
Solving Package Dependencies:

From EDOS to Mancoosi∗

Ralf Treinen and Stefano Zacchiroli
Laboratoire Preuves, Programmes et Systèmes

Université Paris Diderot, Paris, France
{treinen,zack}@{pps.jussieu.fr,debian.org}

August 9, 2008

Abstract

Mancoosi (Managing the Complexity of the Open Source Infrastructure)
is an ongoing research project funded by the European Union for addressing
some of the challenges related to the “upgrade problem” of interdependent
software components of which Debian packages are prototypical examples.

Mancoosi is the natural continuation of the EDOS project which has al-
ready contributed tools for distribution-wide quality assurance in Debian and
other GNU/Linux distributions. The consortium behind the project consists
of several European public and private research institutions as well as some
commercial GNU/Linux distributions from Europe and South America. De-
bian is represented by a small group of Debian Developers who are working in
the ranks of the involved universities to drive and integrate back achievements
into Debian.

This paper presents relevant results from EDOS in dependency manage-
ment and gives an overview of the Mancoosi project and its objectives, with
a particular focus on the prospective benefits for Debian.

1 Introduction

Building and maintaining a free software distribution is a challenging task. A user
expects to be able to install any selection of packages from the distribution on his
machine, and that the installation goes smoothly and results in a working system
with the desired functionality. Any requirement, for instance the need of installing
certain auxiliary packages from the distribution, should be detected by the tools
coming with the distribution, and should be satisfied automatically whatever pack-
ages the user wishes to install. Incompatibilities in user wishes should be detected
and reported back to the user with a satisfying explanation. Software is expected
to be readily available in its latest version, of course well-tested without any bugs
or any remaining incompatibilities with other software components. All this is ex-
pected to work smoothly on a wide range of architectures and system configurations.

It is the task of a package maintainer to do her best to satisfy these expectations.
Luckily, a maintainer has at her disposition a sophisticated infrastructure, a knowl-
edge base of policies and best practices, and the support of her fellow developers.
On the other hand the maintainer is also faced with upstream authors who usually

∗The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦214898.

1

have their own ideas about how their software is supposed to be compiled, or how
it should interact with the rest of the system.

The EDOS research project (for Environment for the development and Distri-
bution of Open Source software) had the objective of coming to help and to provide
FOSS distributions with better tools to help them do their job. The project was
funded by the European Commission under the IST (Information Society Technolo-
gies) activities of the 6th Framework Programme. Besides several public research
institutions from different European countries and some small enterprises in the
FOSS business there were two commercial GNU/Linux distributions in the project:
Mandriva from France who is building one of the most popular RPM-based distribu-
tions, and Caixa Mágica from Portugal who is well-known in Portuguese-speaking
countries. This distribution is again RPM-based, and also upstream author of the
apt RPM tool. For the successor project Mancoosi (for Managing the Complex-
ity of the Open Source Infrastructure) Pixart from Argentina joined in with its
Debian-based distribution. EDOS started in October 2004 and ended in June 2007.
Mancoosi started in February 2008 for a duration of 3 years.

The EDOS project was relatively broad in scope and had workpackages on the
following subjects:

• formal management of software dependencies

• flexible testing framework

• peer-to-peer content dissemination system

• metrics and evaluation

We will in this paper let the last three of these workpackages aside since the au-
thors haven’t been involved in these, and present from EDOS only the workpackage
on dependency management. We decided to focus on the problem of distribution
coherence from the release manager’s point of view, and therein on one basic ques-
tion: Is it possible, for a given user selection of packages, to install these when only
the packages from this repository are available? We were only taking into account
package relationships that are expressed by the metadata of packages (that is in
Debian: the control file). Relevant results and applications for Debian will be
presented in Section 2.

The successor project Mancoosi again has several workpackages. The stream
on dependency management takes off where EDOS has ended and tries to extend
our previous results to build better tools for the system administrator who wants
to perform a system upgrade or package installation on a real system. More about
this will be discussed in Section 3.

EDOS has developed its own terminology which Mancoosi continues to use:

Installer A tool to unpack and configure, upgrade, or remove a locally available
package on a local system. In Debian: dpkg.

Meta-Installer A tool to resolve (higher level) user requests of installing, upgrad-
ing, or removing packages on a system. This tool will have to access possibly
remote packages repositories, and construct a sequence of commands for an
installer. In Debian: apt-get, aptitude, dselect.

Metadata of a package is the data that can be statically (that is, without per-
forming an actual installation) extracted from a package. In case of Debian
this is the contents of a packages control file, which flows into APT package
lists (Packages and Sources).

2

Package: a Package: a
Version: 1 Version: 1
Depends: b, c|d(>=2) Depends: b(=2)|b(=3),

c(=3)|d(=2)|d(=3)

Package: b Package: b
Version: 2 Version: 2

Package: b Package: b
Version: 3 Version: 3

Package: c Package: c
Version: 3 Version: 3
Conflicts: b Conflicts: b(=2),b(=3)

Package: d Package: d
Version: 1 Version: 1

Package: d Package: d
Version: 2 Version: 2

Package: d Package: d
Version: 3 Version: 3

Figure 1: A distribution (to the left) and its expansion (to the right).

2 The Past: EDOS

2.1 Formalization of Inter-Package Relations

One of the first objectives of the EDOS project was to establish a simple mathemat-
ical model of a (GNU/Linux) distribution. We decided to restrict ourselves in the
context of EDOS to relations between packages as they are seen by a meta-installer.
Though the model is general enough to describe the essential features of common
packaging systems (in particular Debian and RPM) we will focus in the following
on the modeling of the package relations as found in Debian.

The Debian policy lists different possible relations between binary packages:
Depends, Recommends, Suggests, Pre-Depends, Enhances, and Conflicts. The Re-
places relation concerns only the installer (not the meta-installer), and the same
seems to be true for the Breaks relation (which wasn’t included in policy anyway
at the time of the EDOS project). Relations between source packages and binary
packages are not of interest for us. However, we have to take into account Provides
(that is, virtual packages), and the fact that relations may be disjunctive (e.g.,
a|b|c), and may be qualified by constraints on version numbers.

We decided to ignore relations that are not essential for a meta-installer in order
to decide about installability. This eliminates Suggests and Enhances from our list
of interesting relations, and we also decided to ignore Recommends relations. Pre-
Depends can for our purposes be identified with Depends.

This leaves us with Depends and Conflicts. The next question was how to handle
constraints on version numbers like >= 1:2.3.4-5. We decided to not complicate
our model with version numbers and their comparison, and to expand version con-
straints: given a package in a package dependency we replace it by the disjunction
of all versions of that package that exist in the current distribution. In case of
a conflict we replace the package by the set of all versions of that package. An

3

Package: a Package: a
Provides: v

Package: b
Package: b Depends: w
Provides: v
Depends: w Package: v

Depends: a|b

Package: c Package: c
Provides: w Conflicts: d
Conflicts: w

Package: d
Package: d Conflicts: c
Provides: w
Conflicts: w Package: w

Depends: c|d

Figure 2: A distribution involving virtual packages (to the left) and its expansion
(to the right). Version numbers are omitted.

example of that expansion is given in Figure 1.
This expansion has the advantage that we get rid of constraints on version

numbers, but it has the drawback that this expansion is always relative to a set
of available packages. This might pose a problem when one wants to make the
expansion incremental. For instance, if the original distribution is extended by a
new version 4 of package d we would have to reconsider in the expansion all packages
that have a relation to d. In our example, that means that we have to change the
Depends line of package a and add |d(=4).

Expansion also introduces explicitly the virtual package which depends on all
packages that provide it. Special care has to be taken with conflicts on virtual
packages as a package may at the same time provide a virtual package and conflict
with it. Section 7.4 of the Debian policy states that in this case the package con-
flicts with each package providing that virtual package, with the exception that the
package doesn’t conflict with itself. An example of an expansion involving virtual
packages is given in Figure 2.

We can now state the formal definition of a package and a repository:

Definition 1 A package is pair consisting of a name and a version number.

Note that we have not defined what package names and version numbers are, it
suffices for us that we can know when two names or version numbers are equal (as
we assume that we are working with an expanded repository).

Definition 2 A repository is a tuple R = (P,D,C) where P is a set of packages,
D : P → P(P(P)) is the dependency function (we write P(X) for the set of subsets
of X), and C ⊆ P × P is the conflict relation. The repository must satisfy the
following conditions:

• The relation C is symmetric, i.e., (π1, π2) ∈ C if and only if (π2, π1) ∈ C for
all π1, π2 ∈ P .

• Two packages with the same name but different versions conflict, that is, if
π1 = (u, v1) and π2 = (u, v2) with v1 6= v2, then (π1, π2) ∈ C.

4

In this definition, the function D yields for any package the set of all its depen-
dencies. All these dependencies must be satisfied simultaneously. If any such de-
pendency is a set with more than one element than this set is understood as a set
of alternatives. The last restriction, stating that two different versions of the same
package are in an implicit conflict, is specific to Debian (RPM does note have this
a priori restriction).

It is now straightforward to translate an expanded Packages file into a repository
according to Definition 2. For the expanded Packages file on the right of Figure 1,
for example, we obtain (P,D,C) as follows:

P = {(a, 1), (b, 2), (b, 3), (c, 3), (d, 1), (d, 2), (d, 3)}
D(a, 1) = {{(b, 2), (b, 3)}, {(c, 3), (d, 2), (d, 3)}}
D(b, 2) = ∅

· · ·
C = {((b, 2), (b, 3)), ((b, 3), (b, 2)), ((c, 3), (b, 2)), ((b, 2), (c, 3)), . . .}

Definition 3 An installation of a repository R = (P,D,C) is a subset I of P ,
giving the set of packages installed on a system. An installation is healthy when
the following conditions hold:

• Abundance: Every package has what it needs. Formally, for every π ∈ I,
and for every dependency d ∈ D(π) we have I ∩ d 6= ∅.

• Peace: No two packages conflict. Formally, (I × I) ∩ C = ∅.

Definition 4 A package π of a repository R is installable if there exists a healthy
installation I such that π ∈ I. Similarly, a set of packages Π of R is co-installable
if there exists a healthy installation I such that Π ⊆ I.

Note that because of conflicts, every member of a set X ⊆ P may be installable
without the set X being co-installable. One can even show that not co-installable
sets of minimal size can be arbitrary large: Let, for a given number n, Rn be the
following repository:

P = {a1, . . . , an, b1, . . . , bn}
D(ai) = {{b1, . . . , bi−1, bi+1, . . . , bn}}
D(bi) = ∅

C = {(bi, bj) | i 6= j}

In this repository, every package ai depends on the disjunction of all packages bj
with j 6= i. Hence, any incomplete collection of packages a is co-installable: if
package ai is a package missing from that collection then we can simply satisfy all
dependencies by installing package bi. Installing all packages a together, however,
would require to install at least two different packages b. Since any two different
packages b are in conflict this is not possible.

The desirable property that we want to ensure for a repository R is the following:

Definition 5 A repository R is trimmed if every package π ∈ R is installable with
respect to R itself.

In Debian lingo this translates to the fact that no package in the repository
is “broken”, i.e. that there is at least one possible installation in which any given
package is installable. If this is not the case then that particular Debian distribution
will be shipping packages that users will never be able to install.

5

2.2 Results, Tools, and Applications

2.2.1 Result: Installability is NP-complete

Based on the formalization given in Section 2.1 one can now quite easily show
that the problem whether a given package is installable in a given repository is
logarithmic-space equivalent to the famous SAT problem. This means two things:

1. One can construct for any installability problem a SAT problem such that the
former has a solution if and only the latter has a solution [?, ?].

2. One can construct for any SAT problem an installability problem such that
the former has a solution if and only the latter has a solution [?].

The “logarithmic space” qualifier means that the construction can be done with
auxiliary memory of size logarithmic in the size of the given problem. This is
necessary to transfer complexity results from one problem to the other.

For instance, in order to translate an installability problem into a SAT problem
we will interpret a package p as a Boolean variable with the intuitive meaning
that package p is installed in the chosen solution. Dependencies are translated
as implications: If package p depends on a,b,c|d,e|f (which would be written
D(p) = {a, b, {c, d}, {e, f}} according to Definition 2) then this translates to the
Boolean implication:

p→
(
a ∧ b ∧ (c ∨ d) ∧ (e ∨ f)

)
A conflict, say between packages a and b, is expressed as the formula ¬(a ∧ b).
The formula p expresses that the package p has to installed. This encoding opens
the way to using existing SAT solving techniques to the resolution of installability
problems (see Section 2.2.2). Since one has reductions in both directions one obtains
an exact worst-case complexity:

Theorem 1 The problem whether a given package is installable in a repository is
NP-complete.

On a theoretical level this means that checking installability is infeasible in its full
generality. In practice it means as little as that it is a challenging problem since in
practice one does not encounter randomly chosen repositories. The repositories we
encounter in reality have a quite particular structure. For instance we will certainly
have few packages with a very high number of reverse dependencies, and a large
number with very few reverse dependencies. Indeed, the implementation developed
in the EDOS project is surprisingly efficient (see Section 2.2.2). This apparent
contradiction between theoretical very bad worst-case complexity on the one hand
and the existence of implementations that are surprisingly fast for selected problem
instances is quite common in computer science.

2.2.2 Tools: edos-debcheck, pkglab and ceve

The edos-debcheck utility (available in Debian in the package of the same name)
takes as input a package repository and checks whether one, several or all packages
in the repository are installable with respect to that repository. This utility is
based on the SAT encoding mentioned in Section 2.2.1 and employs a customized
Davis-Putnam SAT solver [?]. Since all computations are performed in-memory
and some of the encoding work is shared between all packages considered this is
significantly faster than constructing a separate SAT encoding for the installability
of each package, and then running an off-the-shelf SAT solver on it. For instance,
checking installability of all packages of main testing/amd64 takes only 5 seconds
on a dual-core amd64 (emitted warnings about bad package version numbers and
other irregularities are omitted):

6

edos-debcheck </var/lib/apt/lists/..._main_binary-amd64_Packages >out
Parsing package file... 1.2 seconds 21617 packages
Generating constraints... 2.3 seconds
Checking packages... 1.5 seconds
4.692u 0.324s 0:05.03 99.6% 0+0k 0+0io 0pf+0w

An explanation in case of non-installability is given, see Figure 5 for an example.
We have also developed an RPM version of this tool called edos-rpmcheck.

pkglab is an interpreter for a query language that combines basic queries to
edos-debcheck, resp. edos-rpmcheck, with a functional language which allows to use
constructions like map to manipulate conveniently lists of packages. The interpreter
allows to assign intermediate results to variables. We are planning for the future
a major overhaul of the query language with the goal of making it more useful as
a scripting language for applications like the one described in Section 2.2.5. The
interpreter can load repositories that have been pre-processed by the ceve parser
which can parse and analyze both Debian and RPM repositories. The Debian
package for pkglab is pending while the ceve package is currently available in
experimental.

2.2.3 Application: Finding Uninstallable Packages in Debian

edos-debcheck is currently used to monitor the state of Debian’s distributions
(unstable, testing, stable), as well as Skolelinux and Debian GNU/kFreeBSD. The
results of the analysis are available at http://edos.debian.net/edos-debcheck.

There are different reasons why non-installable packages actually exist in these
distributions. One important reason is that most of the binary packages are archi-
tecture dependent, that is there is one package per architecture. As a consequence,
when accessing the reasons for non-installability of packages we have to take into
account all possible Debian architectures.

The meta-data of a binary package are generated during the package compilation
from the meta-data in the source package, and may depend on the actual compi-
lation environment or conditional code in the source package. As a consequence,
the metadata of a package with the same package name and version may vary from
architecture to architecture.

• The unstable distribution is in fact the staging ground for building releasable
distributions. Packages that depend on each other enter this distribution in
an arbitrary order which depends on when a developer uploads a package, or
on when a package is compiled and uploaded by an autobuilder (these are
daemons that compile packages for the various architectures). For instance,
package a may depend on package b, and the developer of a uploads a package
for the architecture i386 while the developer of b uploads his package for amd64
(he should have tested package b using a locally built binary package of a on
amd64). In this case, a is uninstallable in the repository for i386 until the
i386 autobuilder daemon uploads the binary package for b. This is illustrated
by Figure 3, the numbers of uninstallable packages in sid are indeed varying
from day to day.

As a consequence, transient non-installability errors are normal in the unstable
distribution. Persistent errors, however, indicate a potential problem.

• A package a may depend on package b, but b is not available on all architec-
tures a is available on. This may be due to the fact that there is a problem
with compiling b on some architectures, or that a has a too liberal architecture
specification.

7

http://edos.debian.net/edos-debcheck

• A special case of the latter is that a has its architecture set to all. This
indicates a binary package that is in fact the same on all architectures, and
hence exists only once in the package pool. Package a may, however, depend
on a package b which is architecture dependant but does not exist for every
architecture. Introducing a field “Installs-to” in the syntax of control files (as
proposed in Bug report #4367331) would allow to fix this.

Packages which aren’t installable on any of the architectures of a distribution
are more likely due to an error. This may happen with packages that are
installable in some architecture that has been part of a distribution in the
past, but which has been removed since then. Another possible reason is
dependency on a package that had to be removed from a distribution, for
instance due to licensing problems or grave bugs.

2.2.4 Application: Debian Weather

This is more of a fun application. Based on the numbers of the tool described in
Section 2.2.3 a “weather report” of Debian is generated which indicates the per-
centage of non-installable packages for the different distributions and architectures.
The interpretation is as follows:

clear < 1%
few clouds 1% . . . 2%
clouds 2% . . . 3%
showers 3% . . . 4%
storm > 4%

An example weather report is given in Figure 6. Applets for Gnome and KDE are
available.

The daily updated Debian weather is available on the web at http://edos.
debian.net/weather.

2.2.5 Application: Finding File Conflicts in Debian

A Debian installation has the concept of files owned by packages. If one tries to
install a new package that would hijack a file owned by another package this will
make (with some exceptions, see below) the installation fail, like this:

Unpacking gcc-avr (from .../gcc-avr_1%3a4.3.0-1_amd64.deb) ...

dpkg: error processing /var/cache/apt/archives/gcc-avr_1%3a4.3.0-1_amd64.deb

(--unpack):

trying to overwrite ‘/usr/lib64/libiberty.a’, which is also in package

binutils

dpkg-deb: subprocess paste killed by signal (Broken pipe)

Errors were encountered while processing:

/var/cache/apt/archives/gcc-avr_1%3a4.3.0-1_amd64.deb

E: Sub-process /usr/bin/dpkg returned an error code (1)

Our aim is to detect these errors by analyzing the Debian distribution, hopefully
before they actually occur on a user machine.

An obvious näıve solution would be to try to install together all pairs of packages
that occur in the distribution. Debian amd64/testing has currently about 21.000
packages, that would make about 200.000.000 pairs of packages to test, which clearly
is not feasible.

1http://bugs.debian.org/436733

8

http://edos.debian.net/weather
http://edos.debian.net/weather
http://bugs.debian.org/436733

un
st

ab
le

/m
ai

n:

D
at

e
al

ph
a

am
d6

4
ar

m
ar

m
el

hp
pa

hu
rd

-i
38

6
i3

86
ia

64
m

68
k

..
.

so
m

e
ev

er
y

22
/0

6
94

9(
32

5)
12

1(
80

)
60

4(
12

6)
60

9(
10

3)
61

3(
13

2)
44

45
(1

33
3)

22
8(

13
1)

45
6(

12
0)

89
43

(4
58

3)
..
.

10
22

2(
51

63
)

41
(1

2)
∆

+
20
/
−

2
+

7/
−

11
+

22
/
−

24
+

28
/−

81
+

24
/
−

34
+

10
/−

38
+

31
/−

7
+

26
/−

21
+

21
/
−

10
..
.

+
44
/−

5
+

0/
−

7
21
/0

6
93

1(
31

2)
12

5(
78

)
60

6(
13

2)
66

2(
11

7)
62

3(
14

1)
44

73
(1

33
9)

20
4(

10
9)

45
1(

12
1)

89
32

(4
58

6)
..
.

10
18

3(
51

41
)

48
(1

2)
∆

+
44
/
−

0
+

1/
−

1
+

18
/
−

7
+

52
/−

12
+

84
/
−

0
+

44
/−

2
+

56
/−

0
+

58
/−

0
+

34
/
−

5
..
.

+
13
/−

22
+

0/
−

1
20
/0

6
88

7(
28

7)
12

5(
78

)
59

5(
12

1)
62

2(
10

8)
53

9(
11

2)
44

31
(1

33
7)

14
8(

92
)

39
3(

10
3)

89
03

(4
58

5)
..
.

10
19

2(
51

50
)

49
(1

3)
∆

+
90
/
−

5
+

6/
−

65
+

17
/
−

77
+

21
/−

14
+

14
/
−

63
+

15
/−

2
+

19
/−

65
+

13
/−

64
+

26
/
−

15
..
.

+
28
/−

9
+

1/
−

2
19
/0

6
80

2(
27

3)
18

4(
83

)
65

5(
12

9)
61

5(
10

9)
58

8(
11

3)
44

18
(1

33
8)

19
4(

94
)

44
4(

10
7)

88
92

(4
58

3)
..
.

10
17

3(
51

48
)

50
(1

3)
∆

+
6/
−

0
+

2/
−

7
+

2/
−

11
3

+
1/
−

8
+

5/
−

18
+

2/
−

22
1

+
3/
−

3
+

5/
−

7
+

1/
−

37
..
.

+
1/
−

20
7

+
1/
−

0
18
/0

6
79

6(
27

0)
18

9(
87

)
76

6(
14

5)
62

2(
11

4)
60

1(
12

0)
46

37
(1

38
0)

19
4(

96
)

44
6(

10
9)

89
28

(4
58

8)
..
.

10
37

9(
51

87
)

49
(1

3)
∆

+
5/
−

0
+

4/
−

8
+

11
5/
−

76
+

5/
−

64
+

0/
−

21
+

6/
−

3
+

4/
−

1
+

1/
−

76
+

5/
−

5
..
.

+
25
/−

2
+

0/
−

0
17
/0

6
79

1(
26

8)
19

3(
92

)
72

7(
15

7)
68

1(
14

2)
62

2(
13

2)
46

34
(1

37
9)

19
1(

93
)

52
1(

13
2)

89
28

(4
58

9)
..
.

10
35

6(
51

67
)

49
(1

3)
∆

+
12
/
−

12
+

11
/
−

1
+

14
/
−

57
+

15
/−

74
+

67
/
−

10
5

+
4/
−

32
+

4/
−

42
+

9/
−

67
+

16
/
−

1
..
.

+
8/
−

19
+

0/
−

1
16
/0

6
79

1(
26

3)
18

3(
82

)
77

0(
17

5)
74

0(
15

4)
66

0(
15

6)
46

62
(1

38
0)

22
9(

96
)

57
9(

14
5)

89
13

(4
57

5)
..
.

10
36

7(
51

79
)

50
(1

3)

F
ig

ur
e

3:
Su

m
m

ar
y

of
re

su
lt

s
of

ru
nn

in
g

ed
os

-d
eb

ch
ec

k
on

un
st

ab
le

/m
ai

n
be

tw
ee

n
Ju

ne
16

an
d

Ju
ne

22
,

20
08

.
T

he
ar

ch
it

ec
tu

re
s

m
ip

s,
m

ip
se

l,
po

w
er

pc
,

s3
90

,
an

d
sp

ar
c

ar
e

om
it

te
d

fr
om

th
is

ta
bl

e
fo

r
la

ck
of

sp
ac

e.
In

ea
ch

da
y’

s
lis

ti
ng

,
th

e
fir

st
nu

m
be

r
is

th
e

nu
m

be
r

of
no

n-
in

st
al

la
bl

e
pa

ck
ag

es
,

w
hi

le
th

e
nu

m
be

r
in

pa
re

nt
he

se
s

is
th

e
nu

m
be

r
of

no
n-

in
st

al
la

bl
e

pa
ck

ag
es

th
at

ar
e

ar
ch

it
ec

tu
re

-s
pe

ci
fic

.
L

in
es

m
ar

ke
d

∆
gi

ve
th

e
nu

m
be

r
of

pa
ck

ag
es

be
co

m
in

g
un

in
st

al
la

bl
e

th
e

fo
llo

w
in

g
da

y
(+

),
re

sp
.

th
at

ar
e

no
lo

ng
er

un
in

st
al

la
bl

e
(-

).
T

hi
s

fie
ld

is
co

lo
re

d
re

d
w

he
n

th
e

to
ta

ln
um

be
r

of
un

in
st

al
la

bl
e

pa
ck

ag
es

is
in

cr
ea

si
ng

,g
re

en
w

he
n

th
at

nu
m

be
r

is
de

cr
ea

si
ng

.

R
es

ul
ts

of
a

cu
rr

en
t

ru
n

ca
n

be
fo

un
d

at
h
t
t
p
:
/
/
e
d
o
s
.
d
e
b
i
a
n
.
n
e
t
/
e
d
o
s
-
d
e
b
c
h
e
c
k
/
u
n
s
t
a
b
l
e
.
p
h
p
.

9

http://edos.debian.net/edos-debcheck/unstable.php

te
st

in
g/

m
ai

n:

D
at

e
al

ph
a

am
d6

4
ar

m
ar

m
el

hp
pa

i3
86

ia
64

m
ip

s
m

ip
se

l
po

w
er

pc
s3

90
sp

ar
c

so
m

e
ev

er
y

23
/0

6
36

7(
7)

14
(2

)
21

7(
4)

34
8(

21
)

36
9(

9)
12

(4
)

48
(3

)
26

7(
3)

26
9(

3)
21

(3
)

56
(3

)
24

(3
)

62
8(

32
)

8(
2)

∆
+

0/
−

0
+

0/
−

0
+

0/
−

1
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

3
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
22
/0

6
36

7(
7)

14
(2

)
21

8(
4)

34
8(

21
)

36
9(

9)
12

(4
)

48
(3

)
26

7(
3)

26
9(

3)
24

(4
)

56
(3

)
24

(3
)

62
8(

32
)

8(
2)

∆
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

3
+

0/
−

3
+

0/
−

0
+

0/
−

3
+

0/
−

3
+

0/
−

0
+

0/
−

0
21
/0

6
36

7(
7)

14
(2

)
21

8(
4)

34
8(

21
)

36
9(

9)
12

(4
)

48
(3

)
27

0(
4)

27
2(

4)
24

(4
)

59
(4

)
27

(4
)

62
8(

32
)

8(
2)

∆
+

0/
−

0
+

0/
−

3
+

0/
−

3
+

0/
−

9
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

7
+

0/
−

3
20
/0

6
36

7(
7)

17
(3

)
22

1(
5)

35
7(

24
)

36
9(

9)
12

(4
)

48
(3

)
27

0(
4)

27
2(

4)
24

(4
)

59
(4

)
27

(4
)

63
5(

35
)

11
(3

)
∆

+
7/
−

0
+

3/
−

0
+

4/
−

3
+

3/
−

27
+

4/
−

0
+

3/
−

0
+

3/
−

0
+

5/
−

11
+

5/
−

0
+

5/
−

0
+

5/
−

0
+

5/
−

0
+

5/
−

16
+

3/
−

0
19
/0

6
36

0(
5)

14
(2

)
22

0(
6)

38
1(

31
)

36
5(

8)
9(

3)
45

(2
)

27
6(

2)
26

7(
2)

19
(2

)
54

(2
)

22
(2

)
64

6(
42

)
8(

2)
∆

+
0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
18
/0

6
36

0(
5)

14
(2

)
22

0(
6)

38
1(

31
)

36
5(

8)
9(

3)
45

(2
)

27
6(

2)
26

7(
2)

19
(2

)
54

(2
)

22
(2

)
64

6(
42

)
8(

2)
∆

+
0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
+

0/
−

0
17
/0

6
36

0(
5)

14
(2

)
22

0(
6)

38
1(

31
)

36
5(

8)
9(

3)
45

(2
)

27
6(

2)
26

7(
2)

19
(2

)
54

(2
)

22
(2

)
64

6(
42

)
8(

2)

st
ab

le
/m

ai
n:

D
at

e
al

ph
a

am
d6

4
ar

m
hp

pa
i3

86
ia

64
m

ip
s

m
ip

se
l

po
w

er
pc

s3
90

sp
ar

c
so

m
e

ev
er

y
23
/
06

18
4(

0)
13

(0
)

96
(2

)
18

9(
0)

0(
0)

67
(0

)
18

5(
0)

18
6(

0)
13

(0
)

18
3(

0)
14

4(
4)

23
5(

6)
0(

0)

F
ig

ur
e

4:
T

he
sa

m
e

st
at

is
ti

cs
as

in
F

ig
ur

e
3

no
w

fo
r

te
st

in
g

an
d

st
ab

le
(o

nl
y

on
e

da
y

sh
ow

n
si

nc
e

no
va

ri
at

io
n)

.

10

Package Since Version Explanation
.
calendarserver 20 Jun 08 1.2.dfsg-3 calendarserver (=

1.2.dfsg-3) depends on
python-twisted-calendarserver
(>= 0.2.0.svn19773-3) {NOT
AVAILABLE}

camping 21 Jun 08 1.5+svn242-1 camping (= 1.5+svn242-1)
depends on rails {rails (=
2.0.2-2)} rails (= 2.0.2-2)
depends on rdoc (>> 1.8.2)
{rdoc (= 4.2)} rdoc (= 4.2)
depends on rdoc1.8 {rdoc1.8
(= 1.8.7.22-1)}

.
rdoc1.8 21 Jun 08 1.8.7.22-1 rdoc1.8 (= 1.8.7.22-1)

depends on ruby1.8 (>=
1.8.7.22-1) {NOT AVAILABLE}

.
shoes 21 Jun 08 0.r396-4 shoes (= 0.r396-4) depends

on libgems-ruby1.8
{libgems-ruby1.8 (=
1.1.1-1)} libgems-ruby1.8
(= 1.1.1-1) depends
on rdoc1.8 {rdoc1.8 (=
1.8.7.22-1)}

Figure 5: An excerpt from the list of uninstallable packages in sid/i386 main for June
22, 2008. In the explanation field, available versions of a package are indicated be-
tween curly brackets. Lines may refer to packages shown non-installable elsewhere,
like the packages camping and shoes being not-installable because it need rdoc1.8.
Package names written in italics in the left column have Architecture=all.

Results of a current run can be found at http://edos.debian.net/
edos-debcheck/results/unstable/latest/i386/list.php.

Stable:

Testing:

Unstable:

alpha amd64 arm hppa i386 ia64 mips mipsel powerpc

Figure 6: The Debian weather for June 27, 2008: Mostly sunny in stable and testing,
at places overcast and rainy in unstable.

11

http://edos.debian.net/edos-debcheck/results/unstable/latest/i386/list.php
http://edos.debian.net/edos-debcheck/results/unstable/latest/i386/list.php

A first idea towards a better solution is to only consider those pairs of packages
that actually share at least one file. Luckily, the information which package contains
which file is available in the file Contents of the distribution. This file contains
stanzas like

...
bin/fbset admin/fbset
bin/fgconsole utils/console-tools,utils/kbd
...
etc/default/nvidia-kernel contrib/x11/nvidia-kernel-common
...

In this file, information is indexed by path names of the files (omitting the initial
slash). For every file a comma separated list of packages containing that file is given
where packages are indicated with their section (a classification of packages by type,
like games or admin), and probably the component if it is different from main (which
can currently be contrib or non-free). For instance, the file /bin/fgconsole is
provided by the packages console-tools and kbd which both are in section utils.
In fact the Contents file that can be found on a Debian mirror may be slightly out
of date as this file is generated only once per week.

The Contents file of amd64/testing (as of May 2008) contains about 2.300.000
entries. It is a trivial programming exercise to compute from this file a list of pairs
of packages that share at least one file.

Sharing a file does not necessarily mean a bug. There a several reasons why it
may be OK for two packages, say A and B, to share a file, say F:

1. The two packages are not co-installable by the package relationships declared
in their distribution, in the sense of Section 2.1.

2. One of the packages, say A, declares that it has the right to replace files owned
by B, by having in its control file a stanza Replaces: B.

3. One of the packages, say B, diverts the file F that it shares with package A.
This means that if package B is being installed on a system already containing
package A then A’s version of file F will be renamed; file F will be restored to
its original name when package B will be removed. File diversions are declared
by invoking the tool dpkg-divert from a maintainer script which will simply
register the diversion request in a system-wide database. This database is
consulted by dpkg when installing files. Diversions are not declared in the
package control file.

We proceed in two stages in order to find the actual file overwrite problems:

1. Co-installability is checked with the pkglab tool (see Section 2.2.2). This is
the only tool that can detect “deep” conflicts between packages. This first
phase gives us a reduced list of pairs of packages.

2. Knowing which files are diverted by a package poses different problems: di-
versions are registered by the so-called postinst script of a package, one of
the maintainer scripts that are executed during installation (or upgrade, or
removal) of a package. This leads to two problems:

(a) Execution of the postinst script depends on the current state of the
system, and can in general not be described by a simple list of files.

(b) The postinst script is written in a Turing complete language (usually
Posix shell or bash), which means that exact semantic properties are
undecidable.

12

For this reason, we try in the second phase to install each of the pairs of
packages remaining after the first phase in a chroot, using apt-get install.
We then search the install log for file overwrite errors.

The following statistics is from the first run performed on April 16th, 2008, on
amd64/sid:

Theoretical pairs of packages according to the distribution 200.000.000
Pairs of packages sharing a file according to Contents 867
Co-installable pairs among these according to pkglab 102
File overwrites detected 27

Checking co-installability with EDOS pkglab took 30 minutes and gave a 88%
reduction of the search space. Testing the installation of the remaining 102 pairs of
packages still took 2.5 hours. This measures where taken with a dual-core amd64
at 1.6GHz, using a local Debian mirror access over a fast LAN.

Detected bugs are tracked in the Debian bug tracking system, and marked there
with user treinen@debian.org and usertag edos-file-overwrite.

3 Present and Future: Mancoosi

3.1 An Overview of the Mancoosi Project

Mancoosi picks up the baton from where EDOS left it. So, where to go from EDOS?
Even though some of the theoretical achievements of EDOS still have some way to
go before reaching the practice of all distributions (including Debian), adoption of
EDOS results is ongoing and is actually extending past the distribution universe;
a noteworthy example is the Eclipse platform, which is moving to SAT solving to
solve inter-plugin dependencies.

On the contrary, one side of the complexity issues introduced by the overwhelm-
ing amount of packages in GNU/Linux distributions has been neglected by EDOS
and is still in need of both research and tool development: the user side of a dis-
tribution. While EDOS has focused on the distribution editor side (i.e. on who is
actually creating the distributions), Mancoosi focuses on who is actually using a
distribution, in particular system administrators.

It is well-known that distributions raise difficult problems for administrators.
Distributions evolve rapidly by integrating new versions of software packages that
are independently developed. System upgrades may proceed on different paths
depending on the current state of a system and the available software packages,
and system administrators are faced with choices of upgrade paths, and possibly
with failing upgrades. All together, these intertwined problems are referred to as
the upgrade problem. The Mancoosi project aims at developing tools for the system
administrator that address the upgrade problem.

What does constitute an upgrade problem from the point of view of a system
administrator? Intuitively, any possible change to the database of locally installed
packages constitutes an upgrade problem. Such changes are usually requested to a
meta-installer and are well-known to any system-administrator. Some examples:

• apt-get install wesnoth

• aptitude upgrade cappuccino

• apt-get dist-upgrade

• aptitude purge emacs22

13

• wajig install vim-full

Each of the above examples poses a simple upgrade problem. Way more complex
upgrade problems can be formed by combining simpler problems (e.g. posing all the
above requests together to a single meta-installer). Yet more complex problem can
be created by exploiting meta-installer specific features such as requiring specific
package versions or origin suites (think at apt pinning).

A basic principle of the Mancoosi project was that the upgrade process can be
decomposed into two parts: dependency resolution and upgrade deployment. While
dependency resolution can be thought of as a static phase, where without altering
the package database a meta-installer has to figure out if and how to implement
the user request, upgrade deployment is more dynamic and consists of several sub-
activities: package download, package unpacking, maintainer scripts execution . . .

According to this distinction, the two main avenues pursued by Mancoosi are:

rollback support Upgrade deployment can fail for various reasons easily encoun-
tered in system administrator nightmares (disks running out of space, 404
while downloading a package, maintainer script failures, file overwrites among
unrelated packages, . . .). Depending on how bad the error is, a common at-
tempted solution is that of rolling back the system, partially or completely, to
a safe state which predates the upgrade attempt. Unfortunately, support for
upgrade attempt rollback is basically inexistent in state of the art installers.
Note that the need for a rollback may also occur some time after an upgrade
(even days or weeks), and that in that case one only wants to undo the pack-
age upgrade but not any other system changes that have been applied in the
meantime. This means that we are looking for solutions beyond mere file
system snapshots.

Mancoosi aims at developing mechanisms that provide for rollback of failed
upgrade attempts, allowing the system administrator to revert the system to
the state before the upgrade. In particular, rollback is the topic of Mancoosi
work packages 2 and 3.2

dependency solving The first part of the upgrade problem is implemented by
state of the art meta-installers, but each of them has deficiencies (e.g. incom-
pleteness: the inability to find an upgrade path each time one upgrade path
does exists).

Mancoosi aims at developing better algorithms to plan upgrade paths based
on various information sources about software packages and on optimization
criteria. Dependency solving is the topic of Mancoosi work packages 4 and 5.

As the authors are only marginally involved with rollback support, that part of
the project will not be discussed any further in this paper. We will for the rest of
this paper concentrate on dependency solving.

3.2 Dependency solving

As already mentionend, the overall goal of this part of Mancoosi is improving depen-
dency solving in state of the art meta-installers, solving some of their deficiencies.
More precisely, Mancoosi plans to address three requirements which are believed
to define the ideal to which any given meta-installer should tend to: completeness,
optimality, efficiency.

2http://www.mancoosi.org/work.html

14

http://www.mancoosi.org/work.html

3.2.1 Completeness

The first of these requirements can be defined as follows:

Definition 6 A meta-installer is complete wrt. dependency solving iff for each
possible upgrade problem which has a solution, the meta-installer is able to find
such a solution.

Even though not enough details have been given to fully formalize completeness
in this paper, the intuition should be clear: once the system administrator poses
an upgrade problem to its meta-installer of choice, the meta-installer tries to solve
dependencies to fulfill the user request to determine which changes should be made
to the set of installed packages. If a healthy installation satisfying the user request
does exist, then the meta-installer should be able to propose it as a possible way of
fulfilling the user request.

Surprising as it might sound, most state of the art meta-installers are not com-
plete. For instance, upon receiving a request like install p, apt-get always tries
to install the latest version of p among those available in the package universe
formed by APT repositories. In case the version requirements of (latest) p are not
satisfiable it might well be that requirements of (previous) p are indeed satisfiable.
In such and similar cases the user is left with the feeling that there is no way to
satisfy her request, while this is actually not the case: this is a lack of completeness
that should be addressed to improve user experience with meta-installers.

Note that the given example is just a paradigmatic one, more complex examples
built on top of the limited back-tracking capabilities of other meta-installers can
also be provided [?] (see also http://www.mancoosi.org/edos/manager.html for
an analysis of the situation in the year 2006). The general point stressed here is that
legacy meta-installers which are advertised as the tools for system-administrators
to interact with the package database of their machines should be able to solve
dependency problems each time it is possible to do so.

3.2.2 Optimality

Once it can be taken for granted that any possible solution to a dependency problem
can be found, it is natural to ask which among all the possible solutions has to be
preferred over the others.

Note that for any given upgrade problem there are in general several possible
solutions. If you consider again the install p request posed to apt-get above, a
possible solution for it is to install the version of p whose dependencies are satisfiable
together with all its (transitive) dependencies and be done with that. Another valid
solution is to install the same set of packages together with a package z which is
completely unrelated to p and that does not inhibit a healthy installation. Whereas
in these two cases it seems obvious that the former has to be preferred, in the
general case there are non obvious choices to be made. Anyone who has already been
faced with aptitude interactive solution discrimination knows that: in satisfying
dependency problems coming from user requests, trade-offs have to be made.

In fact, even before discussing how the optimal solution has to be found among
all alternative solutions of a given upgrade problem, there is a need to understand
which criteria should be used to define the optimality of a given solution. At the
moment some fixed criteria which are likely to address most user needs are being
considered; here is a handful of examples:

• minimize the amount of extra-packages installed with respect to those explic-
itly mentioned in the user request,

• minimize the download size of packages required to deploy the upgrade solu-
tion,

15

http://www.mancoosi.org/edos/manager.html

• minimize disk usage after the upgrade (a frequent need for Debian-based em-
bedded distributions),

• upgrade as many packages as possible to the latest available version.

• . . .

Of course different optimization criteria can be in conflict one with another. If
on one side this brings the upgrade problem in the vibrating research field of multi-
criteria optimization, it also raises the issue of which interface should be given to
users to specify their optimization preferences. Moreover, the set of possible opti-
mization criteria should be open-ended as specific user needs arise every day: APT
pinning is a practical example of user requests that should be taken into account
while choosing an optimal solution, countless other user-specific requirements can
be imagined (e.g.: when you have a choice among two packages choose the one with
less RC bugs, or even blacklist packages maintained by Random J. Developer as you
don’t trust him . . .). For this reason Mancoosi will also be developing a cross meta-
installer language to specify optimization criteria with a well-defined semantics, to
be used by system-administrators to specify their preferences.

3.2.3 Efficiency

Once it is settled what properties we want from the ability of a meta-installer to
solve dependencies (completeness and optimality), the attention can be turned to
how we would like the given tool to reach a solution . . . and of course we want it
to be efficient in finding it. Even letting aside the optimization part, dependency
solving is per se a NP-complete problem (see Section 2.2.1) hence we cannot hope
for a definitive algorithm or implementation delivering upgrade problem solution
instantaneously in any given case.

Nevertheless we should strive for the most possible efficiency and in this respect
the EDOS results have been encouraging. Mancoosi will focus on finding efficient
algorithms which not only take into account package installability “in the void” (i.e.
in some, not specified a priory, installation), but rather which address upgrades
starting from an existing user installation.

3.3 A solver competition

Promising to find the most efficient algorithmic solution to the upgrade problem,
implementing both completeness and optimality in the setting of the Mancoosi
project would have been inconsiderate. This is why Mancoosi chooses a different
path: try increasing the sensibility of the relevant research communities on the
upgrade problem. Historically, the organization of periodic competitions has been
a training factor in pushing further the state of the art in algorithms and tools
for complex problems such as SAT. Examples like the SAT competition3 and SAT
race4 attract yearly research and practitioners willing to challenge their tools with
competitors to determine which is the “best” both in terms of solver capabilities
and in terms of execution speed.

Mancoosi will follow a similar path for the upgrade problem faced routinely
by meta-installers. A competition of dependency solvers will be organized and is
planned to be held in parallel with a research conference on related fields (SAT-
solving, linear optimization, . . .). While it is too early to have detailed information
on how the competition will be run and organized, some aspects are already clear.

3http://www.satcompetition.org/
4http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/

16

http://www.satcompetition.org/
http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/

Figure 7: Data flow of UPDB submissions, from users to the corpus of problems
for the competition

Upgrade problem database To run a solver competition you need a corpus of
problems that will be used to challenge the various competitors. In the Mancoosi
case the corpus will be called UPDB for Upgrade Problem DataBase. The way in
which it will be assembled is different from other competitions. Instead of creating
artificial problems by hand (that would be not only challenging given the typical size
of a distribution repository, but also bear the risk of creating irrelevant problems)
the corpus will be composed of problems submitted by users who encountered these.

All in all, the architecture is similar to that of the Debian Popularity Contest:5

users interested in participating will be asked to install some special-purpose pack-
ages which provide the software to gather data and submit it to a central repository.
In some cases it will probably be necessary to install modified versions of meta-
installers which have been changed to log enough information to fully describe an
upgrade problem. The architecture of problem submission to UPDB is depicted in
Figure 7.

As various distributions are taking part in the Mancoosi competition, each of
them will be providing a staging repository to which problem submissions will be
addressed. One such repository will be set-up for Debian users as well. As the
format of the initial submission is distribution-specific, a further conversion step
into a common format used to encode problems is needed. Once the conversion
has been done, the upgrade problem is fully abstracted over the origin distribution
and can be fed as input to the various solvers which will be taking part in the
competition.

The Mancoosi project will be both organizing the competition (and this is the
topic of work package 5) and participating in it (work package 4) with a research
team which is expert in SAT solving and optimization techniques and which will be
developing ad-hoc algorithms for the upgrade problem as faced in distributions.

Types of competitions Different kinds of competitions will be held. In the be-
ginning it is planned that the optimization criteria will be fixed and each competitor

5http://popcon.debian.org/

17

http://popcon.debian.org/

will specifically be participating in a selection of them. For example it is likely that
we will be having categories like: no optimization (just solve the upgrade problem
no matter what), minimize the download size of required packages, minimize disk
usage, and so on.

Upgrade Description Formats As it can be observed in Figure 7, different for-
mat specifications are required before being able to start collecting upgrade prob-
lems from users (that notwithstanding specification implementations, which will
be required as well). Such specifications are work in progress and are available in
the Mancoosi public repository available at http://gforge.info.ucl.ac.be/plugins/
scmsvn/viewcvs.php/trunk/updb/doc/cudf/?root=mancoosi.

The first specification DUDF (Distribution Upgrade Description Format) is meant
to describe the format used for the actual submission of upgrade problems from user
machines to the repositories set up by each distribution interested in collecting up-
grade problems. As the format is in the end distribution-specific, the specifications
describe the overall structure and basic principles of a submission document, the ac-
tual details will be filled in by each distribution according to the user installers and
meta-installers. Interested distributions are encouraged, once the final version of
DUDF will be ready, to publish notes describing exactly how they are implementing
the distribution-specific part of DUDF.

Roughly, a DUDF document has the following parts:

1. local package status on the user machine

2. current package universe as known to the meta-installer

3. requested action

4. user desiderata (i.e. optimization criteria)

5. various identifiers (e.g.: distribution identifier, installer name and version,
meta-installer name and version, . . .)

6. outcome of the meta-installer (a new local package status in case of success,
a failure message otherwise)

A hypothetical (and incomplete) mapping to Debian for the apt-get, just to
give a practical intuition of what can constitute a DUDF submission, is as follows:

1. /var/lib/dpkg/status

2. the set of APT binary package lists as stored under /var/lib/apt/lists/

3. the given APT command

4. current APT pinning settings

5. “debian”, “apt-get”, vx.y.z, “dpkg”, . . .

6. “broken packages, the following packages can not be installed,”

As sending all the above information can be costly in terms of submission size,
DUDF implements some space-optimizations. The most important optimization
is based on the assumption that most package lists composing a given package
universe are usually only mirrored on a local machine and are available elsewhere.
Hence, by keeping distribution-specific historical mirrors of a given distribution,
instead of sending whole package lists, a DUDF submission may just contain package
list checksums that can later be looked up in historical mirrors to recreate the
package lists as available on user machines. In the specific case of Debian, Mancoosi
will be keeping historical mirrors of APT lists for the most widespread apt-get
repositories: not only the official stable/testing/unstable Debian suites, but also
volatile, backports, debian-multimedia, . . .

18

http://gforge.info.ucl.ac.be/plugins/scmsvn/viewcvs.php/trunk/updb/doc/cudf/?root=mancoosi
http://gforge.info.ucl.ac.be/plugins/scmsvn/viewcvs.php/trunk/updb/doc/cudf/?root=mancoosi

The second, and last, document format involved with the solver competition
is CUDF (Common Upgrade Description Format). That is the format in which
the actual inputs from competition participants will be encoded in. Contrary to
DUDF, CUDF is distribution agnostic as well as agnostic to any specific installer
or meta-installer. A requirement for any given DUDF document is that it can be
converted to CUDF, during that conversion step all performed space-optimization
will be expanded to obtain a self-contained description of an upgrade problem.

3.4 Debian and Mancoosi

As already mentionend there is no “official” relation between the Mancoosi and
Debian projects; however, there are Debian developers in the ranks of Mancoosi
which are interested in giving back to Debian as much as possible of Mancoosi
achievements. This section lists the foreseeable points of contact between Mancoosi
and Debian, it also points to the available resources for interacting with Mancoosi
from the Debian side.

Probably the main point of interest for Debian in Mancoosi is the possibility to
improve the available algorithms and tools for dependency solving, both from the
point of view of performance and the point of view of capabilities. To be delivered
in Debian, the possible forthcoming achievements will need cooperation among the
algorithm developers and the developers of meta-installers used in Debian (apt-get,
aptitude, . . .). The Debian developers involved in Mancoosi have already taken
contact with members of the respective development teams. Collaborations are
needed mainly in two areas:

common solver API It is unlikely that Mancoosi will have the energy to port
novel dependency resolution algorithms to multiple meta-installers, it is more
likely that only a proof of concept implementation for a single tool will be
developed. As Debian is also about diversity, it would be preferable to have
implementations for all the mainstream meta-installers. To this end a side-
result that will be pursued is the development of a common API to let what-
ever meta-installer interact with an external dependency solver. This way it
would be possible to develop separately meta-installers and plug them into
different tools. Such an achievement, if reached, would also mean that it
will be possible to exchange solvers which already exist among different tools,
gaining flexibility in the overall package manager implementation.

dependency solving logging Once the specification of DUDF will be finalized,
its implementations will basically consist of patches (or plugins, where fea-
sible) for meta-installers enabling them to save in DUDF format solving at-
tempts originated from upgrade problems. As it will be beneficial to have a
common format for logging such attempts (e.g. for bug reports against apt-
get, aptitude, . . .) we hope to spread DUDF implementations in whatever
meta-installer is currently used in Debian.

On a less implementative side, Mancoosi is welcoming comments from the De-
bian community on all aspect of the project. In particular, at the time of this writ-
ing we are interested in comments on what will constitute interesting optimization
criteria as those anticipated in Section 3.2.2. The corpus of collected optimization
criteria is likely to be used as the set of categories to run the first solver competition.
Do not hesitate to get in touch with the Mancoosi project if you have suggestions
on this topic or on anything else related to the project!

To get in touch with Mancoosi there are various ways.

• The official website gives general information on the Mancoosi project, it is
available at http://www.mancoosi.org

19

http://www.mancoosi.org

• The mailing list to archive public discussions about Mancoosi is mancoosi-
discuss: http://sympa.pps.jussieu.fr/wws/info/mancoosi-discuss

• Then there are also Debian-specific contacts

– http://mancoosi.debian.net has been set-up as a web archive of re-
sources for the Debian project offered by Mancoosi. At the moment it
just contains the historical mirror of APT’s binary package lists which
will be used to implement the space-optimization of DUDF.
It also contains an apt-get repository of unofficial Debian packages meant
as a staging area for packages not (yet) accepted in the Debian archive,
or simply not suitable/interesting enough for it.

– the email contact debian@mancoosi.org is the main contact to get in
touch with Mancoosi for Debian-related issues, questions, comments
. . . Drop a mail to it for more information!

20

http://sympa.pps.jussieu.fr/wws/info/mancoosi-discuss
http://mancoosi.debian.net
debian@mancoosi.org

	Introduction
	The Past: EDOS
	Formalization of Inter-Package Relations
	Results, Tools, and Applications
	Result: Installability is NP-complete
	Tools: edos-debcheck, pkglab and ceve
	Application: Finding Uninstallable Packages in Debian
	Application: Debian Weather
	Application: Finding File Conflicts in Debian

	Present and Future: Mancoosi
	An Overview of the Mancoosi Project
	Dependency solving
	Completeness
	Optimality
	Efficiency

	A solver competition
	Debian and Mancoosi

