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Abstract

Because of their fully annotated structure, XML documents are normally believed to require a straight-
forward parsing phase. However, the standard APIs for accessing their content (the Document Object
Model and the Simple API for XML) provide a programming interface that is very low-level and is thus
inadequate for the recognition of any structure that is not isomorphic to its XML encoding. Even when
the document undergoes validation, its unmarshalling into application-specific data using these APIs re-
quires poorly maintainable, tedious-to-write, and possibly inefficient code. We describe a technique for the
simultaneous parsing, validation, and unmarshalling of XML documents that combines a stream-oriented
XML parser with a LALR(1) parser in order to guarantee efficient stream processing, expressive validation
capabilities, and the possibility to associate user-provided actions with specific patterns occurring in the
source documents.
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1 Introduction

1 Introduction
When dealing with XML documents [9], parsing is just the first step of a more complex sequence
of processing phases the applications go through. It is often the case that the XML documents
must be validated against some schema which verifies structural and content invariants. Among
the most popular schema languages for validating XML documents, with varying capabilities of
capturing constraints about structure and content, we cite DTDs [9], XML Schema [10, 11], and
Relax NG [6]. After validation, the document is unmarshalled into some internal, application-
specific representation. In particular, the tree-structured representation imposed by XML does
not necessarily correspond to an isomorphic or even only similar application-specific representa-
tion, unless the focus of the application is the XML document itself.

The Document Object Model (DOM, see [8]) has been designed to provide applications with
a set of standard interfaces to access the structure and content of an XML document. The DOM
API can be exploited to perform post-order recursive visits that unmarshal the document in a
bottom-up fashion. Table 2 (A) shows a fragment of such unmarhsalling code for an hypothetical
processor of XML messages conforming to the DTD shown in Table 1. The application specific
objects corresponding to the various document fragments are created by otherwise undefined
methods like Header MsgHeader.

The DOM-based approach suffers from a number of serious drawbacks. First, it is expensive
in terms of memory occupation because the whole document must be loaded into main memory,
even though the document is going to be discarded soon after having been unmarshalled. Even if
memory availability is not an issue, the XML encoding of a given data structure can be so verbose
and redundant that its maintenance as a DOM tree may be considered impractical anyway.3

Second, if the XML representation of the document and the internal, application-specific rep-
resentation have a significant difference in form and structure, the DOM introduces a computa-
tional overhead, as it forces the programmer to access the information in twisted ways. Since
DOM interfaces are low-level and targeted at Java-like languages, they adapt poorly to different
paradigms like functional languages [5].

Finally, explicit actions are required to ignore unnecessary nodes (these actions have been
shaded in the code snippets of Table 2) unless the document is validated, and a lot of effort goes
into recognizing patterns of elements inside the tree (think of elements with alternative content
models). In general the validation phase results in a “yes” or “no” answer that tells very little
about the actual derivation steps that produced the document from its specification, thus hindering
an effective unmarshalling phase.4

As of today, there is another de-facto standard way for accessing the structure and content of
XML documents: the Simple API for XML (SAX [7]) generates a sequence of events corresponding
to the syntactical entities encountered in the source XML document. SAX does not require the
whole document to be loaded into memory. Rather, there is a collection of callback functions (or
methods) that are called as SAX events occur. Table 2 (B) shows a typical arrangement of such
callback functions that keep track of the parsing context using a ctxt structure containing:

1. a stack of elements (ctxt.elements) whose start tags have been encountered up to a
certain point;

2. a stack of values (ctxt.values) representing bits of unmarhalled document.

When the start tag of an element is encountered, we first make sure that the element is legal
in its context and then we push its name on the element stack. When the end tag of an element
is encountered, a “reduce” action updates the stacks and synthesizes the appropriate part of
the unmarshalled document using one of the aforementioned functions. As the code sample
demonstrates, the recognition of complex patterns in the source document must be explicitly

3. See [3] for a comparison of two popular free DOM implementations with respect to memory occupation.
4. XML Schema PSVI (Post Schema Validation Infoset) contains information about the type names the elements and
attributes have been validated against. However, since type names may correspond to alternative or optional content
models, this information does not uniquely determine the actual pattern matched by a subtree of a valid document.
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2 Architecture

Table 1. DTD for messages of a hypothetical XML-based protocol.
<!ELEMENT Envelope (Header?, Body)>
<!ELEMENT Header

(MsgHeader | StatusRequest | StatusResponse)>
<!ELEMENT Body ANY>
<!ELEMENT MsgHeader (MessageId, ResponseTo?)>
<!ELEMENT MessageId #PCDATA>
<!ELEMENT ResponseTo #PCDATA>
<!ELEMENT MessageStatus #PCDATA>
<!ELEMENT TimeStamp #PCDATA>
<!ELEMENT StatusRequest (MessageId)>
<!ELEMENT StatusResponse

(MessageId, MessageStatus, TimeStamp)>

endElement

startElement

Parser
SAX
Event
Filter

Lexer

XML
Document

tokens LALR(1)
Parser

Reduction/Action

Reduction/Action
Reduction/Action

characters

SAX

Figure 1. Architecture of FLEAGRAM.

coded, with the further difficulty with respect to the DOM-based approach that the document is
not entirely loaded in memory, so neither lookahead nor backtracking are possible.

This paper presents a technique that combines the SAX-based parsing phase, the validation,
and the unmarshalling of XML documents. The technique is based on a bottom-up parser which
is fed with tokens coming from a SAX parser. The parser is automatically generated from a
FLEAGRAM specification that simultaneously describes the syntactical validity constraints that
the parsed documents must satisfy as well as semantic actions associated with document patterns
that drive the unmarshalling into application-specific data structures. Table 2 (C) shows a sample
FLEAGRAM specification that validates and unmarshals the same kind of documents handled by
the code snippets (A) and (B).

The structure of the paper is as follows: in Section 2 we elaborate on the overall architecture
of the tool. Section 3 describes the format and the meaning of the specification grammar used
for generating the parser. Section 4 relates our approach with some of the most widespread
schema languages for XML documents. We conclude in Section 5 where we also show some
performance measurements. A prototype tool that implements the architecture described in this
paper is publicly available at the address http://www.cs.unibo.it/˜lpadovan/flea/.

2 Architecture
The basic idea is to consider the stream of events coming from a SAX-based parser as a stream of
tokens, and to feed a LALR(1) parser with that stream (Figure 1). The subset of methods invoked
by a SAX 2.0 parser that are relevant for our purposes is listed below (a complete and more
extensive overview can be found in [7]):

characters(text): notification of character data. text is a string representing the parsed
characters;

startElement(uri, localName, qName, attributes):

UBLCS-2007-23 3
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2 Architecture

Table 2. Different approaches for parsing XML documents conforming to the DTD of Table 1: (A) im-
plements a recursive traversal using the DOM API; (B) shows the callback functions for a stream parser
using the SAX API; (C) shows a FLEAGRAM specification grammar.

(A)

function skipBlanks(NodeList nl, int i) {
while (i < nl.length

&& (isBlank(nl[i]) || isComment(nl[i])))
i++;

return i;
}

function parseHeader(el) {
NodeList children = el.childNodes;
int i = 0;
i = skipBlanks(children, i);
if (i == children.length)
error();

if (children[i].nodeName == "MsgHeader") {
return Header˙MsgHeader(parseMsgHeader(children[i]));

} else if (children[i].nodeName == "StatusRequest") {
return Header˙StatusRequest(

parseStatusRequest(children[i]));
} else if (children[i].nodeName == "StatusResponse") {
return Header˙StatusResponse(

parseStatusResponse(children[i]));
} else
error();

}

function parseEnvelope(el) {
NodeList children = el.childNodes;
int i = 0;
i = skipBlanks(children, i);
if (i == children.length)
error();

if (children[i].nodeName == "Header") {
Object headerV = parseHeader(children[i]);
i++;
i = skipBlanks(children, i);
if (i == children.length)
error();

if (children[i].nodeName == "Body") {
Object bodyV = parseBody(children[i]);
if (skipBlanks(children, i + 1) < children.length)
error();

return Envelope˙Header˙Body(headerV, bodyV);
} else
error();

} else if (children[i].nodeName == "Body") {
Object bodyV = parseBody(children[i]);
if (skipBlanks(children, i + 1) < children.length)
error();

return Envelope˙Body(bodyV);
} else
error();

}

function parseBody(el) { /* ... */ }

(B)

function startElement(uri, localName, qName, attributes) {
if (qName == "Envelope") {
if (ctxt.parent != null)
error();

} else if (qName == "Header") {
if (ctxt.parent != "Envelope"

|| ctxt.siblings.length > 0)
error();

} else if (qName == "Body") {
if (ctxt.parent != "Envelope"

|| ctxt.siblings.length > 1
|| (ctxt.siblings.length == 1

&& ctxt.siblings.last != "Header"))
error();

} else {
// ...

}
ctxt.push(qName);

}

function endElement(uri, localName, qName) {
if (qName == "Envelope") {
if (ctxt.siblings[0] == "Body")
ctxt.reduce(Envelope˙Body(ctxt.value[0]));

else
ctxt.reduce(Envelope˙Header˙Body(ctxt.value[0],

ctxt.value[1]));
} else if (qName == "Header") {
if (ctxt.siblings[0] == "MsgHeader")
ctxt.reduce(Header˙MsgHeader(...));

else if (ctxt.siblings[0] == "StatusRequest")
ctxt.reduce(Header˙StatusRequest(...));

else
ctxt.reduce(Header˙StatusResponse(...));

} else if (qName == "Body") {
ctxt.reduce(Body(...));

} else {
// ...

}
}

function characters(text) {
// ...

}

(C)

%%
<Envelope> : <Body> { $$ = Envelope˙Body($1); }

| <Header> <Body> { $$ = Envelope˙Header˙Body($1, $2); } ;
<Header> : <MsgHeader> { $$ = Header˙MsgHeader($1); }

| <StatusRequest> { $$ = Header˙StatusRequest($1); }
| <StatusResponse> { $$ = Header˙StatusResponse($1); } ;

<Body> : ANY { $$ = Body(...); } ;
<MsgHeader> : ...
%%
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2 Architecture

notification of the beginning of an element in the namespace uriwith local name localName
and qualified name qName. attributes is the list of attributes set on the element;

endElement(uri, localName, qName): notification of the
end of an element in the namespace uri, with local name localName and qualified name
qName.

Each one of these methods produces one or more tokens to be fed into the LALR(1) parser. In
Figure 1, the component that is responsible for deciding which tokens must be generated and in
which order is called event filter. Taken together, the SAX parser and the event filter play the role
of a lexer. The event filter knows:

1. the set of XML element names that are explicitly referenced by the grammar (which will be
described in Section 3);

2. for each element t, the set of attributes that are explicitly referenced by the grammar as
attributes of t.

Explicitly referenced elements and attributes are said relevant.
We consider the following tokens:

〈token〉 ::= <[ns:]tag | [ns:]tag> | <? | ?>
| <@[ns:]attr | @[ns:]attr> | @?
| S

For each relevant element with name tag in a namespace ns , the SAX methods startElement
and endElement generate two tokens <ns:tag and ns:tag> when the start-tag and the end-tag
of the element are encountered. For elements that are not relevant, the two tokens <? and ?>
are generated instead. After the start-tag of an element is encountered and the corresponding
<ns:tag token has been generated, for each relevant attribute attr in a namespace ns , the SAX
method startElement generates the <@ns:attr and @ns:attr> tokens. If the attribute is set on
the element, a S token carrying the value of the attribute is generated in between the start and
end attribute tokens. A canonical order of the relevant attributes is decided so that the attribute
tokens for a particular element are always generated in the same order. If there are attributes
other than the relevant ones that are set on the element, a single @? token is also generated. Note
that there is a unique SAX method that carries information about both the start tag and the at-
tributes set for an element, whereas in the token stream tags and attributes are treated separately.
This will increase the expressiveness of the parser, as we will show in a later section. Finally, the
characters method causes the generation of a S token whose associated value is the text string
being parsed.

Each token has an associated semantic value which provides further information such as the
position in the source document where the element or attribute was found, the complete name-
space URI of the element or attribute, the actual string of characters matched in the case of the S
token, the set of non-relevant attribute names and values for @? tokens.

As an example, the XML document

<doc version="2.0">
<title>My title</title>
<body>
<p id="I12">a paragraph</p>
<p id="I13" style="emph">another paragraph</p>

</body>
</doc>

generates the following stream of tokens (we assume that whitespaces are ignored, that all ele-
ments are relevant and that all the attributes but style are relevant):
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3 Specification grammars

Table 3. Extended BNF for FLEAGRAM specification grammars.

〈spec〉 ::= 〈preamble〉 %% { rule } %% 〈supporting code〉
〈preamble〉 ::= { 〈source code〉 | 〈declaration〉 }
〈declaration〉 ::= %union {{ ... }}

| %type ... { 〈nt symbol right〉 }+
| %start 〈nt symbol right〉
| %namespace id URI

〈nt symbol left〉 ::= id | <[id:]id {@[id:]id = production } [@*]>
〈nt symbol right〉 ::= id | <[id:]id>

〈rule〉 ::= 〈nt symbol left〉 : 〈production〉 {| 〈production〉 } ;
〈production〉 ::= ε | error | { 〈atom〉 }+

〈atom〉 ::= 〈nt symbol right〉
| 〈token〉
| {{ 〈source code〉 }}

<doc <@version S @version>
<title S title>
<body <p <@id S @id> S p> <p <@id S @id> @? S p> body>

doc>

The strings 2.0, My title, I12, a paragraph, I13, and another paragraph are associ-
ated with the various S tokens, in this order, and the singleton set containing the attribute name
style and its pairing value emph is associated with the @? token.

3 Specification grammars
The token stream resulting from the event filter drives a LALR(1) parser. While this parser can
be generated directly from a hand-written Yacc [1, 4] specification grammar, the context that we
are considering requires particular care for a number of details. In particular, it is annoying and
error-prone to distinguish between relevant and non-relevant attributes, to remember the order
of relevant attributes, and the effort for producing a specification goes beyond that required for
writing, say, a DTD for the same documents. It is thus compelling to provide a more specific and
handy syntax for writing FLEAGRAM specification grammars, which we are going to describe.

3.1 Overall grammar structure
A FLEAGRAM specification grammar (Table 3) is made of three sections: the preamble contains
declarations, source code, and directives used to fine-tune the behavior of the parser. Source
code is enclosed inside %{{. . .%}}, and can contain declarations of symbols and variables used
by rules or procedures in the second and third sections. The union, type, and start declara-
tions have the same purpose as for regular Yacc specifications: they determine the structure of
semantic values synthesized by the parser, the type associated with each non-terminal symbol,
and the start symbol of the grammar. The namespace declaration associates a namespace with
a prefix to be used in the rules. Note that there is no need to declare the tokens of the grammar,
since either they are pre-defined (as is the case of the <?, ?>, @?, and S tokens) or they can be
automatically inferred by looking at the production rules for element tags and attribute names.
The central section, consisting of a sequence of zero or more rules, specifies the structure of the
XML documents to be parsed as well as the semantic actions to be executed. The last section
of the specification is made of literal code to be included in the parser, and can provide further
auxiliary functions, possibly invoked from semantic actions in the rules.
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3 Specification grammars

3.2 Grammar rules
In Yacc, a low-case identifier in the grammar rules usually indicates a non-terminal symbol. In
our specifications, we would like to describe the content model of XML elements by means of
grammar rules. To this aim we allow the following extended form for rules:

• when the left hand side of a rule is a id symbol, the symbol is to be intended as a non-
terminal in the Yacc sense;

• when the left hand side of a rule is:

<t @a1 = x1 · · · @an = xn>

the rule describes the content model of the t element whenever the attributes ai respect the
corresponding specifications xi.

A production can be empty (that is, made of no atoms). In Yacc this is used to match so
called ε-rules, but it is also useful in the context of XML to denote empty elements. As in Yacc,
the error atom can be used to re-synchronize the parser if a syntax error occurs. Finally, a
production may consist of a sequence of one or more atoms.

An atom can be a terminal symbol token , a non-terminal symbol id , a <t> (in this case an
occurrence of the t element and its content is expected at that point of the input), or a semantic
action, made of arbitrary code enclosed within {{. . .}}.

The addition of the <t> non-terminals in the head and in the body of rules does not change the
expressive power of the specification. These rules can be syntactically expanded into equivalent
forms that make use of plain tokens only. The basic idea is that a rule of the form

<t> : x11 x12 · · · x1n1 | · · · | xk1 xk2 · · · xknk
;

is just a shortcut for the rule

JtK : <t x11 x12 · · · x1n1 t> | · · · | <t xk1 xk2 · · · xknk
t> ;

where we use JtK to denote a fresh non-terminal symbol lexically derived from the tag t.
In general, let {α1, . . . , αrt} be the set of relevant attributes for the element t and let us assume

that @a1 = x1, . . . , @an = xn are specified in the left hand side of the rule, as in

<t @a1 = x1 · · · @an = xn> : x ;

then the rule is expanded to
JtK : <t A(α1) · · · A(αrt) x t> ;

where

A(αi) =
{

<@αi xj @αi> if αi = aj

<@αi any value @αi> if αi 6∈ {a1, . . . , an}

and any value is a non-terminal with the following productions:

any value : ε | S ;

In other words, the start tag of an element t is always followed by the tokens for its relevant
attributes. If the attributes are specified in the left hand side of the rule, the tokens coming from
the lexer have to match the specification. Any relevant attribute that has not been specified in the
left hand side of the rule must be taken into account, since the lexer will emit its tokens anyway.
Thus we insert a non-terminal any value that has the effect of ignoring them.

The special symbol @* matches an optional @? token, thus allowing an element to have zero
or more attributes that are not relevant. If @* is missing, the element is not allowed to have
attributes other than the relevant ones.

UBLCS-2007-23 7
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Any <t> occurring in the right hand side of a rule is simply replaced by JtK, that is

id : x1 x2 · · · <t> · · · xn

is a shortcut for
id : x1 x2 · · · JtK · · · xn .

After all the expansions have been performed, the grammar is ready to be converted into a
fully Yacc-compatible one. All that has to be done is to collect the complete list of tokens used for
tags and attributes, associate them with fresh Yacc tokens in the preamble of the Yacc grammar,
and replace their occurrences in the rules.

3.3 Grammar well-formedness
The specification grammar shown in Table 3 must obey some conditions in order to be well-
formed. The tool processing the grammar is responsible for checking these conditions:

1. namespace prefixes must be declared;

2. the right hand sides of productions associated with attribute values must not contain (either
directly or as the result of the recursive expansion of non-terminal symbols) start-tag, end-
tag, start-attribute, or end-attribute tokens;

3. the explicit start-tag token for an element t occurring in the right hand side of the rules
must be followed (either directly or as the result of the recursive expansion of non-terminal
symbols) by all the relevant attributes for t in the canonical order. Failure to do so will
result in a parse error, since the lexer always emits tokens for an element to match such a
sequence. This restriction might be relaxed in the future by means of a more expressive
syntax for explicit start tags.

3.4 Semantic actions
It is possible to refer to semantic values associated with tokens and non-terminal symbols using
the same syntax adopted by Yacc. Thus $$ refers to the synthesized attributes associated with the
non-terminal symbol on the left hand side of the rule, and $i refers to the attributes associated
with the i-th atom (terminal or non-terminal) in the head of the rule. The index i is appropriately
shifted during the expansion phase of the grammar, since atoms may be added at the beginning
of the productions.

The notation @id can be used for referring to the semantic value associated with the XML
attribute id , which must occur in the left hand side of the rule of the form

<t · · · @id = x · · · >

This notation avoids the grammar writer to worry about the set of relevant attributes for the XML
element being described, and also about the canonical order which is chosen by the grammar
processing tool. The tool will rewrite @id into the appropriate $i upon generation of the Yacc
grammar.

3.5 A simple example
Let us consider a simple XML document representing arithmetic expressions made of constant
values and the operators + (n-ary addition) and − (unary negation). The DTD for such docu-
ments could be

<!ELEMENT expr (add | neg | const)>
<!ELEMENT add (add | neg | const)+>
<!ELEMENT neg (add | neg | const)>
<!ELEMENT const EMPTY>
<!ATTLIST const value CDATA #REQUIRED>

UBLCS-2007-23 8
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The following rules for a FLEAGRAM specification grammar can be used for evaluating such
documents:

<expr> : expr {{ printf("result: %d", $1); }} ;
expr : <add> | <neg> | <const> ;
<add> : add_expr {{ $$ = $1; }} ;
<neg> : expr {{ $$ = -$1; }} ;
<const @val=S> : {{ $$ = atoi(@val); }} ;
add_expr : expr {{ $$ = $1; }}

| expr add_expr {{ $$ = $1 + $2; }} ;

This grammar would be expanded in the following form, where for clarity we have under-
lined references to semantic values affected by the expansion:

_expr_ : <expr expr {{ printf("result: %d", $2); }}
expr> ;

expr : _add_ | _neg_ | _const_ ;
_add_ : <add add_expr {{ $$ = $2; }} add> ;
_neg_ : <neg expr {{ $$ = -$2; }} neg> ;
_const_ : <const <@val S @val> {{ $$ = atoi($3); }}

const> ;
add_expr : expr {{ $$ = $1; }}

| expr add_expr {{ $$ = $1 + $2; }} ;

And finally the following Yacc grammar specification would be produced:

_expr_ : EXPR_START_TAG
expr { printf("result: %d", $2); }
EXPR_END_TAG ;

expr : _add_ | _neg_ | _const_ ;
_add_ : ADD_START_TAG

add_expr { $$ = $2; }
ADD_END_TAG ;

_neg_ : NEG_START_TAG
expr { $$ = -$2; }
NEG_END_TAG ;

_const_ : CONST_START_TAG
CONST_VALUE_START_ATTR S CONST_VALUE_END_ATTR
{ $$ = atoi($3); }
CONST_END_TAG ;

add_expr : expr { $$ = $1; }
| expr add_expr { $$ = $1 + $2; } ;

3.6 Lexing refinement
The architecture of FLEAGRAM as it has been described so far permits a form of document vali-
dation that is restricted to the document structure (the occurrence and location of element nodes,
possibly annotated with attributes) but it does not permit finer forms of validation in which the
textual content of attributes and PCDATA nodes is inspected. Conversely, other schema languages
permit to restrict the textual content in more or less expressive ways. With respect to the unmar-
shalling problem, this limitation means that lexing and parsing of textual content must be done in
the semantic actions without any sort of support from the grammar. This results in a significant
burden put on the programmer since it is often the case that attributes have complicated types
and consequently complex parsing rules (examples of attributes with complicated types can be
found even in some standard XML applications such as MathML and SVG).

The main difficulty for overcoming this limitation derives from the fact that parsers generated
by Yacc are supposed to work with one lexer only (more specifically, the lexer as seen from the
parser has a single entry point). By allowing the content of attributes and of text nodes to be
scanned, we need to be able to switch between different lexers, by inserting appropriate semantic
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4 Comparison with other schema languages

Table 4. Mapping DTD element declarations to FLEAGRAM.
DTD FLEAGRAM specification
<!ELEMENT x EMPTY> <x> : ε ;
<!ELEMENT x (y | z)> <x> : <y> | <z> ;
<!ELEMENT x (y+)> <x> : y ; y : <y> | <y> y ;
<!ELEMENT x (y*)> <x> : y ; y : ε | <y> y ;
<!ELEMENT x (y?)> <x> : ε | <y> ;
<!ELEMENT x

(#PCDATA | y)*> <x> : y ; y : ε | S y | <y> y ;
<!ELEMENT x ANY> <x>: <rel elt1> | .. | <rel eltn> ;

actions that imperatively select the lexer to be used from a certain point, and that restore it later
on.

Switching lexers has potentially disruptive effects because of the way the Yacc-generated
LALR(1) parsers work. Roughly speaking, in these parsers a finite state automaton keeps track in
its states of all the productions in the grammar which are compatible with the sequence of tokens
seen up to a certain point: productions in which this “point” is marked are called LR(1) items. If
the lexer is switched so as to enable the scanning of the value for an attribute occurring in some
LR(1) item, any other item in the same state of the automaton will be affected by the sequence
of tokens coming from the lexer from there on. However, since attributes are associated with
elements, since the token for the start tag of each element is emitted before any attribute, since
tokens for relevant attributes are always emitted by the lexer in the same order, one can verify
that states containing LR(1) items where the point is after a <@id token only contain productions
regarding the same id attribute, and that all the items are marked just after the start tag for that
attribute. In other words, as long as the lexing rules for an attribute do not depend on the value
of other attributes, the lexer can be safely switched.

4 Comparison with other schema languages
Specification grammars described in Section 3 establish a set of syntactic rules that parsed docu-
ment must obey. It is interesting to observe that the FLEAGRAM specification grammars implic-
itly define a schema language. In this section we compare the expressive power of FLEAGRAM
specifications with those of some of the most widespread schema languages.

4.1 Document Type Definitions (DTDs)
DTDs [9] represent the most basic and widespread schema language for XML documents. DTDs
are made of element type declarations, which constraint the content model of elements, and attribute
list declarations, which constraint the set (and the content) of attributes that can be used for a given
element.

As Table 4 shows, the constraints expressed by element type declarations can be expressed
using FLEAGRAM productions. While DTDs require the content model of XML elements to be
deterministic,5 this restriction is dropped in FLEAGRAM as LALR parsers do not need it. Note
that the rule corresponding to the ANY content model, where rel elti is the i -th relevant element,
can be automatically generated by FLEAGRAM.

With the lexer refinement described in Section 3.6, FLEAGRAM can express all the syntactical
constraints about attributes that are possible in DTDs. What FLEAGRAM specification gram-
mars are not able to enforce are referential integrity checks (in the DTDs these involve the ID
and IDREF attribute types). Note however that these checks belong to the semantic side of the
validation phase and are thus best implemented in the semantic actions.

5. Roughly speaking, this means that in a content model of the form (x | y) it must be possible to determine whether
the instance document must match the content model x or y, using a lookahead of just one element. For example, the
content model ((b, c) | (b, d)) is non-deterministic, while (b, (c | d)) is deterministic.
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In DTDs, both attribute and element declarations are closed specifications: anything that is not
explicitely allowed is forbidden. FLEAGRAM supports open specifications as well: @* can be
used to allow the presence of non relevant attributes, and <?, ?> tokens can be used, possibly in
conjunction with recursive productions, to allow non-relevant elements inside a given one.

4.2 XML Schema
XML Schema [10, 11] is meant to become the official schema language for XML documents. From
the point of view of element content models, XML Schema augments DTDs expressiveness with
interleaving and local definitions. The interleaving operator <all> states that an element must
contain a set of elements regardless the order in which they appear. Efficient validation of this
operator is still an open research topic and interleaving cannot be expressed conveniently in
LALR(1) grammars. In principle we can augment FLEAGRAM with a production of the form

〈production〉 ::= interleave { 〈atom〉 }+

that would be expanded into a set of rules with all the permutations of the atoms. This would give
more expressive power than XML Schema itself since no restriction on the interleaving content
would be present, but it could likely cause an explosion in the number of states of the LALR
parser.

Local definitions allow an element to have different content models depending on the context
in which the element occurs. For example, it is possible to require an element <x> to have content
model <y> when <x> occurs within a <a> element, and to have content model <z> when <x>
occurs within a <b> element. In FLEAGRAM, contextual rules can be encoded in the right hand
side of productions. The above example would be trivially encoded using the rules

<a> : <x <y> x> ;
<b> : <x <z> x> ;

Another major contribution of XML Schema is the definition of a hierarchy of simple types
that enable fine-grained validation of attributes and text nodes; each simple type is characterized
by a value space (the set of values of a datatype) and a lexical space (the set of textual represen-
tations of datatype values). A mechanism of inheritance is provided to derive new types from
simpler ones. Three kinds of type derivation are provided: by list (creating types whose lexical
spaces are blank separated lists of another type literals), by union (sum types) and by restriction
(selecting a subset of the value and/or lexical space).

Assuming that lexers are available for all XML Schema primitive types, type derivations by
list and union can be implemented by ordinary grammar productions, using the lexer refinement
of Section 3.6. FLEAGRAM is able to express all constraints that restrict the lexical space of types,
while the validation of types derived restricting the value space (for example the restriction “the
value must be strictly less than a given constant”) can be only performed in semantic actions.

4.3 Relax NG
In Relax NG [6], valid documents are described by a set of patterns, where each pattern is a reg-
ular expression over the content model of an element. The distinctive aspect of Relax NG is that
patterns treat attributes and elements uniformly: they are both seen as having a common parent
element. This feature permits to express some forms of co-constraints, that is constraints depen-
dent on other constraints, which cannot be expressed using DTDs or XML Schemas. Examples of
co-constraints that can be expressed in Relax NG are:

1. the <a> element must have either a b attribute or a <b> child element;

2. the <a> element must have a b attribute; if b value is foo, <a> must have a <c> child element,
otherwise it must have a <d> child element.

FLEAGRAM specifications can express co-constraints except those depending on attribute or
element values. For instance, the co-constraint (1) above is encoded in FLEAGRAM as follows:
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<a @b = S> : ε ;
<a @b = ε> : <b> ;

Once more, FLEAGRAM recognition expressiveness stops at the syntactic level; semantic vali-
dation of values is only performed in semantic actions and does not interfere with parsing.

5 Concluding remarks
Tools that relate Yacc parsers and XML technologies are not infrequent. While most of them
are compilers or conversion utilities for which XML is the target format (see [2]), FLEAGRAM
goes into the opposite direction, despite the fact that XML documents are commonly thought to
be “parsed”. In this paper we claim that this is a misconception and that LALR(1) parsing of
XML documents provides tangible advantages. Our aim is not to compete with complex schema
languages like W3C Schemas or Relax NG. These techniques go far beyond the syntactic well-
formedness of documents and allow one to specify semantic constraints on the content as well
as the structure of documents. In the well-established frameworks that separate the lexing, pars-
ing, and analysis phases, syntactic and semantic validity are verified by different means. While
FLEAGRAM provides some flexibility in the kind of syntactic constraints that can be checked, for
example by enabling some limited forms of context dependencies, it leaves any semantic check
to a subsequent phase that makes use of the unmarshalled document, which might well provide
more appropriate ways for ensuring its consistency.

In order to verify that our approach does not entail computational overhead, we have made
some comparative tests between FLEAGRAM and other validation techniques. As test data we
have chosen two classes of documents: the first class comprises deeply structured documents
having a number of nodes ranging from nearly 2,000 up to more than 800,000, their depth rang-
ing from a dozen up to nearly 600 nested nodes.6 The second class of documents comprises
artificially made documents with a flat structure (no more than 3 nested nodes) and with a total
number of nodes ranging from 10,000 up to 900,000. The results can be seen in Figure 2 and Fig-
ure 3. As the implementation library we chose LIBXML2 for a number of reasons: first, LIBXML2
supports DTDs, XML Schema (at least partially) and Relax NG, hence it allows a quick compar-
ison of some of the most significant schema languages within a single library; second, LIBXML2
is acknowledged as one of the most performant XML implementations available;7 third, FLEA-
GRAM currently uses the LIBXML2 SAX parser, so it is fair to disregard the parsing time knowing
that, in every case, the LIBXML2 parser does no more and no less in order to favor a subsequent
validation phase. The tests show that FLEAGRAM validation time is smaller with respect to the
other techniques.

FLEAGRAM permits the generation of self-contained XML parsers that allow for simultaneous
validation and unmarshalling without requiring the creation of expensive XML document trees
in main memory. The SAX parser takes care of the lexical analysis of the input document, reliev-
ing the programmer from all the dirtiness involved in XML processing (input/output, character
encoding, namespace management, character entities, and so on). The syntactical correctness of
the document is verified by a generated automaton that works on a stream of events. Seman-
tic actions can be comfortably associated with patterns in a sole specification, the unmarhsalling
phase goes along with the structural validation.

The advent of XML seemed to settle down issues with document parsing, but that was not
entirely the case: connecting parsing and subsequent processing is a fundamental issue that has
not been addressed in a satisfactory way so far. FLEAGRAM addresses it in a simple yet effective
way.

6. These documents were not generated for the purposes of this test. They encode terms in a richly typed λ-calculus
representing formal mathematical proofs, see http://helm.cs.unibo.it/.
7. See http://xmlbench.sourceforge.net/ for an extensive set of comparisons
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Figure 2. Validation times of deeply structured XML documents with an increasing number of nodes
for different schema languages. The graph at the bottom is the zoomed version of the one on top, for
documents up to 40,000 nodes.
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Figure 3. Validation times of flat XML documents with an increasing number of nodes for different
schema languages.
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