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ABSTRACT
Obtaining a relevant dataset is central to conducting empirical stud-
ies in software engineering. However, in the context of mining
software repositories, the lack of appropriate tooling for large scale
mining tasks hinders the creation of new datasets. Moreover, limita-
tions related to data sources that change over time (e.g., code bases)
and the lack of documentation of extraction processes make it diffi-
cult to reproduce datasets over time. This threatens the quality and
reproducibility of empirical studies.

In this paper, we propose a tool-supported approach facilitat-
ing the creation of large tailored datasets while ensuring their
reproducibility. We leveraged all the sources feeding the Software
Heritage append-only archive which are accessible through a uni-
fied programming interface to outline a reproducible and generic
extraction process. We propose a way to define a unique fingerprint
to characterize a dataset which, when provided to the extraction
process, ensures that the same dataset will be extracted.

We demonstrate the feasibility of our approach by implement-
ing a prototype. We show how it can help reduce the limitations
researchers face when creating or reproducing datasets.
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1 INTRODUCTION
Empirical research in software engineering has experienced signif-
icant growth over the past two decades [25]. In addition to the
important impact of dedicated scientific venues such as MSR1
and EMSE2, the proportion of papers applying empirical tech-
niques has increased significantly in all major software engineering
venues. Moreover, all the major conferences and journals in the
field now consider reproducibility3 to be a major evaluation factor
of the submitted research results with rigorous replication guide-
lines [7, 14, 20]. At the same time, much effort has been put into
providing benchmarks to facilitate the evaluation of research con-
tributions and their comparison to the current state of the art. The
corresponding datasets cover several application domains such as
Android apps [1] and/or target specific problems such as code re-
view [24]. In general, those datasets contain code elements and
other data derived from the code that characterizes the internal
properties of those elements in the form of metrics or abstract rep-
resentations. They can also contain data that characterizes external
properties of the code elements like, e.g., bug reports.

Generally speaking, empirical studies in software engineering
follow three common steps: select relevant repositories, extract
the necessary data from these repositories, and finally analyze this
data to answer the research questions [23]. While the extracted
data (refined dataset) is strongly tied to the conducted study, the
selection of repositories (raw dataset) may be more prone to be
reused as the first step of replications or other studies. That is,
different studies may extract their refined datasets from the same
raw dataset.

In the context of code repositories, building reproducible raw
datasets is difficult for twomain reasons. First, extracting large-scale
datasets for specific purposes from code forges is resource-intensive,
and in most of the cases, a laborious endeavor. Second and more
importantly, the content of repositories changes over time, up to
several times a day. This makes it difficult to reproduce the same
dataset over time, even when using the same extraction process.

1https://www.msrconf.org/
2https://www.springer.com/journal/10664/
3According to the terminology used by ACM, we use in this paper the term reproducibil-
ity to refer to the fact that the measurement can be obtained with stated precision
by a different team, a different measuring system, in a different location on multiple
trials [2].
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In this paper, we propose to characterize a raw dataset in a unique
way, through a fingerprint composed of a query and a timestamp.
While the query defines what constraints a repository must ver-
ify to be part of the dataset, the timestamp sets the state of the
data sources which are mined to build the dataset. In addition, we
define an extraction process which enables to retrieve from such
fingerprint the same dataset at any point in time, hence ensuring
its reproducibility. We propose a generic approach that can be ap-
plied to any software forge or meta-forge as long as it guarantees
immutability. We implement our approach on top of the Software
Heritage archive which is to the best of our knowledge the sole
meta-forge providing such property. Software Heritage [8] stores
hundreds of millions open source projects with their development
histories and make them available through a unified programming
interface. Software Heritage, that we will not present in detail, is
therefore used as an existing and independent platform to imple-
ment our prototype.

We show that using fingerprints coupled with our extraction
process overcomes limitations faced by researchers when building,
reusing or reproducing a dataset composed of software repositories.
Our approach enables any researcher to compare their work to
different approaches on exactly the same data without having to
reimplement those approaches or executing them on the datasets.

We illustrate our approach through a case study about open
source Android applications mined from Software Heritage. We
developed a prototype andwe demonstrate its ability to build a large
dataset from various origins, still with a unified interface. We show
that variations in time in the fingerprint lead to different versions of
a dataset. We also test if our implemented approach is deterministic
and if it can retrieve the same dataset from a given fingerprint at
different points in time. The open source implementation of the
prototype is available together with the entire replication package
on Zenodo.4

The rest of this paper is organized as follows. Section 2 discusses
the limitations of retrieving datasets of code repositories through
a running example. Section 3 provides background on Software
Heritage and the associated features that that we use in this work.
Our fingerprinting technique is described in Section 4 together with
the fingerprint-based extraction process in Section 5. We illustrate
our approach through a case study in Section 6. Before concluding,
we discuss related work in Section 7.

2 MOTIVATIONS
In this section, we stress several limitations researchers may face
during the process of acquiring a raw dataset composed of software
repositories. We do not focus on the techniques to extract data from
these repositories, but on how to obtain a curated list of relevant
software repositories in the first place. We rely on a fictional illus-
trative example of a study targeting the development of modern
and active open source Android applications. To do so, one may be
interested in analyzing the code in open source repositories of An-
droid applications which have a creation date not prior to 2015 and at
least 1000 commits. These three selection criteria are convenient for
identifying limitations, because they help cover a wide spectrum of

4https://doi.org/10.5281/zenodo.7989955

potential obstacles by requiring to examine repository data (detect-
ing Android applications through the presence of certain files in the
repository, namely AndroidManifest.xml), repository metadata
(creation date), and perform join operations (number of commits
in the history). In what follows, we discuss limitations which can
arise in three scenarios: reusing an existing dataset, reproducing
an existing dataset, and creating a new dataset.

2.1 Limitations when Reusing Existing Datasets
We found two refined datasets in the literaturewhich could be useful
for our case: AndroZooOpen [16] and AndroidTimeMachine [11].
AndroZooOpen provides metadata of open source Android applica-
tions, while AndroidTimeMachine gathers Android applications’
commit history. If one wants to perform another kind of analysis on
Android applications (e.g., source code analysis), these two refined
datasets are not adapted. Nevertheless, their raw datasets could be
reused and built upon.

AndroZooOpen [16], published in 2020, refers to 46 523 reposi-
tories of Android applications gathered from GitHub and F-Droid.
The dataset takes the form of a collection of CSV files document-
ing different types of metadata retrieved from GitHub and Google
Play, as well as other artifacts (e.g., the APK retrieved from Andro-
Zoo [1]). F-Droid5 is an app store devoted to distribute open source
Android applications and information about them, including URLs
towards upstream repositories containing their source code. All
listed applications were thus considered relevant to be included in
this dataset. Identifying repositories containing the code of Android
applications on GitHub is less straightforward. First, the authors
searched on GitHub all repositories categorized under the Android
topic. Then, they cloned these repositories and analyzed their files:
they retained only the repositories containing both a main launcher
Activity.java file and a file AndroidManifest.xml, which char-
acterize Android applications.

AndroidTimeMachine6 [11] is a dataset of commit history of real-
world Android apps taken from GitHub. It combines the GitHub
information for 8432 repositories with metadata from the Google
Play Store.

As for the previous dataset, the authors had to identify which
repositories on GitHub were presenting source code of Android
applications. However, they use a different strategy. Rather than re-
lying on GitHub topics to filter repositories, they directly identified
all repositories containing a file AndroidManifest.xml.

Also, instead of using the GitHub API, they exploited a GitHub
mirror available on BigQuery7 to perform their search.

Limitation RU-1: links point towards resources which can
be altered. Both existing raw datasets contain the URLs where the
repositories were accessed. However, we noticed that some of them
point to projects which were deleted since the authors performed
their selection. Also, even if the projects still exist, their history
may have been modified (e.g., by using git rebase, git push
–force or equivalent): if so, it is impossible to retrieve the state of
the repository at the time of initial dataset selection. For instance,
version control system metadata or its commit history may be
5https://f-droid.org/, accessed 2023-01-18
6https://androidtimemachine.github.io/
7https://console.cloud.google.com/marketplace/product/github/github-repos

https://f-droid.org/
https://androidtimemachine.github.io/
https://console.cloud.google.com/marketplace/product/github/github-repos
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different. Therefore, it is not possible to ensure the reproducibility
of a raw dataset by providing the URLs of the selected repositories,
because they do not guarantee that they will still be accessible and
their history preserved in the future. Providing links towards a mirror
(such as the one used by AndroidTimeMachine) may mitigate this
issue. However, lack of information regarding how public mirrors
evolve over time can also be a limitation (see RP-3).

Several works highlighted the necessity of providing timestamps
to ensure dataset reproducibility [15, 21, 22], because they help
identify which state of the repositorywas retrieved at the time of the
selection. Timestamps are however not sufficient when repositories
are not accessible anymore, or if their history have been modified,
because they are not persistent intrinsic identifiers [6] based on the
content of the referenced artifacts (which would correspond to the
entire version control repositories, in our example).

This limitation can be generalized to every dataset which include
links towards resources which can change over time. For instance,
AndroidTimeMachine provides links towards the Google Play pages
of some of its repositories, but in December 2022, only 30% of these
links were not producing a 404 error.

It is noteworthy that the authors of the AndroidTimeMachine
dataset provide snapshots of the repositories at the time of the
dataset creation, which mitigates the previous limitation. However,
this may not be possible for all datasets: this solution requires a
consequent storage capacity and sharing facility for large datasets,
which are more and more prevalent in the recent literature due to
the ever-growing popularity of machine learning approaches for
software sciences.

2.2 Limitations when Reproducing an Existing
Dataset

Even when data sources do not change over time, reproducing the
steps for selecting the repositories may be necessary. This task is
especially important in the context of reproducing empirical studies
and for benchmarking. We faced two limitations when attempting
to reproduce the selection processes described in AndroZooOpen
and AndroidTimeMachine.

Limitation RP-2: the selection process is not systematic
and/or not clearly defined. To retrieve all repositories matching
the Android topic, the authors of the first dataset defined what
they called a divide-and-conquer search strategy to bypass the lim-
itations of the GitHub’s search functionality. Indeed, even if the
number of repositories matched by a search query is indicated, only
the 1000 first results are actually returned by the API. Consequently,
they divided the initial query into several more specific queries (e.g.,
“all repositories with one star created before 2018 categorized in
the Android topic”) to reduce the number of matched repositories.
If one of this query matched a number of repositories superior to
1000, they split the query again. This strategy necessitates manual
efforts to inspect the results of queries and to refine them, while
ensuring that the set of queries is complete (i.e., they cover all the
repositories). Because the number of matched repositories for each
query will evolve over time, in case the process needs to be redone,
some queries used in this study will have to be manually refined
again. This process, while overcoming the limitations imposed by
GitHub’s API, is time-consuming, error-prone, and require manual

efforts and validation from experts to define adapted queries. The
authors of AndroidTimeMachine provide the query and a link to-
ward the BigQuery dataset on which they apply their query. Such a
formal way to express the selection and a systematic way to apply
it should be considered to limit ambiguity and mistakes when re-
producing a selection process. A recent study found out that only
17% of MSR papers describe a systematic selection process [23].

Limitation RP-3: data sources are not reliable. The authors
of the second dataset, whose selection process relies on BigQuery,
provides the query they used and how to re-run it. To the best of our
knowledge, few information are available concerning the GitHub
mirror hosted on Google BigQuery. The 3M snapshots in the mirror
are GitHub repositories associated with an open source license,
but we found little information regarding how representative they
are of GitHub. Also, the mirror is updated weekly, but no further
information is provided on how this update affects the dataset, e.g.,
if it is append-only. To date, we are not able to ensure that a query,
even considering a timestamp, will yield to the same result over
time, and thus if repository selection processes relying on this data
source can build reproducible datasets and under which conditions.

2.3 Limitations when Creating new Datasets
In the case where one cannot rely on existing datasets, they may
build a new one tailored to their needs.

Limitation C-4: forges are heterogeneous.
Because of the heterogeneity of the available data sources, the

definition and implementation of selection processes have to be
adapted to consider the differences in available APIs, metadata. and
limitations of each platform. This makes it difficult to include di-
verse data sources in a dataset, and consequently, researchers tend
to rely upon the forge that contains the most source code and offers
the best/easiest to use API for a given task. For instance, both exist-
ing datasets use GitHub as their main data source. AndroZooOpen
also considers a small existing dataset, F-Droid, although these
repositories consist of roughly 4% of their final dataset. GitHub is
the platform with the most repositories and users [21], and numer-
ous tools are available to help practitioners mine GitHub data [9, 12],
which makes it the main data source for 67% of MSR papers [23].
Although focusing on the prevalent forge is understandable, it in-
duces a bias which might exclude a significant part of the objects
of study. Code forges do not have the same features and are used
differently by varied communities. For instance, GitLab offers dif-
ferent continuous integration and delivery features than GitHub,
and may attract different kind of software projects than GitHub or
SourceForge.

Limitation C-5: forges do not provide appropriate tooling
for large scale mining. Forges usually expose APIs mostly de-
signed tomeet the needs of the industry, allowingDevOps engineers
to access repository data for automation purpose (e.g. continuous
integration, dashboards). These APIs may enable the access to the
data model of a specific project, or provide search functionalities.
However, these features have many limitations which makes their
usage for large-scale repository mining challenging.
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If we were to use GitHub to select repositories for our running
example, we would need to define two subqueries. The first one—
“repositories of android applications” (SQ1)—can be fulfilled using the
code search API to find all the files named AndroidManifest.xml
and the corresponding repositories. The second one—“repositories
which have a creation date not prior to 2015 and at least 1000 commits”
(SQ2)—can be handled by using the GraphQLAPI to get the creation
date and the total number of commits of each repository identified
in SQ1. GitHub is known to impose a fixed rate limit for each user.
For SQ1, between 3 and 9 million results are expected. Knowing
that at most 100 results are returned per request, it would require to
run between 30K and 90K queries. With the rate limit of 30 queries
per minute for the search endpoint, it would take between 17h and
50h to complete an execution. We estimated that SQ2 would then
requires more than 32 days to be executed on the results of SQ1. In
addition to rate limitations, one can face operational limitations.
The search endpoint returns only the first 1000 elements for each
query, while our query matches millions of elements.8 A common
tweak is to divide massive queries using available attribute filters,
such as the divide-and-conquer strategy adopted byAndroZooOpen.
This requires complex heuristics whichmakes their implementation
constraining. Finally, it appears that the total count of returned
elements may differ when running the same query several times,
leading to non-reproducible results.

GitLab offers a legacy REST API as well as a GraphQL API.
However, the GitLab advanced search API is not available on the
whole forge, and thus query such as SQ1 are not supported,9 making
the repository selection of our example impracticable on this forge.

3 SOFTWARE HERITAGE: A META-FORGE
SUPPORTING LARGE & REPRODUCIBLE
MINING

In collaboration with the UNESCO and initiated by the National
Institute for Research in Digital Science and Technology (Inria
- France), the Software Heritage project10 is built upon the idea
that source code contains a form of human knowledge and is thus
a part of our heritage which is worth preserving [8]. Software
Heritage (SWH) collects and preserves open source software with
the aim of building a universal archive of source code along with
its development history, as captured by modern version control
systems. Open source software are collected regularly by crawling
the main forges like Bitbucket, GitHub or GitLab. Software Heritage
also allows smaller forges to be archived, for instance small GitLab
instances hosted by an organisation. Software Heritage also aims
to archive research software that are omnipresent in all fields and
contain scientific knowledge that must be preserved. Archiving
such software is crucial for reproducibility and the accessibility of
the research. Currently (January 2023), the SWH archive11 contains
more than 186million freely accessible projects. In the following, we
focus on the properties of Software Heritage that can be leveraged
to circumvent the limitations presented in Section 2. For a more
general introduction to SWH we refer the reader to [8].

8https://docs.github.com/en/rest/search?apiVersion=2022-11-28
9https://gitlab.com/gitlab-org/gitlab/-/issues/197231, accessed 2023-01-18
10https://www.softwareheritage.org/
11https://archive.softwareheritage.org

In addition to its archiving mission, SWH aims to facilitate large
scale software mining by providing relevant tools and representa-
tions of the archived data. The objective is to tend to an “universal
software mining, i.e., making it feasible for researchers to study the
entire corpus of software commons”. The use of such a meta-forge
facilitates the repository mining of all the crawled forges through a
unique data model and API. This can help to overcome limitations
related to the heterogeneity of existing forges (C-4), and thus help
prevent bias induced by focusing on repositories from a single data
source. However, it comes with challenges, such as the necessity
for the meta-forge API to offer at least the same query features as
those offered by the most used forges. For instance, the SWH API
does not allow for the moment to perform query on the content of
archived files as GitHub or GitLab do.

The SWH archive metadata relative to the source code and the
version control system (VCS) are represented in a generic way in
the SWH Graph Dataset [19], which is a fully-deduplicated Merkle
DAG. Thus, it enables to query in an uniform manner software
artifacts coming from different data sources, possibly via different
VCS (e.g., Git, SVN, Mercurial). It also facilitates the study of legacy
software which have migrated through different VCS (e.g., from
CVS, to Subversion, to Git) and/or relocated to different hosting
platforms (e.g., from GitHub, to gitlab.com, to a self-hosted GitLab
instance). The SWH Graph Dataset offers the concept of snapshot,
allowing to capture the mutability of the targeted VCS. We be-
lieve that capturing mutability is a requirement for reproducibility:
traditional VCS and forges do not ensure such property (e.g., it
is possible to alter git history) which can lead to different results
for the same query over time. SWH handles this issue by offering
an append-only data model, immutable by design, where graph
elements have unique, persistent identifiers and cannot be altered.
These unique identifiers (called SWHIDs [6]), ensure that one can
refer to resources which will not be altered silently (RU-1). An
append-only model offers some guarantees regarding the reliability
of the data sources over time (RP-3). SWH is also based on a dis-
tributed and open architecture, with independent archive copies.
By design, there is no single point of failure and data persistence is
ensured.

Two different representations of the SWH Graph Dataset are
available depending on the nature of the exploration required by
the user: a columnar database and a compressed in-memory graph.
The columnar dataset [19] is composed of a set of relational ta-
bles in Apache ORC format. For ease of use, they are available as
a public dataset on Online Analytical Processing cloud platform
such as AWS Athena or Azure DataBricks allowing to process the
graph without dealing with infrastructure issues. The columnar
version contains the most metadata and enables precise search in a
straightforward way as it supports SQL-based queries. However,
it comes with limitations with regard to the graph nature of the
archive. Indeed, large graph traversals can be challenging on colum-
nar databases contrary to graph databases, which are designed to
handle such graph data models.

A compressed version of the graph [3] is also available to facili-
tate in-memory treatments thanks to graph compression techniques
commonly used in the field of large-graph analysis. This compressed
graph can be used through the SWH-graph API. The compressed
graph enables deep analysis on graphs which can became too costly

https://docs.github.com/en/rest/search?apiVersion=2022-11-28
https://gitlab.com/gitlab-org/gitlab/-/issues/197231
https://www.softwareheritage.org/
https://archive.softwareheritage.org
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Figure 1: Approach Overview

on a columnar representation, such as transitive closure of a given
node. However, the compressed graph version of the dataset does
not contain as much metadata as the columnar version. Further-
more, if it is not trivial to load the entire compressed dataset in
memory. While without metadata 200 GiB of RAM are enough to
load the compressed graph in memory, more than 4 TiB are needed
to also load all associated metadata. Hence queries that require
frequent metadata access (e.g., to filenames) may be less efficient
than in the columnar dataset. The two dataset versions are thus
complementary. It is noteworthy that, contrary to existing forges
which only expose their metadata through APIs, the two versions
of the SWH datasets are available as open data and can be retrieved
locally by the users to be accessed directly without incurring API
rate limiting. This enables to perform complex search and filtering
operations on the metadata, which would have required several
consecutive queries with an API, or strategies such as the divide-
and-conquer one to bypass platform limitations. To the best of our
knowledge, this dataset combination constitutes the most advanced
tooling for large scale repository mining (C-5).

Having a unified representation of repositories from different
data sources, as well as a single architecture designed to access and
analyze them can decrease the necessary efforts for defining the
selection process of repositories systematically (RP-2), by sharing,
for instance, the query or programwhichwas run against a specified
unalterable version of the archive.

4 APPROACH OVERVIEW
We propose a tool-supported approach to create and manipulate,
over time, large reproducible datasets. The approach combines a
generic selection process (DatasetBuilder) and a dataset fingerprint to
build a dataset (cf. Figure 1). We call dataset fingerprint the minimal
information characterizing a dataset such that it can be reproduced
identically. The generic selection process is built upon the Software
Heritage Archive and its infrastructure, and can produce various
datasets simply by providing it with different fingerprints. By lever-
aging the immutability property of the SWHGraph Dataset, the pro-
posed selection process can reproduce a dataset from a fingerprint
𝐹𝑃 = (𝑞, 𝑡) composed of a query specification 𝑞 and a timestamp 𝑡 .

The query specification acts as a filter by defining constraints
a repository must verify to be included in the output dataset. These
constraints are expressed over the repositories’ metadata as de-
fined in the unifying domain model of the SWH Graph Dataset
(presented in the form of a class diagram in Figure 2, which will be
detailed later). The expressivity of possible queries is thus bounded
to that model. For instance, it is not possible to specify a query

according to the content of the artifacts, because this metadata
is not included in the domain model. Note that the SWH model
provides the commonalities among the various original forges, but
misses the specificities of each one (e.g., stars in GitHub and Git-
Lab). While this information is included in the related SWH archive,
filtering repositories based on such specificities thus requires a
post-processing operation on the extracted dataset.

The timestamp is a unique identifier referring to a specific
version of the SWH Graph Dataset. This timestamp ensures re-
producibility since each version of the SWH Graph Dataset is im-
mutable, and the versions are append-only over the time. Hence,
it is possible, at any point in time, to retrieve the dataset from the
version of the SWH Graph Dataset corresponding to the timestamp,
or any subsequent versions. This ensures reproducibility of the
dataset even if there is further changes in the code base (e.g. Git
history rewriting, branch deletion, etc.).

The result of this process is a list of SWHIDs referring to reposi-
tories matching the query and the timestamp (cf. Raw Dataset List
in Fig. 1). This list of SWHIDs can be fed to a Graph Generator
which extracts the subset of the SWH Graph Dataset corresponding
to these identifiers (cf. Raw Dataset Graph in Fig. 1). Consequently,
the obtained dataset of repositories can be further manipulated
with the same SWH infrastructure and programming interface. For
instance, it can be used later on as input of our approach to filter
out elements according to a more restrictive fingerprint. It can also
enable to filter and download specific files, instead of cloning all the
repositories to extract only a few files from them during the data
extraction phase, which follows the repository selection phase [23].

To sum up, our approach can be defined as the following function:

𝑆𝑊𝐻𝑔 × 𝐹𝑃 → 𝐿 → 𝐷𝑔

where 𝑆𝑊𝐻𝑔 is the SWH Graph Dataset, 𝐹𝑃 a dataset fingerprint,
𝐿 the list of origin ID’s matching 𝐹𝑃 , and 𝐷𝑔 the resulting dataset
in the form of a subset of the SWH Graph Dataset.

Although our approach rely on SWH, we propose a generic ap-
proach that can be applied to any forges that provide an immutabil-
ity property and a way to query the metadata of its repositories.

5 APPROACH OPERATIONALIZATION
In this section, we propose an operationalization of our approach.
We present the implementation of a compiler which transforms a
query into a Java program calling the SWH Graph API. We first
discuss our choice of the Object Constraint Language (OCL) [4]
to specify the query, then how we manage timestamps. Finally,
we explain how the implemented process generates a executable
program from the formers to retrieve SWHIDs of the matching
repositories.

5.1 Dataset Specification
To formally describe a subset of the repositories included in the
SWH Graph Dataset, we rely on a query expressed in a query
language. Several query languages exist which can be used for
this purpose. When selecting a query language, we considered the
language expressiveness and the facility to use the language for
code generation purpose.
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Figure 2: Object Model of the SWH Graph Dataset

SQL can be used with the relational version of the archive meta-
data, but as we said previously, this solution is not appropriate to
express complex queries due to the graph nature of the archive.
Graph query languages such as GraphQL [13] or Cypher [10] could
be used on the compressed version of the graph. However, we found
that GraphQL has some limitations regarding its expressiveness
(lack of conditional support, join operation or user defined function)
and does not allow transitive closure. Cypher addresses most of the
limitations mentioned for GraphQL, making it a good candidate
as our query description language. However, the lack of tooling
facilitating the creation of generators or an available editor has led
us to discard this language.

OCL (Object Constraint Language) is an object query language
allowing to describe constraints on an object-oriented model, which
can also be used to express complex queries without side effects.
OCL is widely used in the model-driven engineering community
and comes with numerous tools, such as the Eclipse OCL implemen-
tation enabling to express constraints on a UML or an Ecore model.
It also provides an editor and facilities for creating generators. To
be able to express OCL queries on the archive metadata, we defined
an object-oriented model of the SWH Graph Dataset (Fig. 2) repre-
senting the different elements considered in the metadata schema.
The model conforms to the structure of the compressed graph de-
scribed in [18, Chapter 10]. An instance of this model represents
an export of the Software Heritage archive. The Graph class thus
represents a specific version of the Graph Dataset. It is composed
of a list of repositories and a timestamp representing the version
of the export. The repositories are represented by the Origin class
and are identified by their URLs. Every time a repository is crawled
by SWH, the state of the repository is captured by a timestamp
and a snapshot as an OriginVisit. The rest of the model is simi-
lar to the Git Merkle DAG. Indeed, a Snapshot is composed of a
list of SnapshotBranches pointing to a Revision (equivalent of a
Git commit) or a Release (equivalent of a Git tag). Finally, each
Revision is composed of a file tree and a reference to the previous
Revision. The Snapshot, Release, Revision, Directory and

Content classes inherit from the Node interface and are identified
by SoftWare Heritage persistent IDentifiers (SWHIDs) which are
guaranteed to remain resolvable over time.12 The SWHID also en-
ables integrity check of an entire snapshot since it contains the
SHA1 hash of the referenced object.

1 import swhModel : 'platform :/ resource /.../ swhModel.ecore '

2 package swhModel

3 context Graph

4 def : query():Set(Origin) = origins ->select(

5 getLastSnapshot ().branches ->exists(

6 (name='refs/heads/master ' or name='refs/heads/main ')

7 and

8 /*The branch contains at least 1000 revisions */

9 getRevision ()->closure(parent)-> size() >1000

10 and

11 /*The root revision have been created since 2015 */

12 getRevision ().getRootRevision ().commiterTimestamp

>1420066800

13 and

14 /*The branch contains a file 'AndroidManifest.xml '*/

15 getRevision ().tree.entries ->closure(entry:

DirectoryEntry |

16 if entry.child.oclIsKindOf(Directory) then

17 entry.child.oclAsType(Directory)

18 .entries.oclAsSet ()

19 else

20 entry.oclAsSet ()

21 endif

22 )->exists(e:DirectoryEntry | e.name='AndroidManifest.

xml ')))

23 context Revision

24 def : getRootRevision () : Revision =

25 if parent = null then self

26 else parent.getRootRevision () endif

27 endpackage

Figure 3: The running query expressed in an OCL expression

12https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
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OCL allows to define methods without side effects over the
classes of a given model, hence enabling to express queries on this
model. Figure 3 presents an OCL query corresponding to our illus-
trative example about Android applications (Section 2). The first line
of the OCL file indicates the model: in our case, swhModel.ecore
is the model presented in Fig. 2. We define a method named query
(line 4) which returns a set of Origins (repositories) when applied
to an instance of the class Graph (context Graph, line 3). In other
words, this method takes a version of the SWH archive and selects
repositories matching the filters defined in the query (lines 4 to 24).
We can see in line 5 that we select the origins whose last snapshot
contains at least a branch matching the following conditions:

• Line 6: The branch name must be “main” or “master”.
• Line 9: The branch must contain at least 1000 revisions, we
used the closure operation on the last revision of the branch
to flatten the parent revision relation.

• Line 12: The root revision must have been created after
2015. We define the “getRootRevision()” operation in the
Revision context (lines 25-31) to retrieve the first revision
of a branch.

• Lines 15-22: The revision must contain an entry named
“AndroidManifest.xml”. The file tree of the revision is flat-
tened into a set of DirectroryEntry with a closure operation.

5.2 Timestamp Management
The SWH archive is continuously evolving over time by crawling
snapshots of repositories and updating the current archive state.
The model of Fig. 2 contains two types of timestamps. The times-
tamp in OriginVisit defines the time where the snapshot of a
given repository was taken. The timestamp in Graph indicates a
frozen version of the Graph Dataset which contains all the Origin-
Visits taken before this timestamp.

Both timestamps allow us to fix the state of the archive on which
the query will be executed and ensure that the query output will
be reproducible for a given timestamp. Since the SWH archive is
immutable, it is theoretically possible to filter a given export to
retrieve the state of a previous export and execute a query on it. In
other words, if we run a query q on an export realized at a time
𝑡 , re-running the same query q on an export done at a time 𝑡 +𝑚
while discarding all the OriginVisits added after 𝑡 should produce
the same selection.

5.3 Repository Selection
To automate the selection of the repositories from the SWH archive
that match the filters expressed in the OCL query, we implemented
a compiler translating the constraints of the query in an optimized
Java program which uses the SWH-Graph API to perform filtering
operations on the SWH Graph Dataset.

We first wrapped the SWH-Graph API to conform to the object-
oriented model of Fig 2. Indeed, the SWH-Graph API is not fully
object-oriented, and relies on static methods to retrieve node prop-
erties to improve its efficiency (i.e., avoiding object creation). Wrap-
ping this API to the same OOmodel highly facilitates the translation
of the OCL query in Java code.

The compiler relies on a generator taking as input an OCL query.
First, it uses Eclipse OCL PIVOT, which provides an Xtext grammar

of OCL, to build the Abstract Syntax Tree (AST) of the query. The
obtained AST is then traversed to generate the corresponding Java
code. For this, we specify in the generator one generation method
for each type of nodes of the AST, defining the Java code to be
produced if this type of node is encountered during the traversal.
For instance when the exists OCL operation is used in the query, it
will trigger the generation method of the IteratorExp node type and
produce Java code using stream().anyMatch(). Visiting the entire
AST thus produces the corresponding executable Java code calling
the SWH-Graph API to select repositories.

Executing this code outputs the set of SWHIDs referring to
Origins (repositories) matching the constraints expressed in the
initial query. Then, this set of origin IDs is possibly used to extract
the sub-graph of the SWH Graph Dataset restricted to the provided
origins, in both column based or compress format.

The source code of the compiler is available on the replication
package associated to this paper.13

6 ILLUSTRATIVE CASE STUDY
In this section, we report on the application of our prototype to
extract a raw dataset for the illustrative example about open source
Android applications. Our main goal is to verify whether the pro-
posed operationalization satisfies the properties of the approach
presented in the Sections 3 and 4, to overcome the limitations iden-
tified in Section 2. While the results are not generalizable as with a
full evaluation, they provide valuable insights on the benefits, as
well as the limitations to be addressed in the future. We structure
our observations through three research questions:

• RQ1: What is the impact of the temporal dimension of the
fingerprint on the extracted dataset? With this question, we
want to obtain an order of magnitude of the difference and
size and diversity of the extracted dataset when applying the
same query with different timestamps.

• RQ2: Is the implemented selection process deterministic? We
want to verify that running the fingerprint several times
results in the same dataset.

• RQ3: Is it possible to retrieve the same dataset when applying
the fingerprint on different versions of the SWH archive? With
this question, we want to assess if our selection process is
able to extract the same dataset overtime.

6.1 Experimental Settings
To answer these questions, we analyzed the results of different
fingerprints ran over several export versions of the SWH Graph
Dataset. In our case, the fingerprints have the same query (Fig. 3)
and differ in their timestamps. We consider two datasets to be
equivalent if they contain the same list of repositories.

For our experiment we leverage on the 2018-09-25, 2021-03-23,
2022-04-25 and the 2022-12-07 export versions of the SWH archive.
As SWH provides an export date with an uncertainty of a day, we
define the graph exports𝐺1⟨𝑡1⟩,𝐺2⟨𝑡2⟩,𝐺3⟨𝑡3⟩ and𝐺4⟨𝑡4⟩ with the
following timestamps: 𝑡1 = 2018-09-24 UTC+1, 𝑡2 = 2021-03-22
UTC+1, 𝑡3 = 2022-04-24 UTC+1, 𝑡4 = 2022-12-06 UTC+1.

To obtain an order of magnitude of the impact of the time di-
mension (RQ1) of the fingerprint, we run 3 different fingerprints
13https://doi.org/10.5281/zenodo.7989955
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sharing the same query but having a different timestamp. Given 𝑞
our running query, we consider the three fingerprints:

𝐹𝑃1 = ⟨𝑡1, 𝑞⟩ 𝐹𝑃2 = ⟨𝑡2, 𝑞⟩ 𝐹𝑃3 = ⟨𝑡3, 𝑞⟩
The first experiment therefore consists in performing the following
runs and comparing the different lists of Origins they returned:

𝐹𝑃1 ×𝐺3 𝐹𝑃2 ×𝐺3 𝐹𝑃3 ×𝐺3
In order to check if our prototype returns the same result for a

given fingerprint, we run the same fingerprint twice on the same
export version (RQ2). For this second experiment, we perform the
following run two times and compare the returned lists of Origins:

𝐹𝑃2 ×𝐺3
Finally, we checked if we obtain the same dataset with a same

fingerprint overtime (RQ3). For this experiement, we run a given
fingerprint on two export versions, and compare the two returned
list of Origins:

𝐹𝑃3 ×𝐺3 𝐹𝑃3 ×𝐺4
Our experiments have been realized on two different machines.

Setting 1: ProLiant DL380 Gen10 Plus - Debian 11
• CPU : 2 X Intel(R) Xeon(R) Gold 6342, 2.80GHz
• RAM : 32 X DDR4 3200 MHz 128GiB
• DISK : 12 x 5.8 TB SSD

All our experiments have been executed on this non-reserved ma-
chine (other experiments were running at the same time on the
machine). As the machine is non-exclusive we cannot estimate an
exact execution time of our query in this case. Nevertheless, in
these conditions the execution time was in average ≈7 hours.

Setting 2: ProLiant DL365 Gen10 Plus - Ubuntu Server 22.04.3
• CPU : 2 x AMD EPYC 7543 32 core, 64 thread, 2.8GHz
• RAM : 512 GB
• DISK : 3 X 2To SSD Raid 5, 3To HDD

This second setting allowed us to perform experiments on exclu-
sive resource and measure an execution time with all the machine
resources. The run of 𝐹𝑃3×𝐺3 took 23 hours and 25 minutes. A thor-
ough evaluation is needed to assess the computation time required
for the execution.

6.2 Experiments Results

Table 1: Variation of the temporal dimension between three
fingerprints having the same query : Results of 𝐹𝑃1 × 𝐺3,
𝐹𝑃2 ×𝐺3 and 𝐹𝑃3 ×𝐺3

Forge FP1(2018) FP2(2021) FP3(2022)
github.com 830 135820 172012
gitlab.com 3 67 1154

bitbucket.org - 76 106
codeberg.org - 55 84
framagit.org - 21 23

git.launchpad.net - 10 14
gitlab.freedesktop.org - - 14

0xacab.org - - 3
... - 5 12

Total 833 136054 173422

6.2.1 RQ1 — Impact of the temporal dimension. Table 1 sum-
marizes the results of the execution of 𝐹𝑃1, 𝐹𝑃2 and 𝐹𝑃3 over 𝐺3.

For each run, more than 99% of the repository Origins come from
GitHub. It is consistent with the proportion of the entire SWH
Graph Dataset where more than 93% (cf. Table 2) of the repositories
are extracted from GitHub (in April 2022). There is a substantial
variation in the numbers of results between 𝐹𝑃1 and 𝐹𝑃3: we note
an increase of 20719.0% in only 4 years. Similarly, although the two
last fingerprints are only 13 months apart, there is a non-negligible
variation (+27,4%). Furthermore, the evolution of the numbers of re-
sults is not uniform: the results on GitHub have increased by 26.7%
compared to 1622.4% on GitLab.com. These variations strengthen
the importance of freezing the temporal dimension of the forges or
meta-forges that we use to build a dataset.

We also observe an increase of the numbers of different forges
that produce results for our request, due to the continuous addition
of new forges to the SWH archive. For instance, Bitbucket.org
wasn’t crawled in 2018 (see Table 2) while it produces results for
𝐹𝑃2 and 𝐹𝑃3. Thus, it is simply a matter of changing the timestamp
of the fingerprint to update a dataset, avoiding the need to manage
the various APIs of the new forges.

Table 2: Evolution of the number of forges and the number
of repositories per forges crawled by SWH : Total numbers
of Origins per forge in 𝐺1, 𝐺3 and 𝐺4

Forge G1(2018-09) G3(2022-04) G4(2022-12)
github.com 56404072 164713349 177810125
gitlab.com 537541 4279918 4786089

bitbucket.org - 2566198 2589887
www.npmjs.com - 1835697 1835697

pypi.org 63860 467142 530254
code.launchpad.net - 1 334081

git.code.sf.net 1 183172 183200
gitorious.org 116360 120380 120380
svn.code.sf.net - 102765 102901

... 726860 1177007 1300455
Total 57848694 175445629 189593069

6.2.2 RQ2 — Determinism of the prototype. Running the fin-
gerprint 𝐹𝑃3 on𝐺3 twice resulted in identical results as those shown
in Table 1. This observation suggests that the implemented selec-
tion process is indeed deterministic. However, a more thorough
evaluation is necessary to attest that our prototype verifies this
property in all cases.

6.2.3 RQ3 — Reproducing a dataset overtime. We first ran the
fingerprint 𝐹𝑃3 on the export version𝐺3 which shares its timestamp
𝑡3: this emulates that 𝐹𝑃3 was ran on the latest version of the
archive. Then, we ran the same fingerprint on the export version
𝐺4 which has a higher timestamp, corresponding to a version later
in time. Table 3 shows that executing the fingerprint on a version of
the archive which is superior to the fingerprint timestamp allows
to reproduce the results with a precision of 96.8%. These results
indicate that our prototype is nearly capable of entirely capturing
the temporal dimension. Therefore, the prototype is close to being
able to obtain identical results when executing on newer export
versions fingerprints which were originally run on previous states
of the archive. The 3.2% uncertainty can be explained both by
the implementation of our prototype, but also by the limitations
of Software Heritage which we will discuss in Section 6.3. It is
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therefore preferable, in the current state of the prototype, to run
a fingerprint on the export version corresponding to the same
timestamp to ensure reproducibility.

Table 3: Execution of the same fingerprint on a different
export of the SWH Graph Dataset : Result of 𝐹𝑃3 × 𝐺3 and
𝐹𝑃3 ×𝐺4

Forge FP3 X G3 FP3 X G4 Difference (%)
github.com 172012 166630 -3.2
gitlab.com 1154 1223 5.6

bitbucket.org 106 102 -3.9
codeberg.org 84 84 0.0
framagit.org 23 22 -4.5

... 43 38 -13.2
Total 173422 168099 -3.2

6.3 Discussion
The operationalization is based on Software Heritage tools which
have their own limitations.

Internal limitations. The SWH crawling process requires signif-
icant resources to create and maintain up to date an archive of
publicly available software. This process rise multiple challenge
such as the constraints imposed by forges API (rate limit, expressiv-
ity & heterogeneity of the API). As a consequence, the modification
performed on a repository are crawled periodically. Our opera-
tionalization is based on a fixed and reproducible state of the SWH
archive. There is no guarantee that the current state of all the
repositories of a forge have been crawled at a given time.

Finally, the SWH Graph Dataset is not built incrementally and
needs to be built from scratch to be updated. Thus, there is no real-
time version of the SWH Graph Dataset describing the current state
of the SWH archive, but rather periodic exports are made available
(on a yearly basis, at the time of writing).

External limitations. SoftwareHeritage, like all content providers,
is subject to regulations. Take down notices can be therefore submit-
ted for various reasons (copyright, GDPR compliance on personal
data deletion) requiring the removal of content from the archive.

7 RELATEDWORK
Platforms and tools for mining software repositories. GitHub pro-

poses a REST API with a search endpoint to search for specific
items—including repositories—meeting certain criteria. Each search
may present up to 1000 results: the API is thus not made to retrieve
all items meeting the given criteria and may be too limited for the
purpose of selecting repositories for MSR-based studies. According
to Cosentino et al. [5], recurring reported limitations of GitHub
API in MSR studies include limited quota and events not accurately
returned. To overcome these limitations, third party services were
proposed to ease the mining of GitHub repositories through dataset
mirrors. GH Archive14 records all public events from GitHub and
makes them accessible for large scale analysis. It is updated each
hour and the dataset is available through downloadable archives
and on BigQuery. Similar to GH Archive, GHTorrent [12] records
14https://www.gharchive.org/

public events of GitHub retrieved through the GitHub API and
redistributes the gathered metadata in a SQL database. Since 2019
GHTorrent is only sporadically maintained, with a most recent
data dump dating back to March 2021. GitHub Activity Data is a
snapshot of the content of 3M repositories of GitHub available on
Big Query.15

Boa [9] is a domain specific programming language for defining
analysis tasks in the context of mining software repositories. Boa
comes with an infrastructure which compiles a Boa program to be
run on distributed clusters to improve efficiency. The defined anal-
ysis task is run on repositories whose information is locally cached.
Several datasets are available corresponding to difference language
and forge ecosystems, but they are updated sporadically. The most
recent “large” dataset encompassing a significant GitHub subset
dates back to October 2019 and covers 7.8 million public reposito-
ries.16 No guarantee of long-term availability of the platform or the
data hosted on it are provided.

Limitations and best practices to create and share raw datasets
of code repositories. Vidoni [23] presents a systematic literature
review investigating MSR-based studies which enables to identify
recurring limitations in current practices. The author then proposes
guidelines to improve MSR-based studies through the definition
of a systematic process inspired by evidence-based software engi-
neering. The scope of their analysis is wider than ours, because
they focus on the processes of selecting repositories, extracting
data from these repositories and mining information for the study,
while we focused on the first step of obtaining the raw dataset. For
this first step of MSR, we discuss more limitations and propose,
instead of guidelines, a systematic process for selecting repositories
in a reproducible way.

Vial et al. [22] investigate data quality issues in the context of dig-
ital trace data (DTDs). They observe that DTDs are usually gathered
form data sources over which researchers have little to no control,
thus making their quality difficult to ascertain. This observation
resonated with our limitation RP-3 about the unreliability of data
sources. They do not propose a process to ensure DTDs’ quality,
but encourage researchers to clearly describe this data through the
Seven Ws (what, when, where, how, who, which and why) of data
quality as defined by Marsden and Pingry [17], such that the reader
can assess their quality.

ACM’s empirical standards for mining repository studies17 in-
clude defining how and why repositories were selected, along with
the detailed acquisition process, among the essential attributes
which should be documented in studies.

Tutko et al. [21] presents a systematic literature review about
how software repositories are mined in MSR-based studies. Their
findings include the non-reproducibility of most of the studied pa-
pers (e.g., lack details regarding the data selection and extraction
processes, missing timestamps) and they propose a list of infor-
mation which should be included in such studies to improve re-
producibility. Cosentino et al. [5] present a systematic literature

15https://hoffa.medium.com/github-on-bigquery-analyze-all-the-code-
b3576fd2b150
16https://boa.cs.iastate.edu/stats/
17https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=
RepositoryMining

https://www.gharchive.org/
https://hoffa.medium.com/github-on-bigquery-analyze-all-the-code-b3576fd2b150
https://hoffa.medium.com/github-on-bigquery-analyze-all-the-code-b3576fd2b150
https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=RepositoryMining
https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=RepositoryMining
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review about how research papers have addressed the task of min-
ing repositories focused on GitHub. They derive several concerns
about data collection, size of the used datasets which are usually
not large enough and replicability. They found out that most of
the papers report issues with the limitations of the GitHub API
and with the data available from third party services such as BOA
and GHTorrent, which align with the limitations C-5 and RP-3,
respectively.

8 CONCLUSION AND PERSPECTIVES
In this paper, we studied the problem of building reproducible
datasets composed of software repositories. We first identified five
limitations researchers can face when obtaining such datasets, ei-
ther by reusing existing ones, reproducing an existing selection
process or creating a new dataset from scratch. We considered
from this angle the Software Heritage archive (SWH), assessing
which of its interesting properties can be leveraged to overcome the
identified limitations. We introduced a new approach of dataset fin-
gerprinting to characterize datasets with a pair (query, timestamp).
We implemented the proposed approach using the OCL language to
specify the query, and a compiler which generates a Java program
that uses the SWH API to extract all the repositories matching the
provided query from the SWH archive.

Several perspectives can be envisioned concerning the opera-
tionalization of our approach. One of them is the possibility to
optimize a given OCL query. For instance, the predicate operands
in an “AND” logical expression can be reordered to ensure that the
least resource-intensive requests are executed first. Other heuris-
tics could leverage the implementation choices made in Software
Heritage, for instance, to better orchestrate the memory access
according to the nature of the storage where the attributes in the
query are stored. Indeed, labels are stored on disk while node types
are always stored in RAM, making them faster to read.

The operationalization relies on the Java API of the SWH (com-
pressed) graph dataset, which enables complex and efficient graph
traversal operations. The graph is divided in several parts, one
representing its structure, and the others the rest of the metadata.
To achieve the best performances, both the graph and associated
metadata (≈ 4.5 TiB) must be loaded into memory, which requires
a substantial infrastructure. If the available infrastructure is not
powerful enough, it is possible to load only the graph structure
in memory, and to access the metadata from the disk. In this case,
the use of the column based version becomes more efficient for
some processing requiring many disk accesses. Therefore, a hybrid
approach based on both the compressed and columnar versions
of the dataset can be envisioned to accelerate the evaluation of a
given query.

Another perspective is to add a hash of the resulting dataset to
the fingerprint.

Such hash can attest that two dataset versions are strictly identi-
cal, mitigating the impact of take down notices.

Exploring other technology stacks for the approach operational-
ization could be useful to better fits the needs and expertises of
different users. One could imagine replacing the OCL query lan-
guage to describe the selected dataset by a domain specific language
like Boa, which was designed for tasks related to mining software

repository. Finally, running a large scale evaluation on several dif-
ferent fingerprints over different exports of the SWHGraph Dataset
would allow us to verify and generalize our current observations.
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