
Conduite de Projet

Cours 8 � Test-Driven Development

Stefano Zacchiroli

zack@pps.univ-paris-diderot.fr

Laboratoire IRIF, Université Paris Diderot

2016�2017

URL http://upsilon.cc/zack/teaching/1617/cproj/
Copyright © 2013�2017 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 1 / 47

http://upsilon.cc/zack/teaching/1617/cproj/
http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Outline

1 Test-Driven Development

2 Case study

3 Bootstrapping TDD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 2 / 47

Test-Driven Development (TDD)

Test-Driven Development, or TDD, is an iterative software

development process which uses very short development cycles and

leverages tests to provide constant feedback to software developers.

Goal: �clean code that works�, i.e., develop better software, less

stressfully.

The �Test-Driven Development� expression is often (ab)used to talk

about 2 distinct things:

the TDD development process

the xUnit family of testing frameworks
ñ e.g., JUnit, Python's unittest, Check, OUnit, . . .

which have been designed to support the TDD development

process, but can also be used when adopting di�erent

development process

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 3 / 47

Test-Driven Development (TDD)

Test-Driven Development, or TDD, is an iterative software

development process which uses very short development cycles and

leverages tests to provide constant feedback to software developers.

Goal: �clean code that works�, i.e., develop better software, less

stressfully.

The �Test-Driven Development� expression is often (ab)used to talk

about 2 distinct things:

the TDD development process

the xUnit family of testing frameworks
ñ e.g., JUnit, Python's unittest, Check, OUnit, . . .

which have been designed to support the TDD development

process, but can also be used when adopting di�erent

development process

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 3 / 47

xUnit

xUnit collectively refers to a set of frameworks for automated unit

testing which share a common test coding style.

Each xUnit framework includes:

test case abstraction used to de�ne tests

test suite abstraction used to organize test in test suites

assertion API to implement test case oracles to verify outcomes

test �xture mechanisms to factorize test initialization and clean up

code

test runner end-user program to discover and (selectively) run test

suites

test result formatters summarize test results and present them for

human consumption

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 4 / 47

xUnit implementations

Teting frameworks that adhere to the xUnit paradigm exist for most

languages and platforms, e.g.: 1

SUnit (Smalltalk)

JUnit (Java)

CppUnit (C++)

OUnit (OCaml)

Test::Unit (Ruby)

HUnit (Haskell)

NUnit (.NET)

unittest (Python)

Check (C)

1. https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 5 / 47

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

Outline

1 Test-Driven Development

2 Case study

3 Bootstrapping TDD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 6 / 47

Development as learning

every software development project tries something that has
never been tried before

ñ otherwise you wouldn't be doing it. . .

due to constraints, developers often use technologies they don't
completely master

ñ new technologies, old technologies used in new contexts, etc

all stakeholders (developers, managers, customers) learn as the

project progresses

Problem: as we don't know everything at the beginning, there will be

unexpected changes during the project.

How do we cope with them?

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 7 / 47

Nested feedback loops

Idea

1 we use empirical feedback to learn about the system

2 we store what we learn in the system itself, for future use

To do so, we organize development as nested feedback loops with

increasing time periods and scopes in the organization (�le, unit,

product, team, etc.), e.g.:

pair programming period: seconds

unit tests seconds�1 minute

acceptance tests minutes

daily meeting 1 day

iterations 1 day�1 week

releases 1 week�months

We want feedback as quickly as possible. If something slips through

an inner loop, it will (hopefully) be catched by an outer one.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 8 / 47

Expecting the unexpected

Practices that (empirically) help coping with unexpected changes:

constant testing
ñ when we change something we might introduce regressions
ñ to avoid that we need to constantly test our system
ñ doing it manually doesn't scale) automated testing

simple design

keep the code as simple as possible
optimize for simplicity

ñ as we will have to change it, we want code that is easy to

understand and modify
ñ empirical studies show that developers spend more time reading

code than writing it
ñ clean design doesn't come for free, to achieve it we must

constantly refactor
ñ test suites give you courage to refactor, and apply other

changes, thanks to their tight feedback loop

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 9 / 47

TDD principle

So we have test suites. Why do we need TDD?

Because:

developers don't like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e., a judo move on the above problem)

write tests before code

don't write tests only to verify code after it's done

leverage testing as a design activity

write tests to clarify our ideas about what the code should do

�I was �nally able to separate logical from physical

design. I'd always been told to do that but no one ever

explained how.� � Kent Beck

write tests to get rapid feedback about design ideas
ñ if a test is di�cult to write, design is often wrong

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 10 / 47

TDD principle

So we have test suites. Why do we need TDD? Because:

developers don't like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e., a judo move on the above problem)

write tests before code

don't write tests only to verify code after it's done

leverage testing as a design activity

write tests to clarify our ideas about what the code should do

�I was �nally able to separate logical from physical

design. I'd always been told to do that but no one ever

explained how.� � Kent Beck

write tests to get rapid feedback about design ideas
ñ if a test is di�cult to write, design is often wrong

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 10 / 47

TDD principle

So we have test suites. Why do we need TDD? Because:

developers don't like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e., a judo move on the above problem)

write tests before code

don't write tests only to verify code after it's done

leverage testing as a design activity

write tests to clarify our ideas about what the code should do

�I was �nally able to separate logical from physical

design. I'd always been told to do that but no one ever

explained how.� � Kent Beck

write tests to get rapid feedback about design ideas
ñ if a test is di�cult to write, design is often wrong

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 10 / 47

TDD in a nutshell

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 11 / 47

The TDD development cycle

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as

possible

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 12 / 47

The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as

possible

By writing the test we:

clarify acceptance criteria

are pushed to design loosely
coupled components

ñ otherwise they are di�cult to test

document the code, via an

executable description of it

incrementally build a regression test

suite

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 12 / 47

The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as

possible

By running the test we:

detect errors when the context is

fresh in our mind

have a measure of progress, know
when to stop (i.e., when we are
�done enough�)

ñ avoid over-coding, �gold plating�

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 12 / 47

The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as

possible

GOOS, Figure 1.1

TDD golden rule

Never write a new functionality without a failing test.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 12 / 47

Step 1 � write a failing unit test

This looks easy. But requires some care:

write the test you'd want to read, ideally in 3 steps
1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (ideally: 3), write helper code.

Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you're not sure about

your assumptions
ñ if the test fails in unexpected

ways, �x it (= the test)
ñ if the diagnostic isn't clear, �x it

unit test behavior, not functions
ñ for TDD test coverage is less

important than readable tests

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 13 / 47

Step 1 � write a failing unit test

This looks easy. But requires some care:

write the test you'd want to read, ideally in 3 steps
1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (ideally: 3), write helper code.

Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you're not sure about

your assumptions
ñ if the test fails in unexpected

ways, �x it (= the test)
ñ if the diagnostic isn't clear, �x it

unit test behavior, not functions
ñ for TDD test coverage is less

important than readable tests

GOOS, Figure 5.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 13 / 47

Step 1 � write a failing unit test

This looks easy. But requires some care:

write the test you'd want to read, ideally in 3 steps
1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (ideally: 3), write helper code.

Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you're not sure about

your assumptions
ñ if the test fails in unexpected

ways, �x it (= the test)
ñ if the diagnostic isn't clear, �x it

unit test behavior, not functions
ñ for TDD test coverage is less

important than readable tests
GOOS, Figure 5.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 13 / 47

Step 2 � make the test pass (you won't like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it � all sorts of dirty tricks
ñ e.g., return the constant value the test expects

obvious implementation � just type in the �obviously right�
implementation

ñ it takes experience to tune your con�dence
ñ too con�dent: you will have bad surprises
ñ too prudent: you'll fake it too often
ñ tip: use con�dence increasingly, fall back when you get an

unexpected �red bar� (i.e., test failure)

triangulation � when you have more than 2�3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several

applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 14 / 47

Step 2 � make the test pass (you won't like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it � all sorts of dirty tricks
ñ e.g., return the constant value the test expects

obvious implementation � just type in the �obviously right�
implementation

ñ it takes experience to tune your con�dence
ñ too con�dent: you will have bad surprises
ñ too prudent: you'll fake it too often
ñ tip: use con�dence increasingly, fall back when you get an

unexpected �red bar� (i.e., test failure)

triangulation � when you have more than 2�3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several

applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 14 / 47

Step 2 � make the test pass (you won't like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it � all sorts of dirty tricks
ñ e.g., return the constant value the test expects

obvious implementation � just type in the �obviously right�
implementation

ñ it takes experience to tune your con�dence
ñ too con�dent: you will have bad surprises
ñ too prudent: you'll fake it too often
ñ tip: use con�dence increasingly, fall back when you get an

unexpected �red bar� (i.e., test failure)

triangulation � when you have more than 2�3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several

applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 14 / 47

Step 3 � refactor

At this point: we have a test, some new code, and we are reasonably

convinced that it is that code that makes the test pass.

We can now improve the code design, using tests as a safety net.

The goal of refactoring is to improve the design of existing code,

without altering its external behavior (see Fowler 1999). We only

give some of its intuitions here:

Code smells

duplicate code

long methods / large class

too many parameters

inappropriate intimacy

Liskov principle violation

complex conditionals

. . .

Techniques

encapsulate �eld

generalize type

conditionals ! polymorphism

extract class / method

rename method / �eld

pull up / push down

. . .

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 15 / 47

TDD cycle � example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)

1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList's return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ e.g., with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one still succeeds

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 16 / 47

TDD cycle � example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)

1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList's return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ e.g., with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one still succeeds

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 16 / 47

TDD cycle � example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)

1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList's return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ e.g., with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one still succeeds

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 16 / 47

TDD cycle � exercise

Exercise (bug �xing work-�ow)

You have adopted TDD as the development process for your project.

Describe the work-�ow you would use to �x a bug.

?

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 17 / 47

TDD cycle � exercise

Exercise (bug �xing work-�ow)

You have adopted TDD as the development process for your project.

Describe the work-�ow you would use to �x a bug.

Possible work-�ow:

0 receive bug report

1 run all tests to ensure clean slate

2 create a new test that
ñ recreates the context of the (alleged) bug
ñ would succeed if the bug didn't exist

3 run all tests
ñ new test fails ! reproducible bug
ñ new test passes ! unreproducible bug ! investigate with

submitter

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 17 / 47

TDD cycle � exercise (cont.)

Exercise (bug �xing work-�ow)

You have adopted TDD as the development process for your project.

Describe the work-�ow you would use to �x a bug.

Possible work-�ow:

5 �x the bug
ñ even with dirty workarounds, to ensure you've cornered it

6 run all tests
ñ all test passes ! bingo!
ñ new test fails ! try again (= go back to 5)
ñ old tests fail ! regression, try again

7 refactor as needed
ñ from workaround, to proper �x

8 release �x (including the new test!)

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 17 / 47

Outline

1 Test-Driven Development

2 Case study

3 Bootstrapping TDD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 18 / 47

The money example

There are a several �great classics� among case studies to learn TDD

and in particular its �rhythm.� Some of the most famous are:

The money example � included in Kent Beck's milestone book

on TDD

The bowling game � http://www.objectmentor.com/

resources/articles/xpepisode.htm

In the remainder we are going to discuss (some parts of) the money

example. Disclaimers:

the rhythm might seem slow at �rst, you will be tempted to use

obvious implementation more often than in the example (which

uses fake it very often)

that's �ne, you will �nd your own rhythm; in the meantime

starting slow will help understand the philosophy

we will take shortcuts, check out the full example in the book

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 19 / 47

http://www.objectmentor.com/resources/articles/xpepisode.htm
http://www.objectmentor.com/resources/articles/xpepisode.htm

Goal: multi-currency money

Instrument Shares Price Total

IBM 1000 25 25000

GE 400 100 40000

Total 65000

+

Instrument Shares Price Total

IBM 1000 25 USD 25000 USD

Novartis 400 150 CHF 60000 CHF

Total 65000 USD

From To Rate

CHF USD 1.5

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 20 / 47

Notation � To-do list

When applying TDD you will often stumble upon items you want to

work on (e.g., design improvements) which you have to postpone to

the appropriate phase (e.g., refactoring). To keep track of them we

will use to-do lists like this one:

ToDo

oh yes, we should really do this

but we are currently working on this

this is done

this too

Initial to-do list for the money example:

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1

5 USD * 2 = 10 USD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 21 / 47

Multiplication

Write a failing unit test:

@Test

public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;

f i ve . times (2) ;

assertEquals (10 , f i ve .amount) ;

}

Which doesn't compile!

no class Dollar

no constructor

no method times(int)

no �eld amount

That's �ne! We progressed: we now have a more immediate goal to

achieve (make the test compile).

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 22 / 47

Multiplication

Write a failing unit test:

@Test

public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;

f i ve . times (2) ;

assertEquals (10 , f i ve .amount) ;

}

Which doesn't compile!

no class Dollar

no constructor

no method times(int)

no �eld amount

That's �ne! We progressed: we now have a more immediate goal to

achieve (make the test compile).

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 22 / 47

Multiplication

Write a failing unit test:

@Test

public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;

f i ve . times (2) ;

assertEquals (10 , f i ve .amount) ;

}

Which doesn't compile!

no class Dollar

no constructor

no method times(int)

no �eld amount

That's �ne! We progressed: we now have a more immediate goal to

achieve (make the test compile).

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 22 / 47

Multiplication (cont.)

Let's address one compilation error at a time. . .

1 public class Dollar { };

2 public Dollar(int amount) { /*empty */};

3 public void times(int multiplier) { /*empty */};

4 public int amount;

YAY! Now the test compiles. . . and fails with a red bar.

Progress: we now have a measure of how far we are from

success�1 test is failing, we are just 1 test away from success.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 23 / 47

Multiplication (cont.)

Let's address one compilation error at a time. . .

1 public class Dollar { };

2 public Dollar(int amount) { /*empty */};

3 public void times(int multiplier) { /*empty */};

4 public int amount;

YAY! Now the test compiles. . . and fails with a red bar.

Progress: we now have a measure of how far we are from

success�1 test is failing, we are just 1 test away from success.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 23 / 47

Multiplication (cont.)

Let's address one compilation error at a time. . .

1 public class Dollar { };

2 public Dollar(int amount) { /*empty */};

3 public void times(int multiplier) { /*empty */};

4 public int amount;

YAY! Now the test compiles. . . and fails with a red bar.

Progress: we now have a measure of how far we are from

success�1 test is failing, we are just 1 test away from success.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 23 / 47

Multiplication (cont.)

Let's make the bar green (you won't like this)

public int amount = 10; //fake it

The test now passes!

But that obviously not the right solution so. . . refactor.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 24 / 47

Multiplication (cont.)

We currently have duplication in our code, even if it's hidden:

the test contains a 5� 2 multiplication

the code contains 10�� 5� 2�

we want to factor out the duplication.

public Dollar (int amount) {

this .amount = amount ;

}

public void times (int mult ip l ier) {

this .amount *= mult ip l ier ;

}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1

5 USD * 2 = 10 USD

make amount private

avoid Dollar side e�ects

allow to have cents

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 25 / 47

Multiplication (cont.)

We currently have duplication in our code, even if it's hidden:

the test contains a 5� 2 multiplication

the code contains 10�� 5� 2�

we want to factor out the duplication.

public Dollar (int amount) {

this .amount = amount ;

}

public void times (int mult ip l ier) {

this .amount *= mult ip l ier ;

}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1

5 USD * 2 = 10 USD

make amount private

avoid Dollar side e�ects

allow to have cents

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 25 / 47

Functional objects

@Test

public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;

f i ve . times (2) ;

assertEquals (10 , f i ve .amount) ;

f i ve . times (3) ;

assertEquals (15 , f i ve .amount) ; // mmmmmhhhh. . .

}

+

@Test

public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;

Dollar product = f i ve . times (2) ;

assertEquals (10 , product .amount) ;

product = f i ve . times (3) ;

assertEquals (15 , product .amount) ; // better design !

}

Red bar again!

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 26 / 47

Functional objects

@Test

public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;

f i ve . times (2) ;

assertEquals (10 , f i ve .amount) ;

f i ve . times (3) ;

assertEquals (15 , f i ve .amount) ; // mmmmmhhhh. . .

} +

@Test

public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;

Dollar product = f i ve . times (2) ;

assertEquals (10 , product .amount) ;

product = f i ve . times (3) ;

assertEquals (15 , product .amount) ; // better design !

}

Red bar again!

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 26 / 47

Functional objects (cont.)

Let's make it compile:

Dollar times (int mult ip l ier) {

amount *= mult ip l ier ;

return null ; // fake i t

}

test now compiles but doesn't pass

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 27 / 47

Functional objects (cont.)

Let's make it pass:

Dollar times (int mult ip l ier) {

return new Dollar (amount * mult ip l ier) ;

}

Green bar: YAY!

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1

5 USD * 2 = 10 USD

make amount private

avoid Dollar side e�ects

allow to have cents

equality

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 28 / 47

Functional objects (cont.)

Let's make it pass:

Dollar times (int mult ip l ier) {

return new Dollar (amount * mult ip l ier) ;

}

Green bar: YAY!

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1

5 USD * 2 = 10 USD

make amount private

avoid Dollar side e�ects

allow to have cents

equality

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 28 / 47

Equality

@Test

public void dol larsEqual i ty () {

assertEquals (new Dollar (5) , new Dollar (5)) ;

// same as , but clearer than

// assertTrue (new Dollar (5) . equals (new Dollar (5))) ;

}

the test compiles (why?)

but fails (why?)

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 29 / 47

Equality (cont.)

public boolean equals (Object object) {

return true ;

}

Test passes!

But we want a proper implementation, so let's prove we have a bug

in the current implementation. . . with a test!

@Test

public void dol lars Inequal i ty () {

assertNotEquals (new Dollar (5) , new Dollar (6)) ;

}

(indeed we have a bug)

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 30 / 47

Equality (cont.)

public boolean equals (Object object) {

return true ;

}

Test passes!

But we want a proper implementation, so let's prove we have a bug

in the current implementation. . . with a test!

@Test

public void dol lars Inequal i ty () {

assertNotEquals (new Dollar (5) , new Dollar (6)) ;

}

(indeed we have a bug)

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 30 / 47

Equality (cont.)

We can now triangulate to a more general (and correct) solution:

public boolean equals (Object object) {

Dollar dol lar = (Dollar) object ;

return this .amount == dol lar .amount ;

}

Green bar!!

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1

make amount private

allow to have cents

equality

equality against null

equality against Object

5 CHF * 2 = 10 CHF

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 31 / 47

CHF

@Test

public void f rancMult ipl icat ion () {

Franc f i ve = new Franc (5) ;

assertEquals (new Franc (10) , f i ve . times (2)) ;

assertEquals (new Franc (15) , f i ve . times (3)) ;

}

What's the shortest step which will bring us to green bar?

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 32 / 47

CHF (cont.)

Copy/paste/adapt from Dollar!

class Franc {

private int amount ;

public Franc (int amount) { this .amount = amount ; }

public Franc times (int mult ip l ier) {

return new Franc (amount * mult ip l ier) ;

}

public boolean equals (Object object) {

Franc franc = (Franc) object ;

return this .amount = franc .amount ;

}

}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1

Dollar/Franc duplication

common equals

common times

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 33 / 47

CHF (cont.)

Refactoring to eliminate duplication:

class Money { protected int amount ; }

class Dollar extends Money { /* . . . */ }

class Franc extends Money { /* . . . */ }

public boolean equals (Object object) { // how about equals?

Money dol lar = (Dollar) object ; // ???

return this .amount = dol lar .amount ;

}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1

Dollar/Franc duplication

common equals

common times

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 34 / 47

CHF (cont.)

Refactoring to eliminate duplication:

class Money { protected int amount ; }

class Dollar extends Money { /* . . . */ }

class Franc extends Money { /* . . . */ }

public boolean equals (Object object) { // how about equals?

Money dol lar = (Dollar) object ; // ???

return this .amount = dol lar .amount ;

}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1

Dollar/Franc duplication

common equals

common times

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 34 / 47

Equality redux

Bug!

@Test

public void equalityFrancDollar () { // th is passes

assertEquals (new Dollar (5) , new Dollar (5)) ;

assertEquals (new Franc (7) , new Franc (7)) ;

}

@Test

public void inequalityFrancDollar () { // exception !

assertNotEquals (new Dollar (5) , new Franc (6)) ;

assertNotEquals (new Franc (7) , new Dollar (8)) ;

}

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 35 / 47

Equality redux (cont.)

// pull�up in class Money

public boolean equals (Object object) {

Money money = (Money) object ;

return amount == money.amount

&& getClass () . equals (money. getClass ()) ;

}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1

Dollar/Franc duplication

common equals

common times

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 36 / 47

Etc.

.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 37 / 47

Outline

1 Test-Driven Development

2 Case study

3 Bootstrapping TDD

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 38 / 47

TDD � the bigger picture

It is tempting to use only unit tests to implement TDD, but:

you might end up having a lot of unused well-tested units

you don't know where to start, nor when to stop

That's why TDD leverages both acceptance (outer feedback loop)

and unit tests (inner feedback loop):

GOOS, Figure 1.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 39 / 47

TDD � the bigger picture

It is tempting to use only unit tests to implement TDD, but:

you might end up having a lot of unused well-tested units

you don't know where to start, nor when to stop

That's why TDD leverages both acceptance (outer feedback loop)

and unit tests (inner feedback loop):

GOOS, Figure 1.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 39 / 47

End-to-end testing

Acceptance tests should exercise the system end-to-end

black-box testing at system level
ñ no instantiation/invocation of internal objects
ñ use the system via its interfaces (user interface, external API,

parsing its output and producing its inputs, etc.)

test both the system and its processes
ñ build
ñ deployment in a realistic environment

« don't trust the results of acceptance tests run in development

environments

ñ any other quali�cation mechanism
« e.g., static analyses, stress testing, benchmark, etc.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 40 / 47

Testing, quality, feedback

External quality: how

well the system meets

the needs of its users

Internal quality: how

well the system meets

the needs of its

developers

e.g., good design:

low coupling & high

cohesion

it is often harder to

push for internal

than external quality,

but we need to do so

to cope with changes
GOOS, Figure 1.3

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 41 / 47

First feature paradox

Writing the �rst acceptance test at the beginning of a project is

problematic:

we want to test end-to-end the system and its processes

but we don't have yet the tooling to make the test fail

To get out of the paradox we compromise a bit, implementing a

walking skeleton to kick start TDD.

De�nition (walking skeleton)

An implementation of the smallest possible part of real functionality

that we can automatically build, deploy, and test end-to-end.

To implement the walking skeleton we need to automate a lot of

processes. That will force us to understand them better.

Example

The walking skeleton of a DBMS-backed web application will just

show a static �Hello, World� web page.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 42 / 47

First feature paradox

Writing the �rst acceptance test at the beginning of a project is

problematic:

we want to test end-to-end the system and its processes

but we don't have yet the tooling to make the test fail

To get out of the paradox we compromise a bit, implementing a

walking skeleton to kick start TDD.

De�nition (walking skeleton)

An implementation of the smallest possible part of real functionality

that we can automatically build, deploy, and test end-to-end.

To implement the walking skeleton we need to automate a lot of

processes. That will force us to understand them better.

Example

The walking skeleton of a DBMS-backed web application will just

show a static �Hello, World� web page.

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 42 / 47

Walking skeleton

(Some of the) tasks to be completed as part of a walking skeleton:

create a VCS repository, check in the code
ñ requirements: choose Version Control System, choose hosting

automate the build process
ñ requirement: choose build tool (e.g., Make, Maven, etc.)
ñ note: �just click a button in Eclipse� � automation

automate deployment in a realistic environment
ñ requirement: choose packaging/deployment mechanisms

automate test execution
ñ requirement: choose test framework
ñ again: �just click a button in Eclipse� � automation

. . .

iteration 0: implement, deploy, test �rst feature

Yes, it's a lot of work!

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 43 / 47

Kick-starting TDD

GOOS, Figure 4.2

Note: �Broad-Brush Design� � �Big Design Up Front (BDUF)�

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 44 / 47

TDD as a whole

Periodically reassess both your understanding of the problem and

the toolchain

GOOS, Figure 4.2

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 45 / 47

TDD as a whole

Periodically reassess both your understanding of the problem and

the toolchain

GOOS, Figure 4.3

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 45 / 47

Test suites organization

unit and integration test suites
ñ should always pass
ñ should run fast

acceptance test suite
ñ catch regressions
ñ should always pass
ñ might take longer to run

new acceptance test suite
ñ corresponds to work in progress
ñ will keep on failing during inner loop iterations

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 46 / 47

Bibliography

Steve Freeman and Nat Pryce

Growing Object-Oriented Software, Guided by Tests 2

Addison-Wesley, 2009.

Kent Beck

Test Driven Development: By Example

Addison-Wesley, 2002.

Martin Fowler

Refactoring: Improving the Design of Existing Code

Addison-Wesley Professional, 1999.

Kent Beck

Simple smalltalk testing: With patterns

The Smalltalk Report 4.2 (1994): 16-18.

available at http://www.xprogramming.com/testfram.htm

2. referred to as the �GOOS� book in this lecture slides

Stefano Zacchiroli (Paris Diderot) Test-Driven Development 2016�2017 47 / 47

http://www.xprogramming.com/testfram.htm

	Test-Driven Development
	Case study
	Bootstrapping TDD

