
Efficient Ambiguous Parsing
of Mathematical Formulae?

Claudio Sacerdoti Coen and Stefano Zacchiroli

Department of Computer Science
University of Bologna

Mura Anteo Zamboni 7, 40127 Bologna, ITALY
{sacerdot,zacchiro}@cs.unibo.it

Abstract. Mathematical notation has the characteristic of being am-
biguous: operators can be overloaded and information that can be de-
duced is often omitted. Mathematicians are used to this ambiguity and
can easily disambiguate a formula making use of the context and of their
ability to find the right interpretation.
Software applications that have to deal with formulae usually avoid these
issues by fixing an unambiguous input notation. This solution is annoying
for mathematicians because of the resulting tricky syntaxes and becomes
a show stopper to the simultaneous adoption of tools characterized by
different input languages.
In this paper we present an efficient algorithm suitable for ambiguous
parsing of mathematical formulae. The only requirement of the algorithm
is the existence of a “validity” predicate over abstract syntax trees of
incomplete formulae with placeholders. This requirement can be easily
fulfilled in the applicative area of interactive proof assistants, and in
several other areas of Mathematical Knowledge Management.

1 Introduction

Mathematicians are used to well established and ambiguous notational conven-
tions. To design a software application which have to deal with mathematical
formulae, we have to consider this habit.

Sometimes a mathematician who is reading a formula, solves the ambiguity
using the notion of context : for instance, if f is known to be a scalar value, then
f−1 is the inverse value 1/f ; if f is a function, then f−1 is probably the inverse
function of f .

More often the context is not sufficient and the ambiguity is solved by picking
the only interpretation that makes sense or the interpretation that is more likely
to have one. For instance, without additional information, a mathematician is
like to interpret φ2(x) as (φ ◦ φ)(x) although sin2(x) is probably interpreted as
(sinx)2.

? The authors have been partially supported by ‘MoWGLI: Math on the Web, Get it
by Logic and Interfaces’, EU IST-2001-33562

2 Claudio Sacerdoti Coen and Stefano Zacchiroli

Associating precedences to operators does not always solve ambiguity prob-
lems as shown by the combined usage of conjuction and equality operators:
A ∧B = B ∧A is usually interpreted as equality of conjuctions whereas
x = y ∧ y = x as conjuction of equalities.

Using unambiguous grammars computer scientists avoid ambiguity problems
in programming languages and programmers are used to learn them from scratch
along with their ad hoc syntactical rules. Mathematicians can of course do the
same with new proof assistants or other Mathematical Knowledge Management
(MKM) applications. Notwhithstanding this fact, there are motivations for try-
ing to recognize ambiguous mathematical inputs in the MKM context. In the
following paragraphs we try to identify some of them.

Different mathematicians adopt for the same concept different notations. We
do not want to give up this possibility for technical reasons. In MKM indeed
there are several situations where the user has to write or read a mathematical
formula without knowing the context, in which notations are defined. Let us
consider a search engine for mathematical results, as the one described in [5].
The user enters a statement to retrieve all its proofs. In order to do so, she has
to pick a notation and use symbols and constants that are not fixed by any
context. Thus the search engine has to be able to parse the ambiguous sentence,
disambiguate it and perform the search modulo the context.

A feature that is usually provided to the user of a Computer Algebra System
(CAS) or a proof assistant is that of defining new notations, which are stored in
the context. Sooner or later it will happen that a user needs to merge together
two contexts where the same notation is used for different concepts. If these
systems do not handle overloading, the easiest form of ambiguity, at least one of
the two notations is actually masked and the user has to redefine it, creating a
break point in the notational uniformity of the whole development. The Mizar[10]
library committee has already faced several times these kind of problems, that
were solved by changing one of the two notations and updating the whole Mizar
library.

Among the topics of MKM there are digitalization and enhancement of al-
ready existing mathematical knowledge. Since the notation used in already ex-
isting mathematical documents is ambiguous, ambiguity must be addressed in
both phases. Morever, since the amount of such documents is huge, we should
minimize as much as possible the amount of disambiguation work left to the
human.

In this paper we outline an efficient algorithm which can be used to perform
ambiguous parsing in applications pertaining to the MKM area. The algorithm
can be seen as an improvement of the algorithm for ambiguous parsing used in
type based parsers as the one of the Grammatical Framework [11]. Type based
parsing imposes a type system over the grammar of the language that must be
recognized, and uses the typing judgement to prune wrong interpretations. In
the context of mathematical formulae no additional type system needs to be
imposed since arity, domain and codomain information associated to mathemat-

Efficient Ambiguous Parsing of Mathematical Formulae 3

ical operators can play the role of a type system that supports the required
operations.

In Sect. 2 we present the classes of efficient and modular parsing algorithms
we are interested in; in Sect. 3 we describe refinement, the predicate needed
to validate formulae fragments; the algorithm itself is presented in Sect. 4 and
analyzed in Sect. 5, where several future research directions are also outlined;
final remarks and conclusions are given in Sect. 6.

2 Requirements

Traditionally, compilers have been implemented as pipelines of phases. The first
phase, lexing, takes in input a stream of characters and produces as output a
stream of tokens. These tokens are the input for the parsing phase which in turn
produces as output one or more abstract syntax trees (or ASTs for short). The
semantic analysis phase finally takes in input ASTs and enriches their nodes
with semantics information. Each phase can fail, aborting the whole process.

The parsing phase is in charge of recognizing if the input phrase pertains to
a predefined grammar or not. This grammar is said to be unambiguous if, for
any given input phrase, there exists at most one AST; otherwise the grammar
is an ambiguous grammar.

The output of the parsing phase for an unambiguous grammar is either a
parse error or the unique AST for the input formula. This property does not
hold for ambiguous grammars. In that case the output of the parsing phase is
no longer a single tree, but rather a set of trees.

Ambiguous grammars are just one aspects of ambiguity, the other one we
will consider is introduced by the semantic analysis phase. We say that an AST
is an ambiguous AST when the semantic analysis phase can associate to it more
than one semantics — whatever the semantics is.

When this kind of ambiguity has to be considered, the output of the semantic
analysis phase is a set of semantics for each AST in the input set. Let us consider
the formula (1+2)∗3−1 = 1, and suppose we are in the applicative area of proof
assistants. This formula exhibits the latter aspect of ambiguity described, since
each symbol in it can have many different semantic interpretations:

1. each number can be a natural, integer, rational, real or complex number;
2. “−1” can either be the application of the unary operator “−” to 1, or the

integer, rational, real or complex number −1;
3. “=” can represent many different equalities (Leibniz’s polymorphic equality

an equivalence relation over natural or real numbers, . . .);
4. “+” and “∗” can be defined over naturals, integers, . . . ;
5. if subtyping does not hold, implicit coercions can be inserted to inject a

number of one type in a “super type”;
6. since different representations of a concept have different computational

properties, several representations of, say, natural numbers may be avail-
able.

4 Claudio Sacerdoti Coen and Stefano Zacchiroli

Similar observations can be made in applicative areas other than that of proof
assistants. For instance, some of them applies directly to CASs. In the rest of
the paper we want to address the two forms of ambiguities at the same time.

We say that an algorithm performs ambiguous parsing when it associates to
an input formula E the set of all the semantics for E. This means that we are
considering the second and third phases of a traditional compiler as just one
macro phase. The motivation is efficiency: we want to be able to detect seman-
tically wrong formulae already during the parsing phase, without generating a
multitude of ASTs that later on cannot be assigned any meaning.

At the same time, we do care about the modularity induced by the distinc-
tion of the two phases. Thus these are the two requirements that we want our
algorithm to satisfy:

1. The algorithm should be compositional : the semantic analysis phase should
be as separate as possible from the parsing phase.

2. The algorithm should be efficient : semantic errors must be detected as early
as possible, preventing further parsing and semantic analysis of already in-
correct interpretations.

The apparent conflict between the two requirements manifest itself in im-
plementations that fulfil one requirement sacrificing the other. For instance, let
us consider again the formula (1 + 2) ∗ 3−1 = 1. The naive compositional al-
gorithm (NCA for short) performs parsing first, returning a huge set of ASTs,
one for each combination of the possible interpretations of each symbol. For in-
stance, one possible output is the tree whose root is equality over real numbers
and whose second argument is the Peano number 1. Then semantic analysis
proceeds at pruning out the most part of the combinations: for instance, every
tree whose root is the equality over real numbers and whose second argument is
not a real number is pruned. Unfortunately, this algorithm is not efficient, since
several trees are parsed and analyzed even if looking at the root and its second
argument already provides enough information to prune them out. However, due
to its triviality, NCA is the most commonly used algorithm [11].

Let us now consider the most efficient top-down algorithm, which generates
every possible interpretation for the root, and for each interpretation calls itself
on the two arguments remembering what the expected type of the argument
was. The expected type is used to pick for the second argument of the root the
only interpretation that respects the type. Corresponding efficient bottom-up
algorithms can be easily built as well. Clearly this algorithm is not compositional,
since it performs type checking already during the parsing phase, and just on a
fragment of the tree.

In Sect. 4 we propose a compositional and yet efficient algorithm for am-
biguous parsing of mathematical formulae, showing that the conflict is only
ephemeral. The main assumption underlying the algorithm is the availability of
the refinement operation described in the next section. Intuitively, the function
allows to detect semantic errors on partial ASTs and thus it can be used already
during the construction of the AST set that is the output of the parsing phase.

Efficient Ambiguous Parsing of Mathematical Formulae 5

To the authors knowledge the algorithm is new, despite its apparent simplic-
ity. Its novelty was also confirmed by private communication with Aarne Ranta,
who is the main author of Grammatical Framework (GF) [11] and without any
doubt one of the major experts in this field.

3 Refinement

The crucial ingredient of our parsing algorithm is the function that performs
semantic analysis of the abstract syntax tree of the formula. Its goal is to detect
invalid formulae. Since the most common mistake in a formula is the application
of an operator to arguments outside its domain, this function is likely to be a sort
of type deriver. Indeed, every foundational system used to encode the formulae
has its own version of a (weak) “type” system.

Let us consider several kind of formulae encoding used in the mathematical
practice and in MKM. Set theory is the most widely used foundation among
mathematicians. In principle, every operator in set theory is untyped (or uni-
typed), since every term is a set and set theoretical operations can be applied to
any set. For instance, the natural number zero can be defined as the empty set
and the natural number one as the set {∅}. Thus the formula 0 ∈ 1 is perfectly
valid. Notwithstanding this, mathematicians that work in set theory use to con-
sider natural numbers as a sort of abstract data type, forgetting their concrete
definition and considering “well typed” only the applications of operators whose
domain is the same or a subset of the set the argument belongs to.

The logical foundation that Computer Algebra Systems are commonly based
on is some variant of multi-sorted first order logic. The arity and sorts of the
symbols define the type system that prevents wrong applications inside formulae.

The type system becomes a truly first class citizen in mathematical reasoning
tools based on type theory. The majority of Proof Assistants (PA), with the
significant exception of Mizar[10], are based on type theory, where a type is
assigned to every term, and a product (or arrow type) is assigned to operators.
The application is well-typed if the type of the argument matches the domain
of the product.

Type systems can be classified according to the presence or absence of de-
pendent products. A non-dependent product T1 → T2 types functions whose
output type T2 does not depend on the actual argument. On the contrary, a
dependent product Πx : T1. T2(x) types functions whose output type T2(x) is
a function of the actual argument x. Dependent type systems allow to express
tighter constraints on the arguments of an operator, rejecting a larger number
of wrong formulae and making the disambiguation algorithm more effective, but
also more complex.

Type derivers are programs that check whether a type can be assigned to
a formula, and that can optionally return the computed type. Thus they can
be exploited as pruning functions for NCA: after generating every AST, the
type deriver is used to prune invalid ASTs. To implement our efficient version of
the algorithm we need an extension, called refiner, of a stronger version of the

6 Claudio Sacerdoti Coen and Stefano Zacchiroli

type deriver able to deal with incomplete formulae. However, our algorithm is
fully generic, since it is not based on a particular calculus or a particular type
system. The only necessary requirement is the possibility to represent incomplete
formulae and the existence of a refiner.

An incomplete formula is a formula where non linear placeholders for subfor-
mulae occur. Every non linear placeholder ?i where i is a natural number replaces
the occurrence of a subformula. Occurrences of equal placeholders replace equal
subformulae. In type theory literature, placeholders are called metavariables [8,
13, 7].

In type theory for instance, to obtain a typed calculus with metavariables
from a typed calculus of closed terms (where no metavariable occurs), metavari-
able occurrences are added to the term grammar, and a typing context for
metavariables is added to the typing rules. The typing context associates a type
to each metavariable, that is the type of the term replaced by the metavariable.
In the case of dependent products, the type of the metavariable in the typing
context is replaced by a sequent, that describes the type of the replaced term
and the free variables that (may) occur free in the replaced term, together with
their type. For instance, the formula ∀x : Z.x =?1 is well typed if the sequent
x : Z `?1 : Z is associated with ?1, stating that ?1 is a term of type Z parametric
in x also of type Z.

Definition 1 (Refiner). A refiner is a function whose input is an incomplete
formula t1 and whose output is either:

– an incomplete formula t2 where t2 is a well-typed formula obtained by assign-
ing a type (or a sequent) to each metavariable in t1 and, in case of dependent
types, by instantiating some of the metavariables that occur in t1;

– the special constant ε if there exists no well-typed formula t2 that can be
obtained by assigning a type (or a sequent) to each metavariable in t1 and
by instantiating some of the metavariables;

– the special constant ⊥ when neither one of the two previous cases can be
verified by the algorithm.

Whereas type checking is usually decidable, refinement is usually a semidecidable
problem. Thus, in the literature, refinement algorithms are usually described to
return either a refined term t2 or the ⊥ answer [7]. In the Ph.D. thesis of the first
author of this paper [12] an algorithm that returns the three previous answers
is described as a simple modification of the classical algorithm. Notice that if
refine(t) = ⊥ then no information is actually provided: the formula could either
be refinable or not. As a consequence, our disambiguation algorithm can only
exploit the other two answers, and the refiner will be more and more useful as
long as it minimizes the number of ⊥ outputs.

A simple example should clarify the usage of the refinement algorithm. Let
us consider the incomplete mathematical formula ?1 =

√
?2 represented in set

theory and in a type theory of total functions with dependent products, and
let’s try to refine it. We use juxtaposition for operator application, following the
usual λ-calculus convention.

Efficient Ambiguous Parsing of Mathematical Formulae 7

– Set theory: ?1 =
√

?2 is encoded as (= ?1 (sqrt ?2)) where = is the poly-
morphic equality over arguments that belongs to one set and sqrt is a func-
tion whose domain is the set R+

0 of non negative real numbers and whose
codomain is the set R of real numbers.
refine(= ?1 (sqrt ?2)) returns (= ?1 (sqrt ?2)) since the term is well-typed
once the type R is assigned to ?1 and the type R+

0 is assigned to ?2.
– Dependently typed type theory of total functions: ?1 =

√
?2 is encoded as

(= ?3 ?1 (sqrt ?2 ?4)) where = is the monomorphic ternary operator whose
first argument is a type and whose other arguments are terms of that type;
sqrt is the binary operator whose first argument x is of type R and whose
second argument has dependent type (≥ x 0) (i.e. it is a proof of x ≥ 0).
refine(= ?3 ?1 (sqrt ?2 ?4)) returns (= R ?1 (sqrt ?2 ?4)) since the term is
well-typed once that ?3 is instantiated with R, the sequent `?1 : R is assigned
to ?1, the sequent `?2 : R+

0 is assigned to ?2 and the sequent `?4 : (≥ ?2 0)
is assigned to ?4.

Notice that, in the case of dependent type theories, the refiner sometimes needs
to instantiate metavariables that occur in the argument of an operator whose
type is a dependent product. For instance, in the previous example the type of the
monomorphic equality is ΠT : Type. T → T → Prop and ?3 is the argument
of the formal parameter T . Thus the type R of the third operator argument
(sqrt ?2? 4) must match the type T =?3 and this holds only instantiating ?3

with R.
In the next section we will describe our disambiguation algorithm that is

based on refinement instead of the simpler type derivation.

4 The Algorithm

Our algorithm for efficient ambiguous parsing is based on two components: a
parser and a disambiguator. The parser component is similar to the homonymous
phase of a traditional compiler pipeline in the sense that it actually checks if the
input token stream belongs to a given grammar. The main difference with a
traditional parser is that this one, instead of returning a set of ASTs, acts lazily
immediately returning a pair. The first projection of this pair is a description of
the choices which have to be made in order to obtain a term (i.e. an unambiguous
interpretation of the input). We call such a description an interpretation domain.
The second projection of the pair returned by the parser is a function that returns
a term once applied to an oracle (called interpretation) that guides its choices.

The second component of our algorithm, the disambiguator, “drives” the
parser by feeding with interpretations its output. Interpretations can be totally
or partially defined over the interpretation domain. When the parser is faced with
a choice that is not considered in a partial interpretation, it generates a place-
holder. A partial interpretation approximates a total one since the generated
open term matches the closed term of the total interpretation. The disambigua-
tor builds total interpretations by repeated approximations, using the refiner

8 Claudio Sacerdoti Coen and Stefano Zacchiroli

described in Sect. 3 to prune those approximations that lead to not well-typed
terms.

The clear distinction between parser and disambiguator ensures that our
algorithm is compositional; the efficiency is in turn granted by the refiner which
permits to prune interpretations as soon as they lead for sure to not well-typed
terms. Let us analyze more formally the ideas sketched so far.

Let T be the set of well formed terms and let S be a set of symbols that can
have more than one interpretation (that we call choice) in the input.

Definition 2 (Interpretation). Interpretation domain, interpretation
codomain and interpretation are mutually defined in the following way:

– an interpretation domain is a finite set whose elements are couples (s, l)
where s (the symbol to be interpreted) is an element of S and l (the list of
possible choices) is a list of functions from interpretations to T ;

– an interpretation codomain is a set whose elements are either the element
“?” (implicit term) or functions from interpretations to T ;

– an interpretation is a total function from interpretation domain to inter-
pretation codomain, subject to the following condition: for each element i =
(s, [t1 ; . . . ; tn]) of the interpretation domain, if the interpretation applied
to i returns a function t, then t ∈ {t1, . . . tn}.

An interpretation φ is partial when there exists an interpretation domain item
i such that φ(i) = ?.

In ML notation Def. 2 is:

type symbol (* abstract data type *)
type term (* abstract data type *)
type interpretation_domain_item =
Item of symbol * (interpretation -> term) list

and interpretation_codomain_item =
Implicit

| Term of (interpretation -> term)
and interpretation =
interpretation_domain_item -> interpretation_codomain_item

Intuitively, an interpretation domain item describes all the possible ways to
interpret a given symbol. An interpretation codomain item is either an implicit
term (refusal of choosing an interpretation for the symbol) or just one interpre-
tation among the possible ones. Thus, an interpretation is just a kind of oracle
that, given a set of choices and a set of answers for each choice, associates to
each choice either an answer among the one proposed or the “no choice” term.

We let D range over interpretation domains, φ range over interpretations and
t↑ over functions from interpretations to terms. Let us now define the parser.

Definition 3 (Parser). A parser is a function that maps its input (a token
stream) to a couple (D, t↑) where D is an interpretation domain and t↑ is a
function from interpretations defined over D to terms.

Efficient Ambiguous Parsing of Mathematical Formulae 9

Operationally, the parser can be obtained mechanically from a traditional parser
for non-ambiguous grammars, either top down, bottom up, or general, by lifting
its output from terms to functions, from interpretations to terms. An example
in OCamlYacc1 syntax should clarify the previous statement. Let us consider
the OCamlYacc production that parses the formula t! (the factorial of t) and
returns an OCaml value representing the resulting term:

expr: expr BANG { Bang ($1) }

Applying the mechanical lifting transformation, the production becomes:

expr:
expr BANG {
let dom, mk_expr = $1 in
dom, fun interp -> Bang (mk_expr interp) }

The first component of the output is the domain of the subexpression. The
second component is a λ-abstraction over an interpretation, that becomes the
argument of the subexpression (that is now lifted and needs an interpretation in
input).

The interesting case is the case of ambiguous parsing, i.e. the case when the
parser must make a choice. The solution is simply to add all the possible choices
to the output domain, and makes the interpretation function perform the choice.
Example:

expr:
expr EQ expr {
let ((dom1, mk_expr1), (dom2, mk_expr2)) = ($1, $3) in
(union (union dom1 dom2)
(EQ,
[fun interp -> (* decidable equality over naturals *)

APPL [eq_nat; mk_expr1 interp; mk_expr2 interp];
fun interp -> (* leibniz’s equality *)
APPL [eq; ?; mk_expr1 interp; mk_expr2 interp]])),

fun interp ->
match interp EQ with
| Implicit -> ? (* fresh metavariable *)
| Term mk_term -> mk_term interp }

If the oracle interp given in input satisfies Def. 2, then interp EQ will be either
Implicit (refusal to choose) or one of:

1. Term (fun interp -> (* decidable equality over naturals *)
APPL [eq_nat; mk_expr1 interp; mk_expr2 interp])

2. Term (fun interp -> (* leibniz’s equality *)
APPL [eq; IMPLICIT; mk_expr1 interp; mk_expr2 interp])

1 OCamlYacc is a tool, similar to Yacc, that produces bottom up OCaml parsers from
LALR(1) grammars.

10 Claudio Sacerdoti Coen and Stefano Zacchiroli

From the latter example it should be clear in which sense the parsing phase
proceeds “lazily” and also in which sense interpretations behave as oracles for
the parsers. The last and more interesting component is the disambiguator.

Definition 4 (Disambiguator). A disambiguator is a function whose input
is a couple (D, t↑) where D is an interpretation domain and t↑ a function from
interpretations defined over D to terms. The output of the disambiguator is the
set {t | ∃φ of domain D s.t. t = t↑(φ) and t is well-typed}
All the couples parser, disambiguator are clearly compositional. We will now
present an efficient algorithm satisfying the specification for a disambiguator.
The idea of the algorithm is to build the set of interpretations that produces
well-typed terms by progressive refinements, starting from the interpretation
that always refuses to choose and progressing towards an interpretation that
always returns some lifted term. At each refinement step, the function t↑ is
applied to obtain an open term, that is immediately fed to the refiner. The
refiner function acts as a sort of validator, rejecting partial instantiations that
already produce ill-typed open terms. In the case of dependent types it may also
provide positive information, in the sense that it may automatically instantiate
several metavariables, constraining the set of future choices.

The simplest version of our algorithm — that does not exploit refiner positive
information — can be sketched in pseudo-code as follows:

let refine(t) = a refiner according to Def. 1

let update(φ, s, t′↑)(s
′) =

{
Term(t′↑) if s′ = s

φ(s) otherwise
let disambiguate(D, t↑) =

let φ0 = λx.Implicit

let Φ =
{
{φ0} if refine(t↑(φ0)) 6= ε ∧ refine(t↑(φ0)) 6= ⊥
∅ otherwise

foreach (s, l) ∈ D
Φ := {φ′ | φ ∈ Φ ∧ t′↑ ∈ l ∧ φ′ = update(φ, s, t′↑) ∧ refine(t↑(φ′)) 6= ε}

return {φ | φ ∈ Φ ∧ refine(t↑(φ)) 6= ⊥}

The following is an example of the application of the algorithm to the formula
(5/2)! where / can be either the integer division /N or the real division /R, 2 and
5 can be natural or real numbers and the factorial operator can be applied only
to natural numbers. Only the first iterations of the main loop are reported.

D =

/ 7→ [/N : nat→ nat→ nat ; /R : R→ R→ R]
2 7→ [2 : nat ; 2 : R]
5 7→ [5 : nat ; 5 : R]

φ0 =

/ 7→ Implicit
2 7→ Implicit
5 7→ Implicit

refine(t↑(φ0)) =
refine(?1!) = {?1 : nat}

Φ0 = {φ0}

φ1 =

/ 7→ /N
2 7→ Implicit
5 7→ Implicit

refine(t↑(φ1)) =
refine((?1/N?2)!) = {?1 : nat ; ?2 : nat}

Efficient Ambiguous Parsing of Mathematical Formulae 11

φ′
1 =

/ 7→ /R
2 7→ Implicit
5 7→ Implicit

refine(t↑(φ1)) =
refine((?1/R?2)!) = ε

Φ1 = {φ1}

5 Analysis and future improvements

The algorithm presented in the previous section is surely efficient according
to our notion of efficiency since at each iteration of the for loop the set of
interpretations {φ′ | φ ∈ Φ∧ t′↑ ∈ l∧φ′ = update(φ, s, t′↑)} is immediately pruned
by means of the check refine(t↑(φ′)) 6= ε. Pruning prevents further parsing of the
user provided formula (since parsing is a lazy operation) and reduces the number
of applications of the semantic analyser (the refiner in our implementation). More
formally, we can try to estimate the computational complexity of the algorithm
in order to compare it with that of NCA.

Estimating precisely the cost of the parsing phase is very complex since it
is interrupted by pruning. Moreover, the overall time spent by the algorithm is
dominated by the semantic analysis. Thus we ignore the parsing time and we
define the computational cost of the algorithm as a function of the number of
calls to the refiner.

Let Φi be the value of the Φ variable at the i-th loop of the algorithm. The
number of refine operations invoked is Σ

|D|
i=1|Φi|.

The worst case of the algorithm is obtained when pruning always fails. Thus
Σ

|D|
i=1|Φi| > |ΦD| = Π(s,l)∈D|l|. The latter formula is the number of abstract

syntax trees computed by NCA. Thus, in the worst case, our algorithm is more
expensive than the NCA. However, the worst case is extremely unlikely when
|D| is big, since it corresponds to a term where a lot of ambiguous symbols occur
with the following property: each symbol is completely independent of the others
and it can be resolved independently from the other choices.

The optimal case of the algorithm is obtained when pruning reduces the set
{φ′ | φ ∈ Φ∧ t′↑ ∈ l∧φ′ = update(φ, s, t′↑)} to a set of cardinality c where c is the

number of valid interpretations. Thus Σ
|D|
i=1|Φi| = Σ

|D|
i=1c = c|D|. Since c is usually

a small value — how many different valid interpretations of a formula usually
hold? — the latter expression is smaller than Π(s,l)∈D|l| already for small values
of |D|, and it becomes smaller and smaller when |D| (the number of ambiguous
symbols in a formula) increases.

It is now evident that the computational complexity of the algorithm is
greatly influenced by the pruning rate: the more invalid partial terms will be
detected, the smaller the |Φi|, the lower the overall time spent by the algorithm.
In particular, to obtain an average performance close to the optimal case we
should minimize |Φi| for each i by pruning invalid interpretations as early as
possible.

The choice of the strategy used to pick the next element of the domain D
in the foreach loop of the algorithm greatly influences the pruning rate. Let us

12 Claudio Sacerdoti Coen and Stefano Zacchiroli

NA PA I

1 2 -1
1 4 -3
1 6 -5
3 5 -2
4 6 -2
4 7 -3
8 7 1

14 24 -10
21 13 8
32 32 0
32 33 -1
32 38 -6
32 33 -1

NA PA I

32 33 -1
32 33 -1
32 33 -1
32 40 -8
32 39 -7
32 33 -1
32 33 -1
32 33 -1
32 33 -1
32 33 -1
32 33 -1
32 33 -1
32 39 -7

NA PA I

32 33 -1
42 13 29
63 83 -20
63 83 -20
63 19 44
96 37 59

128 40 88
128 43 85
128 42 86
128 42 86
128 39 89
128 38 90
128 38 90

NA PA I

128 38 90
128 38 90
128 38 90
128 38 90
160 38 122
192 108 84
192 111 81
224 46 178
224 45 179
224 47 177
256 40 216
320 20 300
480 41 439

NA PA I

512 45 467
512 41 471
896 51 845
896 51 845
896 51 845
896 49 847
896 47 849

1024 42 982
1280 44 1236
1280 43 1237
1280 43 1237
1536 54 1482
1536 48 1488

NA PA I

1680 35 1645
1792 51 1741
2688 54 2634
3584 55 3529
3584 54 3530
7168 63 7105
8192 60 8132

14336 62 14274
21504 65 21439
21504 60 21444
36864 79 36785
53760 65 53695
53760 67 53693

NA = Trivial compositional algorithm (number of refinements)
PA = Proposed algorithm (number of refinements)

I = Improvement = NA− PA
Table 1. Comparison between our algorithm and NCA.

consider the following trivial example: (f (g x) (h y)) where all the atoms are
ambiguous (i.e. f, g, x, y are all elements of the disambiguation domain D).

The strategy that sorts D according to the visit in preorder of the syntax tree
refines in succession the terms (f ?1 ?2), (f (g ?3) ?4), (f (g x) ?4) and so on.
Since the type of a function constraints the type of its arguments, refining the
first term already rejects interpretations of f that are not binary, and refining the
second term rejects interpretations of g whose output type does not match the
type of the first argument of f . Thus at each step several partial interpretations
are pruned. If the type of the function constraints the possible interpretations of
the operands to just the choices that are prefixes of the final valid interpretations,
then we are facing the optimal case of the algorithm.

Any other strategy that consider a subterm without first considering its par-
ents in the abstract syntax tree yields to less pruning. For instance, the term
(f (?5 x) (?6 y)) can be successfully refined for each interpretation of f , x and
y such that f is a binary operator. The reason is that the refiner can always
attribute to ?5 the type T1 → T2 where T1 is the type expected by f and T2 is
the type of x.

The strategy that sorts D by preorder visiting the syntax tree is not always
optimal, but it behaved particularly well in all the benchmarks we did on our im-
plementation, exhibiting an average case really close to the optimal one. Table 1
compares the number of invocations of the refiner using our algorithm and using
NCA. The table has been obtained parsing all the statements and definitions of
all the theorems that deals with real numbers in the standard library of the Coq
proof assistant.

Efficient Ambiguous Parsing of Mathematical Formulae 13

As expected our algorithm performs more refinements than NCA when the
number of ambiguous symbols — and thus also the number NA of syntax trees
— is small. In this case only a few more refinements are performed. When the
size of the domain — logarithmic in the number of NA of syntax trees — grows,
the number of refinements performed by our algorithm grows only linearly in the
size of the domain. Note that this is the expected behaviour for the optimal case
of the algorithm when the number of valid interpretations c is fixed. Indeed, only
5 of the 79 statements admit more than one valid interpretation. We conclude
that in practice the average case of our algorithm is close to the optimal case.

Notice also that there is a trivial heuristic to predict whether our algorithm
is convenient over NCA: it is sufficient to look at the number NA of syntax trees
and apply our algorithm whenever NA is higher than a given threshold (32 in
our benchmark).

We should further observe that the computational cost of a refinement is
not constant, being a function of the term to refine, and it is extremely difficult
to approximate. Still, it is surely small for small terms. Thus the calls to the
refiner performed by our algorithm are in the average case cheaper than those
performed by NCA, since at least half of our calls are on prefixes of the syntax
tree.

Moreover, using preorder visit, the computational cost of the computation of
t↑(φ) and refine(t↑(φ)) can be lowered. Indeed, at each iteration of the for loop,
t↑ is applied to an interpretation φ′ that differs from φ only by instantiating more
implicit arguments that are leaves of the generated term tree. Thus, the term
returned by t↑(φ) is a prefix of the term returned by t↑(φ′). This suggests that
the cost of the computation of t↑(φ′) could be greatly reduced by changing t↑
so that its exploit the knowledge about the partial result t↑(φ). Similarly, when
refine(t↑(φ)) is defined and different from ⊥, its value can easily be exploited
in the refinement of t↑(φ′).

Combining these two optimizations, we can easily make the cost of the two
operations at each iteration negligible, still being compositional. These optimiza-
tions have not been implemented yet, they are planned as future work.

Another optimization derives from the positive information computed by the
refinement function, that is the map that associates a sequent or an instantia-
tion to each metavariable. For instance, if the refine operation assigns to ?1 the
type R → R, an interpretation that instantiates ?1 with logical negation can be
rejected without even trying to refine the associated term. This corresponds to
remembering in Φ also the refinement map associated with each term and to
adding a new pruning test over φ′ based on the unification of the type of the
term generated by t′↑ with the type assigned to s in the map. This optimization
is also planned as future work.

An interesting topic that was completely skipped so far is the construction of
the interpretation domain by the parser. MKM tools provide at least two sources
of information that can be exploited to construct the list of possible choices for
each symbol. The first one is related to the ambiguities that arise from the res-
olution of an identifier. Indeed, it is not unusual to have several objects in a

14 Claudio Sacerdoti Coen and Stefano Zacchiroli

distributed library that are given the same name (e.g. “reflexive property”, “do-
main” or simply “P”). Thus to every identifier we can associate several objects.
The parser needs to retrieve for each identifier the list of all the objects whose
name is equal to the identifier. The task can easily be performed making the
parser consult a search engine for mathematical formulae as the one developed
in the MoWGLI project [5] or the similar, but less generic one, developed by the
Mizar group [2].

The second source of information is represented by XML notational files that
describe the mathematical notation associated with definitions in MKM libraries.
Indeed, several projects provide XSLT stylesheets to render mathematical formu-
lae encoded in content level markup as MathML Content, OpenMath or OMDoc.
Since there exist large classes of operators that share a similar notation, these
stylesheets are usually generated from more concise descriptions of symbols arity
and precedence levels [9, 4, 6]. These descriptions could be exploited also in the
implementations of our disambiguation algorithm.

Finally we should address the case where the disambiguator returns more
than one well-typed term. Depending on the kind of processing required on the
terms, the system may either proceed in parallel on all the generated terms, or
ask the user to choose the term she was interested in. In the latter case the
system can identify all the choices that are still ambiguous, and present to the
user a human readable description of each choice.

6 Concluding remarks

Our disambiguation algorithm has been implemented and integrated both in
the MoWGLI search engine and in the HELM proof assistant prototype [12].
The former is a Web-Service for retrieving lemmas and definitions from the dis-
tributed HELM library by matching their type against a user provided pattern.
The lemmas and definitions are XML encodings of those in the library of the
Coq proof assistant [3]. We developed a Web interface for the search engine that
allows users to enter patterns as mathematical formulae with placeholders.

The usual mathematical notation is available and it is disambiguated using
our algorithm. In case of multiple interpretations of the formula the search engine
can ask the user to identify the only interpretation she is interested in, or it can
perform the search according to each interpretation. For instance, it is possible
to look for theorems stating ?1+?2 =?2+?1 retrieving at once the commutative
property for the addition over Peano natural numbers, binary positive numbers,
integers, rationals and real numbers.

The performance analysis presented in Sect. 5 is confirmed by our implemen-
tation: the time spent in the disambiguation of the formula is negligible with
respect to the time spent in the search and in the network transmission.

The HELM proof assistant prototype implements an interactive reasoning
tool based on the logic of Coq, adopting the HELM distributed library as its
own library. One main difference with respect to the Coq system is the size of
the context. Whereas in Coq the context corresponds to only a subset of the

Efficient Ambiguous Parsing of Mathematical Formulae 15

whole library, in our prototype all the definitions and theorems in the library
are in scope. Thus we must face a much higher degree of ambiguity, since several
mathematical notions have been redefined several times in the library of Coq
and since there exists several formalizations of the same mathematical concept.
Another important difference is that Coq behaves as a compiler, whereas our tool
is more interactive. Thus every Coq input must have exactly one interpretation,
since in case of multiple valid interpretations it is not possible to ask to the
user what interpretation she meant. We observed that disambiguation time is
negligible with respect to the validation time of a single proof step.

Comparing our solution with that adopted in the forthcoming release of the
Coq system (version V8.0) is surely interesting. Whereas in the previous versions
of the system the grammar did not allow overloading, in version 8.0 overloading
is admitted thanks to the introduction of notational scopes. A scope is a region
of text where only some parsing rules are active. For instance, there exists a
scope where “*” is interpreted as the multiplication between Peano numbers and
another one where it is interpreted as the product of two types. A syntactical
device is given to the user to change the current scope, even in the middle of
a formula. Scopes are associated with the arguments of the constants, so that
when an argument of type Set is met the scope that handles “*” as a type
product is opened.

The reader should notice that associating a scope to a constant argument
is weaker than associating a scope to the type expected for an argument. For
instance, the identity function id has type ΠT : Set.T → T and (id nat 0) is a
correct application where the type T is instantiated with the type nat of natural
numbers, and 0 has the expected type T = nat. However, associating the scope of
natural numbers notation to the second argument of id independently from the
value of the first argument is a mistake. More generally, we observe that scopes
behaves as a new kind of types, much in the spirit of those of Grammatical
Framework [11]. This new type system is imposed in parallel with the already
existent type system of Coq, that is not exploited. On the contrary, our algorithm
is based on the refinement operation provided by the underlying logic of Coq.

For sure, one benefit of this duplicate and weaker type system is its generality:
since it is independent from the underlying logic, it can be made part of the
notation description and it can be reused with several backends. Nevertheless,
there are major drawbacks. First of all, as shown in the previous examples,
disambiguation is less effective than that based on our technique, since scopes
are chosen by exploiting the context only in a minimal way. More explicitly,
imposing a weak type system when a stronger one is available is not appealing
at all and requires strong motivations that we do not see.

Secondly, there is a problem of consistency between the two type systems:
since the notational types are assigned by the user without any consistency
check, it may happen that a wrongly assigned notational type prevents the user
from inserting valid Coq terms. Adding another layer of consistency checking is
both theoretically and practically complex, especially when compared with the
simplicity of the algorithm proposed in this paper.

16 Claudio Sacerdoti Coen and Stefano Zacchiroli

References

1. A. Asperti, F. Guidi, L. Padovani, C. Sacerdoti Coen, I. Schena. Mathematical
Knowledge Management in HELM. In Annals of Mathematics and Artificial Intel-
ligence, 38(1): 27–46, May 2003.

2. G. Bancerek, P. Rudnicki. Information Retrieval in MML. In Proceedings of the
Second International Conference on Mathematical Knowledge Management, MKM
2003. LNCS, 2594.

3. The Coq proof-assistant, http://coq.inria.fr
4. P. Di Lena. Generazione automatica di stylesheet per notazione matematica. Mas-

ter thesis, University of Bologna, 2003.
5. F. Guidi, C. Sacerdoti Coen. Querying Distributed Digital Libraries of Mathemat-

ics. In Proceedings of Calculemus 2003, 11th Symposium on the Integration of
Symbolic Computation and Mechanized Reasoning. Aracne Editrice.

6. M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Documents
(Version 1.1). OMDoc technical recommendation.

7. C. McBride. Dependently Typed Functional Programs and their Proofs. Ph.D.
thesis, University of Edinburgh, 1999.

8. C. Munoz. A Calculus of Substitutions for Incomplete-Proof Representation in
Type Theory. Ph.D. thesis, INRIA, 1997.

9. W. A. Naylor, Stephen Watt. Meta Style Sheets for the Conversion of Math-
ematical Documents into other Forms. On-Line Proceedings of the First
International Conference on Mathematical Knowledge Management, MKM
2001.http://www.emis.de/proceedings/MKM2001/

10. The Mizar proof-assistant, http://mizar.uwb.edu.pl/
11. A. Ranta. Grammatical Framework: A Type-Theoretical Grammar Formalism,

manuscript made available in September 2002, to appear in Journal of Functional
Programming.

12. C. Sacerdoti Coen. Knowledge Management of Formal Mathematics and Interac-
tive Theorem Proving. Ph.D. thesis, University of Bologna, 2004.

13. M. Strecker. Construction and Deduction in Type Theories. Ph.D. thesis, Univer-
sität Ulm, 1998.

