
Software Artifact Mining in Software Engineering Conferences:
A Meta-Analysis

Zeinab Abou Khalil
zeinab.abou-khalil@inria.fr

Inria
Paris, France

Stefano Zacchiroli
stefano.zacchiroli@telecom-paris.fr

LTCI, Télécom Paris, Institut Polytechnique de Paris
Paris, France

ABSTRACT
Background: Software development results in the production of
various types of artifacts: source code, version control system meta-
data, bug reports, mailing list conversations, test data, etc. Empirical
software engineering (ESE) has thrived mining those artifacts to
uncover the inner workings of software development and improve
its practices. But which artifacts are studied in the field is a moving
target, which we study empirically in this paper.

Aims:We quantitatively characterize the most frequently mined
and co-mined software artifacts in ESE research and the research
purposes they support.

Method: We conduct a meta-analysis of artifact mining studies
published in 11 top conferences in ESE, for a total of 9621 papers.
We use natural language processing (NLP) techniques to charac-
terize the types of software artifacts that are most often mined and
their evolution over a 16-year period (2004–2020). We analyze the
combinations of artifact types that are most often mined together, as
well as the relationship between study purposes and mined artifacts.

Results:We find that: (1) mining happens in the vast majority of
analyzed papers, (2) source code and test data are the most mined
artifacts, (3) there is an increasing interest in mining novel artifacts,
together with source code, (4) researchers are most interested in
the evaluation of software systems and use all possible empirical
signals to support that goal.

CCS CONCEPTS
• Software and its engineering;

KEYWORDS
software artifacts, mining software repository, systematic mapping,
meta-analysis, research trends, academic conferences

ACM Reference Format:
Zeinab Abou Khalil and Stefano Zacchiroli. 2022. Software Artifact Mining
in Software Engineering Conferences: A Meta-Analysis. In ACM / IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement
(ESEM) (ESEM ’22), September 19–23, 2022, Helsinki, Finland. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3544902.3546239

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEM ’22, September 19–23, 2022, Helsinki, Finland
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9427-7/22/09. . . $15.00
https://doi.org/10.1145/3544902.3546239

1 INTRODUCTION
Software development is a human activity that results in the pro-
duction of different types of software artifacts. While source code
is the most common artifact we tend to think of, other results of
software production include: binary code, version control system
(VCS) metadata, bug reports, developer conversations happening
via several media (mailing lists, forums, Q&A websites, chats), code
reviews, test data, and documentation (design-, developer- and
user-oriented).

Empirical Software Engineering (ESE) [10, 30] research in gen-
eral, and even more so Mining Software Repository [13, 25] (MSR)
specifically, have analyzed software artifacts in increasingly large
quantities over the last decades, as a way to understand and improve
software development practices.

Which artifacts are studied in the field is however a moving
target, affected by factors like research trends, data availability,
and increased availability of large-scale datasets and analysis plat-
forms [9, 15, 21, 27]. This shift over time has led researchers in the
field to regularly conduct “introspective” studies [2, 6, 7, 14, 17, 19,
23, 28] that use meta-research [16] techniques to analyze published
ESE scientific papers and report back to the community.

Contributions. The present work fits the tradition of (automated)
meta-analyses [11] on empirical software engineering papers, ad-
dressing and reporting back to the community on the under-explored
angle of which software artifacts are mined, their co-occurrence in
studies, their relationship with study purposes, and the evolution
of their mining over time. Specifically, we address the following
research questions:

RQ 1. What are the most frequently mined software artifacts
in ESE research, and how has their popularity evolved over time?

RQ 2. What are the combinations of software artifacts that are
frequently mined together in ESE research?

RQ 3. What are the most popular research purposes of studies
that mine software artifacts in ESE research, and how do they re-
late to the type of mined artifacts? (Intuitively: which software
artifacts support which research purposes in the field?)

By answering these research questions, we aim to provide a
comprehensive view of how, how much, and why software arti-
facts are used in ESE research, with a quantitative and longitudinal
(over time) angle. Doing so will not only inform the community
about the evolution of research trends but also guide research policy
decisions. In particular, the knowledge that more, or simply other,
types of artifacts are in high demand for ESE research can moti-
vate fellow scholars to produce needed and hence impactful open

https://orcid.org/0000-0003-0725-1024
https://orcid.org/0000-0002-4576-136X
https://doi.org/10.1145/3544902.3546239
https://doi.org/10.1145/3544902.3546239

ESEM ’22, September 19–23, 2022, Helsinki, Finland Zeinab Abou Khalil and Stefano Zacchiroli

datasets; the knowledge that specific types of artifacts are used to-
gether can help in producing datasets that are mutually consistent
across different artifact types, reducing threats to validity due to
the use of inconsistent datasets; realizing that highly used software
artifacts types are not being long-term archived can drive digital
preservation initiatives [8] that aim to support study repeatabil-
ity/reproducibility/replicability [4] to focus their efforts on them.

To answer the stated research questions, we mine the textual
content of 9621 from 11 top conferences in (empirical) software
engineering, covering a period of 16 years (2004–2020). We use NLP
techniques to identify frequently mined software artifacts and map
papers to them. We then study the evolution of detected artifact
mentions over time, the co-occurrence of artifacts types in papers,
and the relationship between paper purposes (also mined from
paper texts) and artifact types.

Paper structure. A comparison with related work is conducted
next in Section 2. Section 3 describes our experimental methodol-
ogy. Section 4 presents experimental results, breaking them down
by research question. We discuss the implications of our findings
in Section 5 and threats to their validity in Section 6. Section 7
summarizes the paper and outlines directions for future work.

Data availability. A complete replication package for this paper
is available from Zenodo [1].

2 RELATEDWORK
Demeyer et al. [7] mined the complete corpus of MSR conference
papers at the time (2004–2012) using n-gram analysis, to investi-
gate how the research field on mining software repositories had
evolved. They focused on: (i) trendy (and outdated) research topics,
(ii) most (and least) frequently cited cases, (iii) popular/emerging
mining infrastructures, and (iv) software engineering state-of-the-
practice. They considered only papers published at MSR, so their
results cannot be generalized to other venues. Our work addresses
this problem by covering a much larger set of venues. They used
pdftotext,1 for text extraction, a tool that introduces artifacts in
the extracted text, that the authors had to clean up manually. The
tool we used, CERMINE, has been shown to be more reliable [32].
Also, they only excluded bibliography sections, whereas we have
verified that other sections (e.g., related work and appendix), can
also skew the result; we excluded them from analysis too. Finally,
as no link between n-grams and papers was kept in the study, it
was not possible to explain outliers in occurrence frequencies.

Novais et al. [26] conducted a systematic study of software evo-
lution visualization technologies over 125 papers. They studied the
types of data used to visualize and analyze software evolution. They
found that there is no study combining “BTS data” and “Source
Code”, and that “SCM data” is the key data source for software
evolution visualization. Their results are specific to software evolu-
tion visualization, whereas we conduct a broader analysis covering
software artifact mining across top ESE venues.

Farias et al. [6] performed a systematic mapping study on 107
papers published over 5 editions of the MSR conference (2010–
2014). They manually investigated papers, collecting data about
software analysis goals (purpose, focus, and object of the analysis),

1https://www.xpdfreader.com/pdftotext-man.html, accessed 2022-04-27

data sources, evaluation methods, tools, and how the field is evolv-
ing. They found that “comprehension of defects” and “code” were,
respectively, was the most common purpose and analysis object
(i.e., artifact). They defined a taxonomy organizing artifacts into
structured (e.g., source code) and unstructured (e.g., mailing lists)
ones. They found that structured artifacts tend to be more explored
than unstructured ones, but that the number of approaches using
unstructured ones had been increasing over the last three years
(at the time). Other software engineering artifacts were starting to
come into use at the time, such as comments and emails. They were
being analyzed either alone or together with metrics extracted from
structured data sources to understand quality issues in software
projects. Their study is limited to 5 editions of MSR, which are
now more than 5 years old. Our study is more general in terms of
both venues and time period. We adopt their taxonomy of study
purposes to answer RQ 3.

Amann et al. [2] reviewed studies published at top software engi-
neering conferences to describe the current (in 2013) state of the art,
trends in mined artifacts, pursued goals and study reproducibility.
For the specific purpose of identifying mined artifacts they only
considered papers published at the MSR conference. They iden-
tified 15 distinct artifact “sources” including: CVS, git, mercurial,
GitHub, SVN, jazz, bug, commit, patch, message, StackOverflow,
email, Twitter, blog, and tutorials. Similar to [7], authors included
only MSR in their analysis and excluded only paper bibliographies
from their analyses. Also, they focus their analysis on the top 10
terms in papers and use product names (e.g., Mercurial) rather than
artifact types. In the present study, we investigate artifacts mining
in a much larger body of conferences, longer period, and addition-
ally focus on the co-occurrence of artifact types and study purposes
to inform data policy decisions.

Hemmati et al. [14] analyzed 117 full papers published at MSR
between 2004 and 2012. They extracted 268 comments from these
papers, categorized them using a grounded theory methodology,
and extracted high-level research themes. They codified a set of
guidelines, tips, and recommendations, as well as a set of best
practices, which can be used and updated continuously as the MSR
community matures and advances.

Vasilescu et al. [34] curated a dataset of 11 well-established soft-
ware engineering conferences containing historical data about ac-
cepted papers, program committee members, and the number of
submissions for the 1994–2012 period. The dataset is intended to
assist steering committees or program committee chairs in their
selection process (e.g., the change in PC members), help potential
authors decide where to submit their work to, and study the number
of conference newcomers over time. They used DBLP records to
retrieve paper data and extracted PC members and the number of
submissions from event websites and online proceedings.

Kotti et al. [19] conducted a study of data papers published at
MSR between 2005 and 2018 to determine how often (frequency),
by whom (user), and for what purpose researchers reuse associated
artifacts. They found that 65% of data papers have been used in
other studies, but they are cited less often than technical papers
at the same conference. Their findings highlight that data papers
provide useful foundations for subsequent studies.

https://www.xpdfreader.com/pdftotext-man.html

Software Artifact Mining in Software Engineering Conferences: A Meta-Analysis ESEM ’22, September 19–23, 2022, Helsinki, Finland

3 METHODOLOGY
Figure 1 gives an overview of our data collection and analysis
approach. We detail each step in the remainder of this section.

3.1 Venue selection
Novel results in software engineering tend to be first published
in scientific conferences and later (and not always) consolidated in
journal articles. Consistently with previous work [2, 34], we focus
in this paper on conferences, which we posit to closely capture
research trends in ESE at a given point in time.

The most representative conference for research based on soft-
ware artifacts is Mining Software Repositories (MSR), established
in 2004 as the primary conference for mining-based empirical soft-
ware engineering, and has successfully continued ever since. But
mining-based ESE studies are also published in other reputable soft-
ware engineering conferences; so one cannot only consider MSR
papers. The list of conferences we have analyzed in this study is
given in Table 1, with details about the considered editions and the
number of papers initially obtained from each of them.

To settle on this list of conferences, we started from the list of
venues used in previous work [23, 34] and retained only conferences
that explicitly welcome and/or frequently publish empirical studies
based on software artifact mining.

11 top conferences in (empirical) software engineering were
retained. Some have a broad scope (e.g., ICSE), while others are
focused on specific subdomains of software engineering (e.g., MSR,
ICSME). Regarding selected conference years, we started from pa-
pers published in 2004—the year MSR was first held as an interna-
tional workshop, in response to the increasing interest in this field,
denoting the beginning of a more established field—and stopped
at 2020 (because 2021 was still incomplete at the time of data col-
lection). In total, 9621 papers have been considered over a period
spanning 16 years.

In reading Table 1, note that some conferences merged and/or
changed name names during the observation period: ICSM renamed
to ICSME; WCRE and CSMR merged into SANER. In the rest of
the analysis, we hence merged ICSM and ICSME papers, as well as
WCRE, CSMR and SANER papers (referred to as “venue merging”
in the following).

3.2 Paper filtering and retrieval
To obtain the list of papers for the selected conferences and years,
we used DBLP [20], the reference bibliographic database for com-
puter science publications. The entire DBLP dataset is released
publicly in XML format; we retrieved the most recent DBLP data
dump available at the time of analysis.2
As DBLP indexes studies in all fields of computer science, we first
selected papers from venues and editions that match Table 1, ob-
taining 9621 bibliographic records. We then further filtered records
applying the following exclusion criteria (ECs) (matching any one
of them is enough for excluding a paper from further analysis):
EC1 The paper must not be short (including position papers, data

papers, and challenge papers, e.g., those corresponding to the
yearly MSR mining challenge). The rationale for this criterion

2We retrieved the dataset from https://dblp.uni-trier.de/xml/ in April 2021; specifically,
we used the data dump named dblp-2021-04-01.

is that full papers present more mature and established results,
rather than exploratory ideas that might not bear fruit. As
such, full papers better capture the state of the field [6].
To implement this criterion, we discarded papers shorter than
6 pages, according to DBLP metadata.

EC2 The paper must describe primary research rather than sec-
ondary or tertiary one. (Secondary research is based on pub-
lished data and information gathered from previous studies.
Tertiary research is meta-research based on secondary stud-
ies, such as systematic reviews of secondary studies.) The
rationale for this choice is that secondary and tertiary studies
(e.g., systematic literature reviews, systematic mappings, and
literature surveys) would over-represent research trends that
are already popular in the field.
To implement this criterion, we exclude papers that contain
strings like the following in their titles: “literature review”,
“systematicmapping”, “systematic review”, “replication study”,
“survey”, “replicating” (see replication package [1] for details).

The impact of each filtering step is shown as a Sankey diagram in
the leftmost part of Figure 2. We started from 9621 papers, 4141 of
which were short, and 28 were non-primary studies. After filtering,
5452 remained.

For all remaining papers, we retrieved DOIs (Digital Object Iden-
tifiers) from either DBLP records (for the most part) or using the
Crossref search engine3 (for about 100 papers, for which DBLP
lacked DOI information). We then retrieved digital copies, in PDF
format, of selected papers using the PyPaperBot paper retrieval
tool.4

3.3 Text extraction
Once we obtained all papers in PDF format, we converted them to
plain text for ease of further processing.

Several open source tools exist for this task. Tkaczyk et al. [32]
conducted an evaluation of 10 such tools, showing that GROBID
(GeneRation Of BIbliographic Data)5 and CERMINE [33] (Content
ExtRactor and MINEr) perform best. Among the two, CERMINE is a
comprehensive tool for the automatic extraction of paper metadata
and content. Most importantly, CERMINE returns the paper’s full
text structured in sections and subsections. As in the following, we
need to discriminate paper text based on the section it appears in,
we used CERMINE for PDF-to-text conversion.

As shown in Figure 2, we could not parse 79 (out of 5452 remain-
ing thus far), due to few PDF files containing pages encoded as
bitmaps rather than structured content. After removing them, 5373
remained for textual analysis.

3.4 Textual analysis
We performed a series of preparation and cleaning steps on the
XML files produced by CERMINE before further analysis.

First, we retrieved the top used section headers from all papers
for manual inspection. Thenwe eliminated from the extracted paper
texts all content belonging to sections like References, RelatedWork,
3https://search.crossref.org/, accessed 2022-01-18
4https://github.com/ferru97/PyPaperBot, accessed 2022-01-06. We slightly modified
the tool to store PDFs locally using DOIs as filenames. Our modified version is included
in the replication package [1].
5https://github.com/kermitt2/grobid, accessed 2022-01-18

https://dblp.uni-trier.de/xml/
https://search.crossref.org/
https://github.com/ferru97/PyPaperBot
https://github.com/kermitt2/grobid

ESEM ’22, September 19–23, 2022, Helsinki, Finland Zeinab Abou Khalil and Stefano Zacchiroli

DBLP EC2

EC1

ICSE

ASE

MSR

SANER

FSE

9621

5480

5452

PyPaperBot

Cermine

5374

Doi

Tokenize

remove
numbers

Remove
stop word

Normalize

lemmatize

Generate
n-grams

.

.

.

.

.
.

.

.

.

.

Figure 1: Overview of the methodology as a sequence of the following steps: venue selection, paper retrieval and filtering, text
extraction, text cleanup, textual analysis.

Table 1: Selected software engineering conferences and periods, with number of papers considered for each (before any filtering
and venue merging).

Acronym Full name Period Papers
ASE IEEE/ACM International Conference on Automated Software Engineering 2004–2020 1702

ESEC/FSE ACM SIGSOFT Symposium on the Foundations of Software Engineering 2004–2020 1503
ICPC IEEE International Conference on Program Comprehension 2006–2020 635
ICSE International Conference on Software Engineering 2004–2020 2082
ICSM IEEE International Conference on Software Maintenance 2004–2013 810
ICSME International Conference on Software Maintenance and Evolution 2014–2020 636
MSR Working Conference on Mining Software Repositories 2004–2020 838
SCAM International Working Conference on Source Code Analysis & Manipulation 2004–2019 407
WCRE Working Conference on Reverse Engineering 2004–2013 464
CSMR IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering 2014–2014 71
SANER IEEE International Conference on Software Analysis, Evolution and Reengineering 2015–2019 474
Total 16 years 9621

9621
research
papers

4141
short
papers

5480
full

papers

5452
primary
studies 3367

2006

5373
parseable
papers

28
Non-primary

study

Software artifacts
not detected

79
Non-parseable

papers

Software artifacts
related papers

Figure 2: Paper filtering from the initial dataset of Table 1 to
the final determination of which study deals with software
artifact mining.

Background, Acknowledgement(s), Bibliography, Future Work, and
Limitations (we used various variants of this section names, based
on the results of popular headers; see the replication package [1]

for full details). The rationale for this choice is that these sections
are meta w.r.t. the main content of the paper; whether a paper is
mining software artifacts or not will be primarily determined by
naming those artifacts in other sections than these.

Once we obtained this corpus of relevant text from the papers,
we applied classical NLP (Natural Language Processing) cleanup
steps to reduce noise and improve the corpus quality. We started
by tokenizing: splitting the text stream into words, symbols, punc-
tuation, and postfixes using the Natural Language Toolkit Python
library.6 Then, all upper case characters were converted to lower
case. Next, we removed non-alphabetic tokens, and removed stop
words. Finally, we applied lemmatization [18], in order to use one
canonical representation per term (e.g., “codes” becomes “code”)
and avoid under-counting popular terms that occur in different
forms.

Searching for individual words is often insufficient in text search
because abstract terms are often represented as word sequences,
such as “bug report” or “source code” [24]. To solve this issue,
computational linguistics commonly uses n-gram analysis—where
6https://www.nltk.org/, accessed 2022-01-07

https://www.nltk.org/

Software Artifact Mining in Software Engineering Conferences: A Meta-Analysis ESEM ’22, September 19–23, 2022, Helsinki, Finland

Table 2: Excerpt of the top 2-grams extracted from the paper
corpus, with software artifact types they are associated to.

Rank N-gram N. of papers Artifact type

0 (source, code) 1926 source code
1 (test, case) 771 test data
2 (test, suite) 494 test data
3 (line, code) 391 source code
4 (bug, report) 350 bug data
6 (code, change) 293 source code
7 (bug, fix) 262 bug data
13 (code, snippet) 199 source code
15 (code, fragment) 194 source code
16 (source, file) 193 source code
22 (code, clone) 167 source code
23 (unit, test) 166 test data
35 (code, review) 124 code review
41 (commit, message) 113 commit metadata
43 (code, file) 110 source code
45 (test, data) 108 test data
46 (test, execution) 104 test data
49 (stack, overflow) 102 forum
50 (pull, request) 102 commit metadata
54 (code, smell) 99 source code
55 (fault, localization) 99 bug data
81 (defect, prediction) 84 bug data
106 (mail, list) 75 mail data
110 (java, code) 74 source code
116 (class, diagram) 72 uml diagram
144 (change, code) 67 source code

an n-gram is a sequence of 𝑛 contiguous words—to analyze large
document corpora in order to identify combinations of words that
frequently appear together [22]. Soper and Turel [31] suggested
that using n-gram analysis allows computer scientists and scholars
to gain insights into vast document corpus, such as ours.

We conducted an n-gram analysis on the paper corpus as filtered
thus far. We limited the n-grams analysis to a length of a maximum
of 2 (i.e., 1-grams and 2-grams) as longer n-grams are rarely repeated
in texts. At the end of the process, we obtained a set of 1,2-grams
with the number of occurrences for each paper.

We transformed all n-grams with associated origin information
(i.e., the papers they occur in) to a list of records and saved them
to a CSV file. Each record consist of the following fields: {ngram,
frequency, year, DOI, acronym}. For example {“bug report”, 12, 2018,
“10.1145/xxx.xxx”, “MSR”} means: the n-gram “bug report” occurred
12 times in the (filtered) text of a paper published at MSR 2018
whose DOI is “10.1145/xxx.xxx”.

3.5 Detection of mined artifacts
We manually inspected the top-150 1- and 2-grams mined from the
paper corpus and partitioned them into a taxonomy of 8 classes of
software artifacts, namely: (1) bug data, (2) source code, (3) mail
data (e.g., mailing list discussions), (4) code review, (5) commit
metadata, (6) test data, (7) forum data (encompassing discussions
on Web forums, Q&A websites like StackOverflow, microblogging

Table 3: Accuracy of the detector of artifacts mined in ana-
lyzed papers, based on a ground truth of 200 papers (3.7% of
parsable papers) manually reviewed by the authors.

Artifact type TP FP TN FN Accuracy Precision Recall

bug data 17 1 167 15 0.92 0.94 0.53
mail data 5 2 192 1 0.98 0.71 0.83
source code 68 21 88 23 0.78 0.76 0.75
code review 2 2 194 2 0.98 0.50 0.50
forum 4 6 188 2 0.96 0.40 0.67
commit metadata 10 0 176 14 0.93 1.00 0.42
test data 26 17 154 3 0.90 0.60 0.90
uml diagram 2 0 197 1 1.00 1.00 0.67
Average 0.931 0.738 0.658

platforms and Reddit), and (8) UML diagrams (including other dia-
gram languages for describing software systems). While we applied
our own judgment and domain knowledge to come up with this
taxonomy, what we obtained is consistent with, and in fact a subset
of, the taxonomy developed by Farias et al. [6].

Table 2 shows an excerpt of the top 2-grams mined from paper
texts together with the associated artifact types. For the most part,
1-grams were too generic (e.g., “software” and “data” are the first
two 1-grams) to denote the use in papers of specific artifact types,
with the exception of “twitter” and “reddit” which we mapped to
“forum” (not shown in Table 2). The complete mapping table from
n-grams to artifact classes is included in the replication package [1].

To automatically associate papers to mined artifact types, we
searched paper texts (searching only within the non-excluded sec-
tions discussed before) for the n-grams in the n-gram/artifact map-
ping table. Papers containing at least 3 occurrences of 2-grams in
the mapping table (respectively: at least 4 occurrences of 1-grams)
were considered as analyzing the corresponding artifact type. The
use of thresholds is meant to avoid stray mentions of n-grams (e.g.,
a paper mentioning “twitter” only once is more likely to be pointing
to a single Twitter profile than mining developer microblogging
messages); the difference in thresholds is due to the higher popu-
larity of shorter n-grams in natural language texts.

Validation. To evaluate the accuracy of the n-gram-based detector
of artifacts mined in analyzed papers, we manually inspected 200
randomly selected papers (3.7% of parsable papers in the dataset).
Authors have read each paper, noting downwhich software artifacts
(if any) were mined in the described study.

Table 3 summarizes the precision and recall obtained for each
artifact type. Each paper can mine different types of artifacts. Preci-
sion for an artifact type hence refers to the proportion of studies that
were correctly assigned to a given artifact type; recall refers to the
proportion of studies that were correctly assigned to a given artifact
type, among those that truly (based on manual inspection) mine
artifacts of the given type. On average, both precision and recall
are satisfactory, validating the findings discussed in the following.

3.6 Detection of study purposes
To automatically detect paper purposes, we followed the same
approach used for artifact detection, with the following differences.
We adopted the taxonomy of paper purposes from Farias et al. [6],

ESEM ’22, September 19–23, 2022, Helsinki, Finland Zeinab Abou Khalil and Stefano Zacchiroli

Table 4: Taxonomy of study purposes (from [6]) and associated n-grams (excerpt).

Purpose Description N-grams (excerpt)

Comprehension Comprehension of software systems, including source code (program, comprehension), (code, comprehension) ...
Prediction Prediction of changes in systems properties, including bugs, failures,

and quality aspects
(’fault’, ’prediction’), (’change’, ’prediction’) ...

Contribution analysis Analyze developer activities (’developer’, ’contribution’)
Quality improvement Investigate or propose solutions on how to improve software quality (’quality’, ’improvement’)
Process improvement Help to decide how to improve software processes (’process’, ’improvement’)
Software reuse Help developers to reuse software more effectively (’software’, ’reuse’)
Classification Classify software artifacts (defects, programming texts, authorship,

etc.)
(’bug’, ’classification’), (’defect’, ’classification’), (’authorship’,
’classification’), (’change’, ’classification’), (’text’, ’classifica-
tion’) ...

Localization Determine the origin of bug and faults (’fault’, ’localization’), (’bug’, ’localization’) ...
Evaluation Tools and approaches to evaluate software systems (including human

aspects)
(’performance’, ’evaluation’), (’qualitative’, ’evaluation’), (’de-
veloper’, ’evaluation’) ...

which was developed to classify MSR study purposes using the
approach of Basili et al. [3]. Table 4 recalls the purpose taxonomy
and gives an example of n-grams associated with each of them; the
full mapping from n-grams to purposes is included in the replication
package [1]. To associate papers to purposes, we analyzed top n-
grams extracted only from abstracts, as abstracts generally state
explicitly what the study purpose is and are (for purpose detection)
less noisy than the rest of the paper text.

4 RESULTS
We present in this section our experimental results, answering in
order the research questions stated in Section 1.

4.1 RQ 1: most popular software artifacts
This research question aims to establish which software artifacts
are mined the most in software engineering conference papers, and
how their amounts evolve over time. We answer this question for
the 8 types of artifacts identified in Table 2. By searching for enough
occurrences (after threshold verification) of the corresponding n-
grams in the relevant sections of 5373 parsable papers, we found
that 3367 (62% of parsable papers) mine software artifacts of one or
more of the selected types. Software artifact mining happens in
the vast majority, almost 2/3, of the papers we have analyzed.

Different venues exhibit different ratios of software artifact min-
ing, though. Figure 3 provides a breakdown by conference of the
total number of papers analyzed together with the ratio of pa-
pers detected as mining software artifacts by venue. Note how
more generalist conferences (ICSE, FSE, ASE) contribute a higher
number of papers to the corpus, but have a lower ratio of papers
mining software artifacts. Those ratios are high nonetheless, above
50%; it appears that software artifact mining is a foundational re-
search technique in software engineering, popular also in generalist
venues. The ratios of papers mining software artifacts are even
higher in specialized conferences, such as MSR, ICPC, SCAM and,
to a lesser extent, ICSME and SANER.

Regarding the time dimension of RQ 1, Figure 4(a) shows the
percentages of studies mining each type of artifact, over the years
and for the entire corpus. Note that, as the same paper can mine
multiple types of artifacts, percentages do not add up to 100%.

ICSE ICSME FSE ASE SANER MSR ICPC SCAM

0

200

400

600

800

1000

1200

Nu
m

be
r o

f p
ap

er
s

55.7%

69.3% 56.3%
54.1%

67.1%

79.5% 79.9%
69.0%

Artifacts
+
-

Figure 3: Total number of papers per conference (after venue
merging), with breakdown of papers detected as mining at
least one kind of software artifacts (denoted with “+”) v. pa-
pers detected as not mining any kind of artifacts (“-”).

“Source code” is the most mined software artifact, being ranked
first throughout the entire period, with a percentage range fluctu-
ating between 64.3–78.9%. It is followed by “test data”, consistently
ranked second, within a 24.6–39.7% range. Source code and test
data are the most mined software artifacts in analyzed studies,
and the interest in them by the community has been quite stable
over the past 16 years. The interest in analyzing “bug data” comes
third. It started to increase in 2008, culminated at 19.9% of yearly
papers in 2012, then started decreasing. The number of “commit
metadata” studies was negligible before 2005 and increased over
time after that. Most notably, in both 2016 and 2019, the relative
interest in commit metadata was either the same or slightly su-
perior to that in bug data. The number of studies concerned with
analyzing unstructured artifacts (e.g., mailing list) increased slightly
over time starting from 2006, consistently to what Farias et al. [6]
observed for a shorter time period, however, it still corresponds to
a very small percentage of all analyzed studies.

Given that the MSR conference was launched as a venue dedi-
cated to mining software repositories studies, which is the main
theme of our meta-analysis, we zoom into papers published at MSR
with Figure 4(b). Comparing Figures 4(a) and 4(b), we can see that
source code is the dominating software artifact at MSR as well, even

Software Artifact Mining in Software Engineering Conferences: A Meta-Analysis ESEM ’22, September 19–23, 2022, Helsinki, Finland

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Years

0

20

40

60

80

100

Ar
tif

ac
ts

 (%
)

bug data
code review
commit metadata

mail data
source code
test data

uml diagram
forum

(a) Entire corpus

20
04

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

years

0

20

40

60

80

100

M
SR

 a
rti

fa
ct

s (
%

)

bug data
code review
commit metadata

mail data
source code
test data

uml diagram
forum

(b) MSR papers

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

years

0

20

40

60

80

100

SC
AM

 a
rti

fa
ct

s (
%

)

bug data
code review
commit metadata

mail data
source code
test data

uml diagram
forum

(c) SCAM papers

20
04

20
05

20
06

20
07

20
08

20
09

20
11

20
12

20
13

20
14

20
16

20
17

20
18

20
19

20
20

years

0

20

40

60

80

100

IC
SE

 a
rti

fa
ct

s (
%

)

bug data
code review
commit metadata

mail data
source code
test data

uml diagram
forum

(d) ICSE papers

Figure 4: Percentages of papers mining specific types of software artifacts over time, for the entire corpus. Note that, as each
paper can mine multiple types of artifacts, percentages may add up to more than 100%.

more so than in the entire corpus. However, already starting in 2005,
MSR papers exhibit a larger variety of mined artifacts. Bug data and
commit metadata are taking turns in being the second most mined
software artifacts. We also notice in MSR papers higher percentages
of unstructured software artifacts being analyzed: mailing list but
also code review, which are the second most cited artifact type in
MSR 2015 papers.
Due to space limitations, in Figure 4 we only highlight results for
selected conferences; results for all conferences individually are
included in the paper replication package [1]. By comparing confer-
ences, we notice that source code is even more prominent in ICPC
and SCAM papers (Figure 4(c)), reaching 100% of papers in multiple
editions of each conference. Conversely, source code is (relatively)
less prominent at more foundational software engineering confer-
ences like ICSE (Figure 4(d)), FSE, and ASE; it still remains the most
referenced artifact type, but in specific years it is overtaken by test
data.

4.2 RQ 2: software artifact combinations
To answer RQ 2 we consider the papers detected as mining more
than one type of software artifacts. 28.5% of the considered pa-
pers do so; the rest either do not reference any type of detectable
software artifacts or only mention a single artifact type.

Figure 5 provides a breakdown of the most popular (top-14)
artifact combinations found in the paper corps. The most common
combination is of the two types of artifacts which are also the most
common ones (individually) that we have identified answering RQ 1:
source code & test data. The second combination is source code &
bug data, less than half as popular as the first combination, followed
by a more smooth decrease. After the top-10 combinations, artifact
combinations become increasingly more marginal in popularity,
with percentages lower than 0.3%.

Source code is present in most of the top combinations—all ex-
cept: bug data & test data, ranked 5th, and test data & code review,
ranked 14th—reinforcing the observation that source code is the
most relevant software artifact in empirical software engineering

ESEM ’22, September 19–23, 2022, Helsinki, Finland Zeinab Abou Khalil and Stefano Zacchiroli

sou
rce

 co
de

 & te
st

da
ta

sou
rce

 co
de

 & bu
g d

ata

sou
rce

 co
de

 & co
mmit m

eta
da

ta

sou
rce

 co
de

 & fo
rum

sou
rce

 co
de

 & co
de

 re
vie

w

bu
g d

ata
 & te

st
da

ta

sou
rce

 co
de

 & bu
g d

ata
 & co

mmit m
eta

da
ta

sou
rce

 co
de

 & bu
g d

ata
 & te

st
da

ta

sou
rce

 co
de

 & m
ail

da
ta

sou
rce

 co
de

 & co
mmit m

eta
da

ta
& te

st
da

ta

sou
rce

 co
de

 & co
mmit m

eta
da

ta
& co

de
 re

vie
w

sou
rce

 co
de

 & um
l d

iag
ram

sou
rce

 co
de

 & te
st

da
ta

& fo
rum

sou
rce

 co
de

 & te
st

da
ta

& co
de

 re
vie

w

tes
t d

ata
 & co

de
 re

vie
w

bu
g d

ata
 & fo

rum

sou
rce

 co
de

 & bu
g d

ata
 & fo

rum

mail
da

ta
& fo

rum

sou
rce

 co
de

 & bu
g d

ata
 & m

ail
da

ta

0.0 %

2.0 %

4.0 %

6.0 %

8.0 %

10.0 %

12.0 %

10.81%

4.13%

2.49% 2.17%
1.57% 1.25% 0.92% 0.83% 0.77% 0.50% 0.45% 0.24% 0.21% 0.21% 0.18% 0.18% 0.18% 0.18% 0.18%

Figure 5: Ratio of the number of papers that mine more than
one type of software artifacts, by decreasing order of mined
artifact combination, across all venues.

577

1708

381

40

4

107

19

135

42

152
31

5

3

34

2

bug data
 (404)

test data
 (1059)

commit metadata
 (214)

source code
 (2434)

Figure 6: Co-occurrence of the mining of the four most pop-
ular artifact types (source code, test data, bug data, commit
metadata) as sets of papers mining any combination of them.
Shown as a Venn diagram across all venues.

(ESE). Test data, while very popular (6 combinations out of 14) ap-
pears to be on more equal footing with bug data (5 combinations)
and commit metadata (4 packages) than it appeared to be for RQ 1.

The topmost combination (ranked 6th) of more than two artifact
types mined together is source code & bug data & test data, followed
by source code & commit metadata & test data (8th). Other popular
combinations of at least three artifact types include permutations
of these three artifact types and code reviews. The fact that these
four artifact types are also well supported by state-of-the-art social
coding platforms like GitHub and GitLab is hardly a coincidence:
ESE researchers study, for the most part, data that is made ac-
cessible bymodern coding technology. In particular, we observe
that social coding platforms have increased the availability of code
review and bug data, and that seems to correlate with increased
research interest in studying those artifacts.

Figure 6 focuses on the four most popular artifact types and their
intersections. It shows a Venn diagram of the studies (each paper is
an element in one of the four sets) that references source code, test
data, bug data, and/or commit metadata. Each paper contributes a

Figure 7: Ratio of papers pursuing a specific purpose.

single set element to the diagram, and papers not referencing any
of those artifacts have been excluded from it.

Looking at the intersections, one can notice that more than half
of the studies interested in bug data also consider source code. That
ratio goes up to more than 81% for studies looking into commit
metadata, which also consider source code. Presumably, studies
located in those intersections could not have been conducted by
looking solely at non-source-code artifacts. Once again, source code
appears to be key for most ESE studies.

The general theme emerging from our answers to RQs 1 and 2
appears to be that while there is an increasing interest over
time in mining novel software artifacts, it is complementing
rather than replacing the need for mining source code.

4.3 RQ 3: study purposes and software artifacts
Figure 7 shows a breakdown of papers mining software artifacts
by detected study purpose, among those of Table 4. The category
“evaluation” is the highest represented with 1/3 of the studies, fol-
lowed by “comprehension” (25.9%). “Prediction” comes next (16.7%),
followed by “localization” (14.1%). The remaining five purposes
represent in total less than 10% of all studies.

Overall, ESE studies are most concerned with the evalu-
ation of software systems, followed by comprehension (most
likely: code comprehension, due to the prevalence of source code
in our answers to previous RQs), and property prediction and local-
ization (most likely: defect prediction and bug localization, due to
the importance of bug data in previous results).

To study the relationship between study purposes and mined
software artifacts, we show in Figure 8 a bubble chart of the two
dimensions. The size of each point in it indicates the number of
studies with a given purpose that mine a given type of software
artifacts. Note that only papers for which we could detect at least
one type of mined software artifacts are included in the chart.

The most relevant artifact/purpose combination is the use of
source code to go after system comprehension. This is consistent
with the relevance, both in software engineering at large and in

Software Artifact Mining in Software Engineering Conferences: A Meta-Analysis ESEM ’22, September 19–23, 2022, Helsinki, Finland

bug
 data

code
 review

commit
 metadata

forum mail
 data

source
 code

test
 data

uml
 diagram

classification

comprehension

contribution analysis

evaluation

localization

prediction

quality improvement

process improvement

software reuse

10

7

3

21

37

50

1

3

4

2

4

1

4

3

5

2

11

4

21

3

5

4

1

5

2

1

2

1

22

140

8

97

62

74

1

5

9

5

22

49

55

5

3

1

2

1

Figure 8: Study purposes v. type of mined software artifacts, shown as a bubble chart for the entire corpus. Each bubble denotes
the total number of papers detected as having a given purpose and mining a given type of artifact.

our paper corpus, of sub-fields and venues like program compre-
hension/ICPC. Looking at both the artifact and purpose axes cen-
tered at this particular combination in Figure 8, we observe that
source code is referenced by papers with all purposes except pro-
cess improvement and, orthogonally, that program comprehension
is pursued referencing all types of software artifacts. It seems that
researchers are looking for all possible empirical signals in
the long-running quest of understanding software systems.
Conversely, source code is pervasively exploited to pursue most
purposes in ESE research.

Outside of the over-represented column of source code, notewor-
thy columns are those of test data (used the most for localization
and evaluation) and bug data (prediction, localization and, interest-
ingly, evaluation, likely as a measure of software quality). Commit
metadata are most used for prediction studies, likely to predict
defects, considering that prediction is also the largest entry in the
bug data column.

5 DISCUSSION
Comparison with previous findings. As discussed in Section 2,

the most similar previous works to ours are [6, 7]. Farias et al. [6]
performed a systematic mapping study on 107 papers from the
MSR conference. They found that “comprehension of defects” and
“[source] code” were the most common purpose and mined arti-
fact, respectively. They also found that structured artifacts were
more mined than unstructured ones, but that the latter’s use was
increasing. On a larger and more diverse corpus, we have confirmed
that source code is the most mined artifact in empirical software
engineering (ESE) research. However, we find that comprehension
of source code (rather than defects) is the most common study pur-
pose/artifact combination.

Demeyer et al. [7], based on an analysis of papers published at
MSR, predicted that the trend to mine more and more unstructured
artifacts would continue in the short term. We have shown that
this has not happened, neither at MSR nor across our full corpus.

We have also established that unstructured software artifacts are,
for the most part, looked at in conjunction with structured ones.

In summary, our findings on a larger corpus of ESE papers only
partly replicate previous findings on MSR papers [6, 7]. MSR trends
cannot be extrapolated to all ESE studies in our corpus, and some
short-term trends there did not continue as initially predicted.

Implications of the findings. Source code emerges as the most used
and perennial artifact of interest in ESE research. It is the top artifact
across all analyzed conference papers, in almost every conference
edition; it also supports almost all study purposes in the field. As
such, any research support initiative meant to either increase the
availability of source code or facilitate mining is worth pursuing to
help ESE researchers. In this sense, the emergence of open source
software in the 90s and collaborative social coding [5] in the 2010s
have supported ESE research for more than a decade now. Large-
scale analysis platforms (e.g., [8, 9, 21]) and datasets (e.g., [12, 27])
for both FOSS source code and related artifacts (commit metadata,
bug, etc., which were all mined in the vast majority of analyzed
papers) all go in the right direction to support future ESE research. It
would be interesting to investigate as future work if the availability
of increasingly larger datasets and platforms is resulting in an
actual increase of the size of the software artifact corpora that ESE
researchers analyze, or if instead we still analyze same-sized ones
(e.g., a relatively small sample of GitHub repositories, extrapolating
from there).

The high reliance on software artifacts we have observed poses
reliability challenges, particularly for replicability. All analyzed ar-
tifacts must be (1) made available and (2) archived in the long-term
for as long as replicability is pertinent (possibly forever). Present-
day accessibility of artifacts mined in ESE papers remains to be
explored in future work, but the diversity of analyzed artifacts is
enough to reveal a challenge: we need long-term platforms capable
of both archiving and referencing with persistent identifiers a vari-
ety of artifact types, both structured and unstructured. The cost of
doing so will go up with the size of the analyzed corpora.

ESEM ’22, September 19–23, 2022, Helsinki, Finland Zeinab Abou Khalil and Stefano Zacchiroli

We can also deduct insights for producers of open datasets meant
to be used in ESE research. While the usefulness of such datasets
has been established [19], based on the need to join together multi-
ple types of artifacts for conducting ESE research which we have
observed, we speculate that the importance of having mutually-
consistent datasets will increase in the future. For example, source
code datasets that cannot be easily aligned with the correspond-
ing bug and code review data will be less useful (and hence less
impactful) than datasets that can. Addressing this problem will re-
quire either making sure that ESE datasets provide stable identifiers
that permit to easily cross-reference artifacts across heterogeneous
datasets, or producing larger “horizontal” datasets that include all
artifact types from the software systems of interest, e.g., all GitLab
data for a given software ecosystem in a consistent snapshot, as
opposed to a set of Git dumps and a separate database dump for
social coding events.

6 THREATS TO VALIDITY
We discuss below threats to our findings validity, as well as applied
mitigations, following the structure of Runeson and Hoes [29].

Construct validity. The main threat to construct validity is that
we categorize papers automatically based on n-gram occurrences
rather than manually verifying all of them. We have quantified
the impact of this risk by manually verifying 200 papers, obtain-
ing a satisfactory accuracy (see Section 3). We have nevertheless
taken steps to mitigate this threat: putting thresholds on the num-
ber of n-gram occurrences to avoid incidental references, as well
as excluding paper sections where those references are common.
Relying on n-grams is also consistent with the state-of-the-art of
meta-analyses in ESE [2, 7].

In our n-gram analysis, we could have also have missed some
n-grams that would denote mining of software artifacts of interest,
leading to paper misclassification. We partly mitigated this by spot-
checking papers for which we did not detect any artifact, iterating
on the association between paper classes and n-grams in Tables 2
and 4 until convergence.

Internal validity. We relied on CERMINE to extract textual con-
tent from PDF files. The choice of this tool is based on a third-party
quality assessment [33] pertinent to our use case and on specific
functional requirements (e.g., we needed to break down papers by
section) and non-functional requirements (e.g., we wanted the tool
to be open source to ease replicability). In addition to the docu-
mented 79 papers we could not parse, conversion errors might have
occurred and influenced obtained results. We mitigated this risk by
conducting spot checks on a random subset of papers in the corpus
without noticing any relevant issues.

External validity. We conducted a systematic mapping of papers
mining software artifacts, without focusing on a specific venue.
We did, however, select both specific conferences and years (Ta-
ble 1), basing our choices on similar selections performed in related
work and on an investigation of which venues welcome and/or
regularly publish empirical software engineering (ESE). We might
have overlooked studies or entire venues that did not match our
selection criteria but should have been included. We do not claim
full generality of our findings for the ESE field. But we expect them

to capture software artifact mining trends and observe that our
choices are consistent with (and our corpus generally larger than)
analogous studies in the literature.

We relied on DBLP as ground truth for papers published in a
given venue and year. We could have missed papers that DBLP
either lacks or has incorrectly indexed. Given the preeminence of
DBLP in computer science and that of its dataset for meta-analyses
in the field, we consider this risk to be low. Also, considering the
large number of papers retained after filtering, we believe the results
we report about to still be valid and of interest.

Reliability. To mitigate reliability risks, we complement the de-
scription of our experimental methodology in Section 3 with a
complete replication package [1]. We encourage replication of our
findings.

7 CONCLUSION
Paper summary. We have mined 9621 papers from 11 top confer-

ences that publish papers in the field of empirical software engineer-
ing (ESE) with NLP techniques, and n-gram analyses in particular,
to map the use of software artifacts in the field over a period of 16
years. We map the most mined software artifacts in ESE studies,
finding that the majority of papers in our corpus conspicuously
mine at least one type of software artifacts.

Source code is stably themost frequently mined artifact, followed
by test data; the use of other artifact types is more varied, both over
time and across conferences. The combined mining of different
types of artifacts are significant: about 1/3 of all papers do that,
with source code almost always being mined together with other
artifacts. Comparing study purposes with mined artifacts, we find
that source code analysis supports all study purposes in ESE and
that system comprehension is a major interest in the community,
supported by the mining of all sorts of artifacts. Our findings imply
that increased care should be put into publishing open datasets that
mix together different types of artifacts as consistent snapshots,
and that digital preservation initiatives should diversify the type
of artifacts they allow to archive and reference, in order to better
support study replicability.

Future work. Several directions remain to be explored as future
work. Our long-term goal with this work is to assess the degree
of repeatability of ESE studies. Establishing which types of arti-
facts are needed was a necessary first step, to be followed by an
analysis of where artifacts come from (e.g., which collaborative
coding platform) and an empirical assessment of their present-day
availability—either as part of replication packages, at their original
locations (if properly documented in studies), or from long-term
digital archives. We plan to explore the artifact origin and artifact
availability dimensions next.

Second, we would like to characterize the scale at which ESE
studies are conducted or, equivalently, the size of the datasets being
used. It is not clear neither if the increasing availability of larger
and larger datasets and analysis platforms are really helping the
community in conducting larger and larger empirical studies, nor
if such studies are actually needed to move the state-of-the-art
forward. They are both important questions for the ESE community
that we intend to answer next.

Software Artifact Mining in Software Engineering Conferences: A Meta-Analysis ESEM ’22, September 19–23, 2022, Helsinki, Finland

REFERENCES
[1] Zeinab Abou Khalil and Stefano Zacchiroli. 2022. Software Artifact Mining in

Software Engineering Conferences: A Meta-Analysis — Replication Package.
https://doi.org/10.5281/zenodo.5877778.

[2] Sven Amann, Stefanie Beyer, Katja Kevic, and Harald C. Gall. 2014. Software Min-
ing Studies: Goals, Approaches, Artifacts, and Replicability. In Software Engineer-
ing - International Summer Schools, LASER 2013-2014, Elba, Italy, Revised Tutorial
Lectures (Lecture Notes in Computer Science, Vol. 8987), Bertrand Meyer and Martin
Nordio (Eds.). Springer, 121–158. https://doi.org/10.1007/978-3-319-28406-4_5

[3] Victor R Basili, Forrest Shull, and Filippo Lanubile. 1999. Building knowledge
through families of experiments. IEEE Transactions on Software Engineering 25, 4
(1999), 456–473.

[4] Ronald F. Boisvert. 2016. Incentivizing reproducibility. Commun. ACM 59, 10
(2016), 5. https://doi.org/10.1145/2994031

[5] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 conference on computer supported cooperative work.
ACM, 1277–1286.

[6] Mário André de Freitas Farias, Renato Lima Novais, Methanias Colaço Júnior,
Luis Paulo da Silva Carvalho, Manoel G. Mendonça, and Rodrigo Oliveira Spínola.
2016. A systematic mapping study onmining software repositories. In Proceedings
of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, April 4-8,
2016, Sascha Ossowski (Ed.). ACM, 1472–1479. https://doi.org/10.1145/2851613.
2851786

[7] Serge Demeyer, Alessandro Murgia, Kevin Wyckmans, and Ahmed Lamkanfi.
2013. Happy birthday! a trend analysis on past MSR papers. In Proceedings of the
10th Working Conference on Mining Software Repositories, MSR ’13, San Francisco,
CA, USA, May 18-19, 2013, Thomas Zimmermann, Massimiliano Di Penta, and
Sunghun Kim (Eds.). IEEE Computer Society, 353–362. https://doi.org/10.1109/
MSR.2013.6624049

[8] Roberto Di Cosmo and Stefano Zacchiroli. 2017. Software Heritage: Why and
How to Preserve Software Source Code. In Proceedings of the 14th International
Conference on Digital Preservation, iPRES 2017. https://hal.archives-ouvertes.fr/
hal-01590958/

[9] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. 2013. Boa: A
language and infrastructure for analyzing ultra-large-scale software repositories.
In Proceedings of the 2013 International Conference on Software Engineering. IEEE
Press, 422–431.

[10] Michael Felderer and Guilherme Horta Travassos (Eds.). 2020. Contemporary
Empirical Methods in Software Engineering. Springer. https://doi.org/10.1007/978-
3-030-32489-6

[11] Katia R Felizardo and Jeffrey C Carver. 2020. Automating systematic literature
review. Contemporary Empirical Methods in Software Engineering (2020), 327–355.

[12] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: Github’s data from a
firehose. In 9th IEEE Working Conference of Mining Software Repositories, MSR,
Michele Lanza, Massimiliano Di Penta, and Tao Xie (Eds.). IEEE Computer Society,
12–21. https://doi.org/10.1109/MSR.2012.6224294

[13] Ahmed E Hassan. 2008. The road ahead for mining software repositories. In 2008
Frontiers of Software Maintenance. IEEE, 48–57.

[14] Hadi Hemmati, Sarah Nadi, Olga Baysal, Oleksii Kononenko, Wei Wang, Reid
Holmes, and Michael W Godfrey. 2013. The MSR cookbook: Mining a decade of
research. In 2013 10th Working Conference on Mining Software Repositories (MSR).
IEEE, 343–352.

[15] James Howison, Megan Conklin, and Kevin Crowston. 2006. FLOSSmole: A
Collaborative Repository for FLOSS Research Data and Analyses. IJITWE 1, 3
(2006), 17–26. https://doi.org/10.4018/jitwe.2006070102

[16] John P. A. Ioannidis. 2010. Meta-research: The art of getting it wrong. Res. Synth.
Methods 1, 3-4 (Jul 2010), 169–184. https://doi.org/10.1002/jrsm.19

[17] Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. 2007. A survey and
taxonomy of approaches for mining software repositories in the context of
software evolution. Journal of software maintenance and evolution: Research and
practice 19, 2 (2007), 77–131.

[18] Kimmo Kettunen, Tuomas Kunttu, and Kalervo Järvelin. 2005. To stem or lem-
matize a highly inflectional language in a probabilistic IR environment? Journal
of Documentation (2005).

[19] Zoe Kotti, Konstantinos Kravvaritis, Konstantina Dritsa, and Diomidis Spinellis.
2020. Standing on shoulders or feet? An extended study on the usage of the MSR
data papers. Empir. Softw. Eng. 25, 5 (2020), 3288–3322. https://doi.org/10.1007/
s10664-020-09834-7

[20] Michael Ley. 2002. The DBLP Computer Science Bibliography: Evolution, Re-
search Issues, Perspectives. In String Processing and Information Retrieval, 9th
International Symposium, SPIRE 2002, Lisbon, Portugal, September 11-13, 2002,
Proceedings (Lecture Notes in Computer Science, Vol. 2476), Alberto H. F. Laender
and Arlindo L. Oliveira (Eds.). Springer, 1–10. https://doi.org/10.1007/3-540-
45735-6_1

[21] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
2019. World of code: an infrastructure for mining the universe of open source

VCS data. In Proceedings of the 16th International Conference on Mining Software
Repositories. IEEE Press, 143–154.

[22] Christopher Manning and Hinrich Schutze. 1999. Foundations of statistical natural
language processing. MIT press.

[23] George Mathew, Amritanshu Agrawal, and Tim Menzies. 2018. Finding Trends
in Software Research. IEEE Transactions on Software Engineering (2018). https:
//doi.org/10.1109/TSE.2018.2870388 To appear.

[24] Sérgio Moro, Paulo Cortez, and Paulo Rita. 2015. Business intelligence in banking:
A literature analysis from 2002 to 2013 using text mining and latent Dirichlet
allocation. Expert Systems with Applications 42, 3 (2015), 1314–1324.

[25] Nachiappan Nagappan, Andreas Zeller, and Thomas Zimmermann. 2009. Guest
Editors’ Introduction: Mining Software Archives. IEEE Softw. 26, 1 (2009), 24–25.
https://doi.org/10.1109/MS.2009.14

[26] Renato Lima Novais, André Torres, Thiago SoutoMendes, Manoel Mendonça, and
Nico Zazworka. 2013. Software evolution visualization: A systematic mapping
study. Information and Software Technology 55, 11 (2013), 1860–1883.

[27] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2019. The Software Her-
itage graph dataset: public software development under one roof. In Proceedings of
the 16th International Conference on Mining Software Repositories, MSR 2019, 26-27
May 2019, Montreal, Canada., Margaret-Anne D. Storey, Bram Adams, and Sonia
Haiduc (Eds.). IEEE / ACM, 138–142. https://dl.acm.org/citation.cfm?id=3341907

[28] Gregorio Robles. 2010. Replicating MSR: A study of the potential replicability
of papers published in the mining software repositories proceedings. In 2010
7th IEEE Working Conference on Mining Software Repositories (MSR 2010). IEEE,
171–180.

[29] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering 14,
2 (2009), 131.

[30] Forrest Shull, Janice Singer, and Dag I. K. Sjøberg (Eds.). 2008. Guide to Advanced
Empirical Software Engineering. Springer. https://doi.org/10.1007/978-1-84800-
044-5

[31] Daniel S Soper and Ofir Turel. 2012. An n-gram analysis of Communications
2000–2010. Commun. ACM 55, 5 (2012), 81–87.

[32] Dominika Tkaczyk, Andrew Collins, Paraic Sheridan, and Joeran Beel. 2018.
Machine learning vs. rules and out-of-the-box vs. retrained: An evaluation of
open-source bibliographic reference and citation parsers. In Proceedings of the
18th ACM/IEEE on joint conference on digital libraries. 99–108.

[33] Dominika Tkaczyk, Pawel Szostek, Mateusz Fedoryszak, Piotr Jan Dendek, and
Lukasz Bolikowski. 2015. CERMINE: automatic extraction of structured metadata
from scientific literature. Int. J. Document Anal. Recognit. 18, 4 (2015), 317–335.
https://doi.org/10.1007/s10032-015-0249-8

[34] Bogdan Vasilescu, Alexander Serebrenik, and Tom Mens. 2013. A historical
dataset of software engineering conferences. In 2013 10th Working Conference on
Mining Software Repositories (MSR). IEEE, 373–376.

https://doi.org/10.5281/zenodo.5877778
https://doi.org/10.1007/978-3-319-28406-4_5
https://doi.org/10.1145/2994031
https://doi.org/10.1145/2851613.2851786
https://doi.org/10.1145/2851613.2851786
https://doi.org/10.1109/MSR.2013.6624049
https://doi.org/10.1109/MSR.2013.6624049
https://hal.archives-ouvertes.fr/hal-01590958/
https://hal.archives-ouvertes.fr/hal-01590958/
https://doi.org/10.1007/978-3-030-32489-6
https://doi.org/10.1007/978-3-030-32489-6
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.4018/jitwe.2006070102
https://doi.org/10.1002/jrsm.19
https://doi.org/10.1007/s10664-020-09834-7
https://doi.org/10.1007/s10664-020-09834-7
https://doi.org/10.1007/3-540-45735-6_1
https://doi.org/10.1007/3-540-45735-6_1
https://doi.org/10.1109/TSE.2018.2870388
https://doi.org/10.1109/TSE.2018.2870388
https://doi.org/10.1109/MS.2009.14
https://dl.acm.org/citation.cfm?id=3341907
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1007/s10032-015-0249-8

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Venue selection
	3.2 Paper filtering and retrieval
	3.3 Text extraction
	3.4 Textual analysis
	3.5 Detection of mined artifacts
	3.6 Detection of study purposes

	4 Results
	4.1 rq:mined-artifacts: most popular software artifacts
	4.2 rq:artifact-combinations: software artifact combinations
	4.3 rq:artifact-purposes: study purposes and software artifacts

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	References

