ck_assert_int_eq asserts that two signed integers values are equal;
display a suitable error message upon failure

ck_assert_int_{ne,lt,le,gt,ge} like ck_assert_int_eq, but using
different comparison operators

ck_assert_uint_* like ck_assert_int_*, but for unsigned integers

ck_assert_str_* like ck_assert_int_*, but for char * string values,
using strcmp() for comparisons

ck_assert_ptr_{eq,ne} like ck_assert_int_*, but for void * pointers

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 25 / 78

Assertion API

For basic data types, pre-defined “typed” assertions are available and
can be used as simple and readable test oracles:

ck_assert_int_eq asserts that two signed integers values are equal;
display a suitable error message upon failure

ck_assert_int_{ne,lt,le,gt,ge} like ck_assert_int_eq, but using
different comparison operators

ck_assert_uint_* like ck_assert_int_*, but for unsigned integers

ck_assert_str_* like ck_assert_int_*, but for char * string values,
using strcmp() for comparisons

ck_assert_ptr_{eq,ne} like ck_assert_int_*, but for void * pointers

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 25 / 78

Assertion API (cont.)

For other data types, you can cook your own test oracles on top of
more basic assertion primitives:

ck_assert fails test if supplied condition evaluates to false

ck_assert_msg ck_assert + displays user provided message

ck_abort unconditionally fails test with predefined message

ck_abort_msg unconditionally fails with user supplied message

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 26 / 78

Assertion API (cont.)

For other data types, you can cook your own test oracles on top of
more basic assertion primitives:

ck_assert fails test if supplied condition evaluates to false

ck_assert_msg ck_assert + displays user provided message

ck_abort unconditionally fails test with predefined message

ck_abort_msg unconditionally fails with user supplied message

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 26 / 78

Assertion API — examples

ck_assert_str_eq (money_currency (m) , "USD") ;

is equivalent to the following alternative formulations:

ck_assert (strcmp (money_currency (m) , "USD") == 0) ;

ck_assert_msg (strcmp (money_currency (m) , "USD") == 0,
"Was expecting a currency of USD, but found %s " ,
money_currency (m)) ;

i f (strcmp (money_currency (m) , "USD") != 0)
ck_abort_msg (" Currency not set correct ly on creation ") ;

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 27 / 78

Assertion API — examples (cont.)

ck_assert (money_amount(m) == 5) ;

is equivalent to:

ck_assert_msg (money_amount(m) == 5, NULL) ;

and, if money_amount(m) != 5, will automatically synthesize the
message:

"Assertion ’money_amount(m) == 5’ failed"

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 28 / 78

Test suites

In Check terminology:

unit tests are grouped into test cases

test cases are grouped into test suites

Test suites are what you can ask a test runner to run for you,
recursively down to individual unit tests.

Example:

START_TEST (test_money_create) {
// as before

}
END_TEST

// other unit tests here

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 29 / 78

Test suites (cont.)

Suite *money_suite (void) {
TCase * tc_core ;
Suite *s ;

tc_core = tcase_create ("Core ") ;
tcase_add_test (tc_core , test_money_create) ;
// tcase_add_test (tc_core , test_foo) ;
// . . .

s = suite_create ("Money") ;
suite_add_tcase (s , tc_core) ;
// suite_add_tcase (s , tc_bar) ;
// . . .

return s ;
}

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 30 / 78

Suite runner

In Check terminology, a suite runner is responsible for recursively
running all unit tests reachable from a (set of) suite(s).

// create a suite runner , including a single suite
SRunner *srunner_create (Suite *) ;

// add a suite to a suite runner
void srunner_add_suite (SRunner *sr , Suite *s)

// destroy a suite runner
void srunner_free (SRunner *) ;

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 31 / 78

Suite runner (cont.)

// run a l l unit tests reachable from a l l suites
void srunner_run_all (SRunner *sr ,

enum print_output print_mode) ;

// run the unit tests corresponding to suite sname and
// test case tcname . Either can be NULL to mean " a l l "
void srunner_run (SRunner *sr ,

const char *sname,
const char *tcname ,
enum print_output print_mode) ;

print_output controls the on-screen output of the test runner:
CK_SILENT no output

CK_MINIMAL summary output
CK_NORMAL summary + list of failed tests
CK_VERBOSE summary + list of all tests

CK_ENV deduct from env CK_VERBOSITY (default: CK_NORMAL)
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 32 / 78

Suite runner (cont.)

After tests have been run, test result information can be extracted
from the suite runner.

srunner_ntests_failed number of failed tests

srunner_ntests_run number of tests ran

srunner_failures

srunner_results

access to detailed, per test result information (see API
reference)

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 33 / 78

Suite runner (cont.)

int main (void) {
int fa i lu res ;
Suite *s ;
SRunner * sr ;

s = money_suite () ;
sr = srunner_create (s) ;

srunner_run_all (sr , CK_VERBOSE) ;
fa i lu res = srunner_ntests_failed (sr) ;
srunner_free (sr) ;

return (fa i lu res == 0) ? EXIT_SUCCESS : EXIT_FAILURE ;
}

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 34 / 78

Suite runner (cont.)

./check_money
Running suite(s): Money
100%: Checks: 1, Failures: 0, Errors: 0
check_money.c:13:P:Core:test_money_create:0: Passed

Demo

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 35 / 78

More tests

START_TEST (test_money_create_neg) {
Money *m = money_create(−1, "USD") ;

ck_assert_msg (m == NULL,
"NULL should be returned on attempt "
" to create with a negative amount") ;

}
END_TEST

START_TEST (test_money_create_zero) {
Money *m = money_create (0 , "USD") ;

i f (money_amount(m) != 0)
ck_abort_msg ("0 is a val id amount of money") ;

}
END_TEST

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 36 / 78

More tests (cont.)

Suite *money_suite (void) {
TCase * tc_core , * tc_ l imi ts ;
Suite *s ;

tc_core = tcase_create ("Core ") ;
tcase_add_test (tc_core , test_money_create) ;

t c_ l imi ts = tcase_create (" Limits ") ;
tcase_add_test (tc_ l imits , test_money_create_neg) ;
tcase_add_test (tc_ l imits , test_money_create_zero) ;

s = suite_create ("Money") ;
suite_add_tcase (s , tc_core) ;
suite_add_tcase (s , tc_ l imi ts) ;

return s ;
}
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 36 / 78

More tests (cont.)

./check_money
Running suite(s): Money
100%: Checks: 1, Failures: 0, Errors: 0
check_money.c:13:P:Core:test_money_create:0: Passed
check_money.c:24:P:Limits:test_money_create_neg:0: Passed
check_money.c:28:P:Limits:test_money_create_zero:0: Passed

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 37 / 78

Compiling with Check

src/Makefile

CC = gcc
CFLAGS = -Wall
LDFLAGS = $(CFLAGS)

all: main
main: main.o money.o money.h
money.o: money.h

clean:
rm -f main *.o

Exercise

Where are defined the actual compilation commands?

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 38 / 78

Compiling with Check (cont.)

tests/Makefile

CC = gcc
CFLAGS = -Wall
LDFLAGS = $(CFLAGS)
LDLIBS = -Wall $(shell pkg-config --libs check)

all: check_money
check_money: check_money.o ../src/money.o

clean:
rm -f check_money *.o

Exercise

Where are defined the actual compilation commands?

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 38 / 78

Compiling with Check (cont.)

$ cd src/
src$ make
gcc -Wall -c -o main.o main.c
gcc -Wall -c -o money.o money.c
gcc -Wall main.o money.o money.h -o main

src$ cd ../tests
tests$ make
gcc -Wall-c -o check_money.o check_money.c
gcc -Wall check_money.o ../src/money.o -lcheck_pic -pthread \

-lrt -lm -lsubunit -o check_money

tests$./check_money
Running suite(s): Money
100%: Checks: 1, Failures: 0, Errors: 0
check_money.c:13:P:Core:test_money_create:0: Passed

tests$

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 39 / 78

Unit testing C: memory safety

#include <check .h>

START_TEST (null_deref) {
int *p = NULL;
ck_assert_int_eq (p[1] , 42);

}
END_TEST

int main (void) {
TCase * tc ; Suite *s ; SRunner * sr ;

tc = tcase_create (" segfault ") ;
tcase_add_test (tc , null_deref) ;
s = suite_create ("memsafety") ;
suite_add_tcase (s , tc) ;
sr = srunner_create (s) ;
srunner_run_all (sr , CK_VERBOSE) ;
return (srunner_ntests_fai led (sr) == 0 ? 0 : 1) ;

} // what w i l l th is program do?

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 40 / 78

Unit testing C: memory safety (cont.)

$./test-segfault
Running suite(s): memsafety
0%: Checks: 1, Failures: 0, Errors: 1
test-segfault.c:3:E:segfault:null_deref:0:
(after this point) Received signal 11 (Segmentation fault)

$ echo $?
$ 1

the program did not crash

Check reported a test failure and “detected” the segfault

how come?

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 41 / 78

Address space separation

unit testing C might be difficult in general because all tests are
run in the same address space

if a test induces memory corruption, other tests will suffer the
consequences too (including crashes)

as a way around, several C test frameworks run tests in separate
processes and address spaces, fork()-ing before each test

by default Check runs each unit test in a separate process (“fork
mode”)

“no fork mode” can be requested explicitly
ñ define the environment variable CK_FORK=no

ñ void srunner_set_fork_status (SRunner * ,
enum fork_status) ;

with fork_status = CK_FORK / CK_NOFORK

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 42 / 78

Address space separation

unit testing C might be difficult in general because all tests are
run in the same address space

if a test induces memory corruption, other tests will suffer the
consequences too (including crashes)

as a way around, several C test frameworks run tests in separate
processes and address spaces, fork()-ing before each test

by default Check runs each unit test in a separate process (“fork
mode”)

“no fork mode” can be requested explicitly
ñ define the environment variable CK_FORK=no

ñ void srunner_set_fork_status (SRunner * ,
enum fork_status) ;

with fork_status = CK_FORK / CK_NOFORK

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 42 / 78

Address space separation

unit testing C might be difficult in general because all tests are
run in the same address space

if a test induces memory corruption, other tests will suffer the
consequences too (including crashes)

as a way around, several C test frameworks run tests in separate
processes and address spaces, fork()-ing before each test

by default Check runs each unit test in a separate process (“fork
mode”)

“no fork mode” can be requested explicitly
ñ define the environment variable CK_FORK=no

ñ void srunner_set_fork_status (SRunner * ,
enum fork_status) ;

with fork_status = CK_FORK / CK_NOFORK

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 42 / 78

Check (no) fork mode — example

$./test-segfault
Running suite(s): memsafety
0%: Checks: 1, Failures: 0, Errors: 1
test-segfault.c:3:E:segfault:null_deref:0:
(after this point) Received signal 11 (Segmentation fault)

$ echo $?
$ 1

$ CK_FORK=no ./test-segfault
Running suite(s): memsafety
[1] 5750 segmentation fault CK_FORK=no ./test-segfault

$ echo $?
$ 139

after disabling fork mode the program did crash :-(

the suite runner would have been unable to run further tests in
the suite

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 43 / 78

Test suite best practices

often a group of tests should be run on the same initial state. . .

. . . but tests execution might alter that state

1 we want test isolation: each test should behave the same no
matter the test execution order (dynamic requirement)

ñ each test should initialize all of its required state (setup)
ñ each test should clean up after itself (tear down)

2 we also wish to not duplicate test initialization across tests, as it
violates the DRY principle (static requirement)

Note: fork mode helps with (1), but not with (2).

We want a mechanism to factor out setup and tear down code across
multiple tests.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 44 / 78

Test fixtures

A test fixture, or test context, is a pair 〈setup, teardown〉 of
functions to be executed before and after the test body.

setup should create all the state needed to evaluate the test
(i.e., exercising SUT + test oracle)

teardown should clean up all the state affected by the test
execution (i.e., setup + exercising SUT)

The code that implements text fixtures is independent from the
actual test code.
Therefore, it can be shared across multiple tests.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 45 / 78

Test fixtures in Check

In Check, test fixtures are associated with test cases.
They are hence shared among all unit tests of the same test case.

In terms of isolation, Check distinguishes two kinds of fixtures:

checked fixtures are run within the address space of unit tests (if
fork mode is on), once for each unit test

unchecked fixtures are run in the address space of the test
program, once for each test case

Warning: memory corruption in unchecked fixtures might crash the
whole test suites.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 46 / 78

Test fixtures in Check (cont.)

For a Check test case with 2 unit tests—unit_test_1 and *_2—the
execution order of test and fixture functions will be:

1 unchecked_setup();
2 fork();
3 checked_setup();
4 unit_test_1();
5 checked_teardown();
6 wait();
7 fork();
8 checked_setup();
9 unit_test_2();

10 checked_teardown();
11 wait();
12 unchecked_teardown();

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 47 / 78

Test fixtures in Check — example

Money * f ive_dol lars ;

void setup (void) {
f i ve_dol lars = money_create (5 , "USD") ;

}

void teardown (void) {
money_free (f ive_dol lars) ;

}

START_TEST (test_money_create_amount) {
ck_assert_int_eq (money_amount(f i ve_dol lars) , 5) ;

}
END_TEST

START_TEST (test_money_create_currency) {
ck_assert_str_eq (money_currency (f ive_dol lars) , "USD") ;

}
END_TEST

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 48 / 78

Test fixtures in Check — example (cont.)
Suite * money_suite (void) {

Suite *s ;
TCase * tc_core ;
TCase * tc_ l imi ts ;

s = suite_create ("Money") ;

tc_core = tcase_create ("Core ") ;
tcase_add_checked_fixture (tc_core , setup , teardown) ;
tcase_add_test (tc_core , test_money_create_amount) ;
tcase_add_test (tc_core , test_money_create_currency) ;
suite_add_tcase (s , tc_core) ;

t c_ l imi ts = tcase_create (" Limits ") ;
tcase_add_test (tc_ l imits , test_money_create_neg) ;
tcase_add_test (tc_ l imits , test_money_create_zero) ;
suite_add_tcase (s , tc_ l imi ts) ;

return s ;
}
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 48 / 78

Test fixtures in Check — example (cont.)

$./check_money
Running suite(s): Money
100%: Checks: 4, Failures: 0, Errors: 0
check_money.c:17:P:Core:test_money_create_amount:0: Passed
check_money.c:22:P:Core:test_money_create_currency:0: Passed
check_money.c:31:P:Limits:test_money_create_neg:0: Passed
check_money.c:35:P:Limits:test_money_create_zero:0: Passed

$

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 49 / 78

Selectively running tests

It might be important to run only a few tests

e.g., when debugging a specific test failure

e.g., to run fast vs slow tests in different phases of your
development process

$./check_money
Running suite(s): Money
100%: Checks: 4, Failures: 0, Errors: 0
check_money.c:17:P:Core:test_money_create_amount:0: Passed
check_money.c:22:P:Core:test_money_create_currency:0: Passed
check_money.c:31:P:Limits:test_money_create_neg:0: Passed
check_money.c:35:P:Limits:test_money_create_zero:0: Passed

$ CK_RUN_CASE=Limits ./check_money
Running suite(s): Money
100%: Checks: 2, Failures: 0, Errors: 0
check_money.c:31:P:Limits:test_money_create_neg:0: Passed
check_money.c:35:P:Limits:test_money_create_zero:0: Passed

A similar CK_RUN_SUITE environment variable also exists.
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 50 / 78

Check boilerplate
#include <stdl ib .h>
#include <stdint .h>
#include <check .h> // test ing framework
#include " . . / src /money.h" // SUT

START_TEST (test_money_create) {
Money *m; // setup

m = money_create (5 , "USD") ; // exercise SUT

// test oracle
ck_assert_int_eq (money_amount(m) , 6) ;
ck_assert_str_eq (money_currency (m) , "USD") ;

money_free (m) ; // clean up
}
END_TEST

Suite *money_suite (void) {
TCase * tc_core ;
Suite *s ;

tc_core = tcase_create ("Core ") ;
tcase_add_test (tc_core , test_money_create) ;
// tcase_add_test (tc_core , test_foo) ;
// . . .

s = suite_create ("Money") ;
suite_add_tcase (s , tc_core) ;
// suite_add_tcase (s , tc_bar) ;
// . . .

return s ;
}

int main (void) {
int fa i lu res ;
Suite *s ;
SRunner * sr ;

s = money_suite () ;
sr = srunner_create (s) ;

srunner_run_all (sr , CK_VERBOSE) ;
fa i lu res = srunner_ntests_failed (sr) ;
srunner_free (sr) ;

return (fa i lu res == 0) ? EXIT_SUCCESS : EXIT_FAILURE ;
}

How do you like it?

quite a bit of
boilerplate

for relatively few lines
of actual test code

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 51 / 78

Check boilerplate
#include <stdl ib .h>
#include <stdint .h>
#include <check .h> // test ing framework
#include " . . / src /money.h" // SUT

START_TEST (test_money_create) {
Money *m; // setup

m = money_create (5 , "USD") ; // exercise SUT

// test oracle
ck_assert_int_eq (money_amount(m) , 6) ;
ck_assert_str_eq (money_currency (m) , "USD") ;

money_free (m) ; // clean up
}
END_TEST

Suite *money_suite (void) {
TCase * tc_core ;
Suite *s ;

tc_core = tcase_create ("Core ") ;
tcase_add_test (tc_core , test_money_create) ;
// tcase_add_test (tc_core , test_foo) ;
// . . .

s = suite_create ("Money") ;
suite_add_tcase (s , tc_core) ;
// suite_add_tcase (s , tc_bar) ;
// . . .

return s ;
}

int main (void) {
int fa i lu res ;
Suite *s ;
SRunner * sr ;

s = money_suite () ;
sr = srunner_create (s) ;

srunner_run_all (sr , CK_VERBOSE) ;
fa i lu res = srunner_ntests_failed (sr) ;
srunner_free (sr) ;

return (fa i lu res == 0) ? EXIT_SUCCESS : EXIT_FAILURE ;
}

How do you like it?

quite a bit of
boilerplate

for relatively few lines
of actual test code

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 51 / 78

checkmk

checkmk 4 can be used to reduce the amount of Check boilerplate to
write and focus on the actual test code.

checkmk is used as a custom C preprocessor that expand specific
#-directives to suitable calls to the Check API.

Some checkmk directives:

#suite define a suite

#tcase define a test case

#test define a unit test

#main-pre main preamble (e.g., to declare fixtures)

See the checkmk(1) manpage for a full list.

4. http://micah.cowan.name/projects/checkmk/
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 52 / 78

http://micah.cowan.name/projects/checkmk/

checkmk – example

#include <stdl ib .h>
#include " . . / src/money.h"

#suite Money

#tcase Core

#test test_money_create_amount
ck_assert_int_eq (money_amount(f i ve_dol lars) , 5) ;

#test test_money_create_currency
ck_assert_str_eq (money_currency (f ive_dol lars) , "USD") ;

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 53 / 78

checkmk – example (cont.)

#tcase Limits

#test test_money_create_neg
Money *m = money_create(−1, "USD") ;
ck_assert_msg (m == NULL,

"NULL should be returned on attempt "
" to create with a negative amount") ;

#test test_money_create_zero
Money *m = money_create (0 , "USD") ;
i f (money_amount(m) != 0)

ck_abort_msg ("0 is a val id amount of money") ;

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 53 / 78

checkmk – example (cont.)

Money * f ive_dol lars ;

void setup (void) {
f i ve_dol lars = money_create (5 , "USD") ;

}

void teardown (void) {
money_free (f ive_dol lars) ;

}

#main−pre
tcase_add_checked_fixture (tc1_1 , setup , teardown) ;

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 53 / 78

checkmk – example (cont.)

$ checkmk check_money.check > check_money.c

$ head check_money.c
/*
* DO NOT EDIT THIS FILE. Generated by checkmk.

* Edit the original source file "check_money.check" instead.

*/

#include <check.h>

#line 1 "check_money.check"
#include <stdlib.h>
#include "../src/money.h"

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 54 / 78

checkmk – example (cont.)

CC = gcc
CFLAGS = −Wall
LDFLAGS = $(CFLAGS)
LDLIBS = −Wall $(shel l pkg−config −−l ibs check)

a l l : check_money
check_money : check_money .o . . / src/money.o

check_money . c : check_money . check
checkmk $< > $@

clean :
rm −f check_money * .o

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 55 / 78

checkmk – example (cont.)

$ make
gcc -Wall -c -o check_money.o check_money.c
gcc -Wall check_money.o ../src/money.o -Wall -lcheck_pic \
-pthread -lrt -lm -lsubunit -o check_money

$ CK_VERBOSITY=verbose ./check_money
Running suite(s): Money
100%: Checks: 4, Failures: 0, Errors: 0
check_money.check:19:P:Core:test_money_create_amount:0: Passed
check_money.check:22:P:Core:test_money_create_currency:0: Passed
check_money.check:30:P:Limits:test_money_create_neg:0: Passed
check_money.check:35:P:Limits:test_money_create_zero:0: Passed

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 56 / 78

Outline

1 Development processes and testing

2 xUnit & Check

3 Test-Driven Development

4 Bootstrapping TDD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 57 / 78

Development as learning

every software development project tries something that has
never been tried before

ñ otherwise you wouldn’t be doing it. . .

due to constraints, developers often use technologies they don’t
completely master

ñ new technologies, old technologies used in new contexts, etc

all stakeholders (developers, managers, customers) learn as the
project progresses

Problem: as we don’t know everything at the beginning, there will be
unexpected changes during the project.

How do we cope with them?

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 58 / 78

Nested feedback loops

Idea
1 we use empirical feedback to learn about the system

2 we store what we learn in the system itself, for future use

To do so, we organize development as nested feedback loops with
increasing time periods and scopes in the organization (file, unit,
product, team, etc.), e.g.:

pair programming period: seconds

unit tests seconds–1 minute

acceptance tests minutes

daily meeting 1 day

iterations 1 day–1 week

releases 1 week–months

We want feedback as quickly as possible. If something slips through
an inner loop, it will (hopefully) be catched by an outer one.
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 59 / 78

Expecting the unexpected

Practices that (empirically) help coping with unexpected changes:

constant testing
ñ when we change something we might introduce regressions
ñ to avoid that we need to constantly test our system
ñ doing it manually doesn’t scale ⇒ automated testing

simple design
keep the code as simple as possible
optimize for simplicity

ñ as we will have to change it, we want code that is easy to
understand and modify

ñ empirical studies show that developers spend more time reading
code than writing it

ñ clean design doesn’t come for free, to achieve it we must
constantly refactor

ñ test suites give you courage to refactor, and apply other
changes, thanks to their tight feedback loop

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 60 / 78

TDD principle

So we have test suites. Why do we need TDD?

Because:

developers don’t like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e., a judo move on the above problem)

write tests before code

don’t write tests only to verify code after it’s done
leverage testing as a design activity

write tests to clarify our ideas about what the code should do
I was finally able to separate logical from physical
design. I’d always been told to do that but no one ever
explained how. — Kent Beck

write tests to get rapid feedback about design ideas
ñ if a test is difficult to write, design is often wrong

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 61 / 78

TDD principle

So we have test suites. Why do we need TDD? Because:

developers don’t like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e., a judo move on the above problem)

write tests before code

don’t write tests only to verify code after it’s done
leverage testing as a design activity

write tests to clarify our ideas about what the code should do
I was finally able to separate logical from physical
design. I’d always been told to do that but no one ever
explained how. — Kent Beck

write tests to get rapid feedback about design ideas
ñ if a test is difficult to write, design is often wrong

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 61 / 78

TDD principle

So we have test suites. Why do we need TDD? Because:

developers don’t like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e., a judo move on the above problem)

write tests before code

don’t write tests only to verify code after it’s done
leverage testing as a design activity

write tests to clarify our ideas about what the code should do
I was finally able to separate logical from physical
design. I’d always been told to do that but no one ever
explained how. — Kent Beck

write tests to get rapid feedback about design ideas
ñ if a test is difficult to write, design is often wrong

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 61 / 78

TDD in a nutshell

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 62 / 78

The TDD development cycle

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 63 / 78

The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

By writing the test we:

clarify acceptance criteria

are pushed to design loosely
coupled components

ñ otherwise they are difficult to test

document the code, via an
executable description of it

incrementally build a regression
suite

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 63 / 78

The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

By running the test we:

detect errors when the context is
fresh in our mind

have a measure of progress, know
when to stop (i.e., when we are
“done enough”)

ñ avoid over-coding, “gold plating”

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 63 / 78

The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

GOOS, Figure 1.1

TDD golden rule

Never write a new functionality without a failing test.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 63 / 78

Step 1 — write a failing unit test

This looks easy. But requires some care:
write the test you’d want to read, ideally in 3 steps

1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (ideally: 3), write helper code.
Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you’re not sure about
your assumptions

ñ if the test fails in unexpected
ways, fix it (= the test)

ñ if the diagnostic isn’t clear, fix it

unit test behavior, not functions
ñ for TDD test coverage is less

important than readable tests

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 64 / 78

Step 1 — write a failing unit test

This looks easy. But requires some care:
write the test you’d want to read, ideally in 3 steps

1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (ideally: 3), write helper code.
Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you’re not sure about
your assumptions

ñ if the test fails in unexpected
ways, fix it (= the test)

ñ if the diagnostic isn’t clear, fix it

unit test behavior, not functions
ñ for TDD test coverage is less

important than readable tests

GOOS, Figure 5.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 64 / 78

Step 1 — write a failing unit test

This looks easy. But requires some care:
write the test you’d want to read, ideally in 3 steps

1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (ideally: 3), write helper code.
Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you’re not sure about
your assumptions

ñ if the test fails in unexpected
ways, fix it (= the test)

ñ if the diagnostic isn’t clear, fix it

unit test behavior, not functions
ñ for TDD test coverage is less

important than readable tests
GOOS, Figure 5.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 64 / 78

Step 2 — make the test pass (you won’t like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it — all sorts of dirty tricks
ñ e.g., return the constant value the test expects

obvious implementation — just type in the “obviously right”
implementation

ñ it takes experience to tune your confidence
ñ too confident: you will have bad surprises
ñ too prudent: you’ll fake it too often
ñ tip: use confidence increasingly, fall back when you get an

unexpected “red bar” (i.e., test failure)

triangulation — when you have more than 2–3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several
applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 65 / 78

Step 2 — make the test pass (you won’t like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it — all sorts of dirty tricks
ñ e.g., return the constant value the test expects

obvious implementation — just type in the “obviously right”
implementation

ñ it takes experience to tune your confidence
ñ too confident: you will have bad surprises
ñ too prudent: you’ll fake it too often
ñ tip: use confidence increasingly, fall back when you get an

unexpected “red bar” (i.e., test failure)

triangulation — when you have more than 2–3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several
applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 65 / 78

Step 2 — make the test pass (you won’t like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it — all sorts of dirty tricks
ñ e.g., return the constant value the test expects

obvious implementation — just type in the “obviously right”
implementation

ñ it takes experience to tune your confidence
ñ too confident: you will have bad surprises
ñ too prudent: you’ll fake it too often
ñ tip: use confidence increasingly, fall back when you get an

unexpected “red bar” (i.e., test failure)

triangulation — when you have more than 2–3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several
applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 65 / 78

Step 3 — refactor

At this point: we have a test, some new code, and we are reasonably
convinced that it is that code that makes the test pass.
We can now improve the code design, using tests as a safety net.

The goal of refactoring is to improve the design of existing code,
without altering its external behavior (see Fowler 1999). We only
give some of its intuitions here:

Code smells

duplicate code

long methods / large class

too many parameters

inappropriate intimacy

Liskov principle violation

complex conditionals

. . .

Techniques

encapsulate field

generalize type

conditionals → polymorphism

extract class / method

rename method / field

pull up / push down

. . .

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 66 / 78

TDD cycle — example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)
1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList’s return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ e.g., with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one still succeeds

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 67 / 78

TDD cycle — example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)
1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList’s return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ e.g., with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one still succeeds

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 67 / 78

TDD cycle — example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)
1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList’s return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ e.g., with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one still succeeds

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 67 / 78

TDD cycle — exercise

Exercise (bug fixing work-flow)

You have adopted TDD as the development process for your project.
Describe the work-flow you would use to fix a bug.

?

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 68 / 78

TDD cycle — exercise

Exercise (bug fixing work-flow)

You have adopted TDD as the development process for your project.
Describe the work-flow you would use to fix a bug.

Possible work-flow:

0 receive bug report
1 run all tests to ensure clean slate
2 create a new test that

ñ recreates the context of the (alleged) bug
ñ would succeed if the bug didn’t exist

3 run all tests
ñ new test fails → reproducible bug
ñ new test passes → unreproducible bug → investigate with

submitter

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 68 / 78

TDD cycle — exercise (cont.)

Exercise (bug fixing work-flow)

You have adopted TDD as the development process for your project.
Describe the work-flow you would use to fix a bug.

Possible work-flow:
5 fix the bug

ñ even with dirty workarounds, to ensure you’ve cornered it
6 run all tests

ñ all test passes → bingo!
ñ new test fails → try again (= go back to 5)
ñ old tests fail → regression, try again

7 refactor as needed
ñ from workaround, to proper fix

8 release fix (including the new test!)

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 68 / 78

Outline

1 Development processes and testing

2 xUnit & Check

3 Test-Driven Development

4 Bootstrapping TDD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 69 / 78

TDD — the bigger picture

It is tempting to use only unit tests to implement TDD, but:

you might end up having a lot of unused well-tested units

you don’t know where to start, nor when to stop

That’s why TDD leverages both acceptance (outer feedback loop)
and unit tests (inner feedback loop):

GOOS, Figure 1.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 70 / 78

TDD — the bigger picture

It is tempting to use only unit tests to implement TDD, but:

you might end up having a lot of unused well-tested units

you don’t know where to start, nor when to stop

That’s why TDD leverages both acceptance (outer feedback loop)
and unit tests (inner feedback loop):

GOOS, Figure 1.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 70 / 78

End-to-end testing

Acceptance tests should exercise the system end-to-end

black-box testing at system level
ñ no instantiation/invocation of internal objects
ñ use the system via its interfaces (user interface, external API,

parsing its output and producing its inputs, etc.)

test both the system and its processes
ñ build
ñ deployment in a realistic environment

« don’t trust the results of acceptance tests run in development
environments

ñ any other qualification mechanism
« e.g. static analyses, stress testing, benchmark, etc.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 71 / 78

Testing, quality, feedback

External quality: how
well the system meets
the needs of its users

Internal quality: how
well the system meets
the needs of its
developers

e.g. good design:
low coupling & high
cohesion

it is often harder to
push for internal
than external quality,
but we need to do so
to cope with changes

GOOS, Figure 1.3

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 72 / 78

First feature paradox

Writing the first acceptance test at the beginning of a project is
problematic:

we want to test end-to-end the system and its processes
but we don’t have yet the tooling to make the test fail

To get out of the paradox we compromise a bit, implementing a
walking skeleton to kick start TDD.

Definition (walking skeleton)

An implementation of the smallest possible part of real functionality
that we can automatically build, deploy, and test end-to-end.

To implement the walking skeleton we need to automate a lot of
processes. That will force us to understand them better.

Example

The walking skeleton of a DBMS-backed web application will just
show a static “Hello, World” web page.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 73 / 78

First feature paradox

Writing the first acceptance test at the beginning of a project is
problematic:

we want to test end-to-end the system and its processes
but we don’t have yet the tooling to make the test fail

To get out of the paradox we compromise a bit, implementing a
walking skeleton to kick start TDD.

Definition (walking skeleton)

An implementation of the smallest possible part of real functionality
that we can automatically build, deploy, and test end-to-end.

To implement the walking skeleton we need to automate a lot of
processes. That will force us to understand them better.

Example

The walking skeleton of a DBMS-backed web application will just
show a static “Hello, World” web page.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 73 / 78

Walking skeleton

(Some of the) tasks to be completed as part of a walking skeleton:

create a VCS repository, check in the code
ñ requirements: choose Version Control System, choose hosting

automate the build process
ñ requirement: choose build tool (e.g. Ant, Maven)
ñ note: “just click a button in Eclipse” ≠ automation

automate deployment in a realistic environment
ñ requirement: choose packaging/deployment mechanisms

automate test execution
ñ requirement: choose test framework
ñ again: “just click a button in Eclipse” ≠ automation

. . .

iteration 0: implement, deploy, test first feature

Yes, it’s a lot of work!

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 74 / 78

Kick-starting TDD

GOOS, Figure 4.2

Note: “Broad-Brush Design” ≠ “Big Design Up Front (BDUF)”

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 75 / 78

TDD as a whole

Periodically reassess both your understanding of the problem and
the toolchain

GOOS, Figure 4.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 76 / 78

TDD as a whole

Periodically reassess both your understanding of the problem and
the toolchain

GOOS, Figure 4.3

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 76 / 78

Test suites organization

unit and integration test suites
ñ should always pass
ñ should run fast

acceptance test suite
ñ catch regressions
ñ should always pass
ñ might take longer to run

new acceptance test suite
ñ corresponds work in progress
ñ will keep on failing during inner loop iterations

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 77 / 78

Bibliography

Steve Freeman and Nat Pryce
Growing Object-Oriented Software, Guided by Tests 5

Addison-Wesley, 2009.

Kent Beck
Test Driven Development: By Example
Addison-Wesley, 2002.

Martin Fowler
Refactoring: Improving the Design of Existing Code
Addison-Wesley Professional, 1999.

Kent Beck
Simple smalltalk testing: With patterns
The Smalltalk Report 4.2 (1994): 16-18.
available at http://www.xprogramming.com/testfram.htm

5. referred to as the “GOOS” book in this lecture slides
Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2015–2016 78 / 78

http://www.xprogramming.com/testfram.htm

	Development processes and testing
	xUnit & Check
	Test-Driven Development
	Bootstrapping TDD

