
Formal Aspects of Free and Open Source

Software Components�

A Short Survey

Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli

Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS
roberto@dicosmo.org, {treinen,zack}@pps.univ-paris-diderot.fr

Abstract. Free and Open Source Software (FOSS) distributions are
popular solutions to deploy and maintain software on server, desktop,
and mobile computing equipment. The typical deployment method in
the FOSS setting relies on software distributions as vendors, packages as
independently deployable components, and package managers as upgrade
tools. We review research results from the past decade that apply formal
methods to the study of inter-component relationships in the FOSS con-
text. We discuss how those results are being used to attack both issues
faced by users, such as dealing with upgrade failures on target machines,
and issues important to distributions such as quality assurance processes
for repositories containing tens of thousands, rapidly evolving software
packages.

1 Introduction

Free and Open Source Software [47], or FOSS, is used daily, world-wide, to
manage computing infrastructures ranging from the very small, with embedded
devices like Android-based smart phones, to the very big, with Web servers where
FOSS-based solutions dominate the market. From the outset, most FOSS-based
solutions are installed, deployed, and maintained relying on so-called distribu-
tions. The aspect of software distributions that will interest us in this paper is
that they provide a repository: a typically large set of software packages main-
tained as software components that are designed to work well together. Software
distributions, like for instance GNU/Linux distributions, have in fact additional
aspects that are crucial but which are not considered in this work, like for in-
stance an installer that allows a user to install an initial system on a blank
machine, or infrastructure for interaction between users and developers like a
bug tracking system.

While specific technologies vary from distribution to distribution, many as-
pects, problems, and solutions are common across distributions. For instance,
packages have expectations on the deployment context: they may require other

� Work partially supported by Aeolus project, ANR-2010-SEGI-013-01, and per-
formed at IRILL, center for Free Software Research and Innovation in Paris, France,
www.irill.org

E.Giachino et al. (Eds.): FMCO 2012, LNCS 7866, pp. 216–239, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.irill.org

Formal Aspects of Free and Open Source Software Components 217

packages to function properly—declaring this fact by means of dependencies—
and may be incompatible with some other packages—declaring this fact by means
of conflicts. Dependencies and conflicts are captured as part of package meta-
data. Here as an example showing the popular Firefox web browser as a package
in the Debian distribution:

Package: firefox

Version: 18.0.1 -1

Depends: libc6 (>= 2.4), libgtk2.0-0 (>= 2.10), libstdc ++6,

fontconfig , procps , xulrunner -18.0, libsqlite3 -0, ...

Suggests: fonts -stix | otf -stix , mozplugger ,

libgssapi -krb5 -2 | libkrb53

Conflicts : mozilla -firefox (<< 1.5-1)

Provides: www -browser , gnome -www -browser

A couple of observations are in order. First, note how the general form of inter-
package relationships (conflicts, dependencies, etc.) is that of propositional logic
formulae, having as atoms predicates on package names and their versions. Sec-
ond, we have various degrees of dependencies, strong ones (like “Depends”) that
must be satisfied as deployment preconditions and weak ones (like “Suggests”
and “Recommends”, the latter not shown). Finally, we also observe an indi-
rection layer in the package namespace implemented by “Provides”. Provided
packages are sometimes referred to as features, or virtual packages and mean
that the providing package can be used to satisfy dependencies for—or induce
conflicts with—the provided name.

To maintain package assemblies, semi-automatic package manager applica-
tions are used to perform package installation, removal, and upgrades on target
machines—the term upgrade is often used to refer to any combination of those ac-
tions. Package managers incorporate numerous functionalities: trusted retrieval
of components from remote repositories, planning of upgrade paths in fulfillment
of deployment expectations (also known as dependency solving), user interaction
to allow for interactive tuning of upgrade plans, and the actual deployment of
upgrades by removing and adding components in the right order, aborting the
operation if problems are encountered at deploy-time [24].

Unfortunately, due to the sheer size of package repositories in popular FOSS
distributions (in the order of tens of thousands [33]), several challenges need
to be addressed to make the distribution model viable in the long run. In the
following we will focus on two classes of issues and the related research directions:

1. issues faced by distribution users, who are in charge of maintaining their
own installations, and

2. issues faced by distribution editors, who are in charge of maintaining the
consistency of distribution repositories.

As motivating example of issues that are faced by users consider the seemingly
simple requirement that a package manager should change as little as possible
on the target machine in order to satisfy user requests. Unfortunately, as demon-
strated in Fig. 1, that property is not yet offered by most mainstream package

218 R.D. Cosmo, R. Treinen, and S. Zacchiroli

aptitude install baobab
[...]
The following packages are BROKEN : gnome -utils
The following NEW packages will be installed: baobab [...]
The following actions will resolve these dependencies:
Remove the following packages : gnome gnome -desktop -environment libgdict -1.0-6
Install the following packages : libgnome -desktop -2 [2.22.3 -2 (stable)]
Downgrade the following packages :

gnome -utils [2.26.0-1 (now) -> 2.14.0-5 (oldstable)] [...]
0 packages upgraded , 2 newly installed , 1 downgraded ,
180 to remove and 2125 not upgraded . Need to get 2442kB
of archives . After unpacking 536MB will be freed.
Do you want to continue ? [Y/n/?]

Fig. 1. Attempt to install a disk space monitoring utility (called baobab) using the
Aptitude package manager. In response to the request, the package manager proposes
to downgrade the GNOME desktop environment all together to a very old version
compared to what is currently installed. As shown in [4] a trivial alternative solution
exists that minimizes system changes: remove a couple of dummy “meta” packages.

managers. A related issue, that we will also discuss in the following, is that of
providing expressive languages that allow users of package managers to express
their preferences, e.g. the demand to minimize the size occupied by packages
installed on their machines.

Distribution editors, on the other hand, face the challenging task of avoiding
inconsistencies in huge package archives. A paradigmatic example of inconsis-
tency that they should avoid is that of shipping uninstallable packages, i.e. pack-
ages that, no matter what, cannot be installed on user machines because there
is no way to satisfy their dependencies and conflicts. Consider for instance the
following (real) example involving the popular Cyrus mail system:

Package: cyrus -common -2.2

Version: 2.4.12 -1

Depends: cyrus -common -2.4

Package: cyrus -common -2.4

Version: 2.4.12 -1

Conflicts : cyrus -common -2.2

It is easy to verify that it is not possible to install the above cyrus-common-2.2
package—a dummy package made to ease upgrades to Cyrus 2.4—out of any
package repository that also contains the cyrus-common-2.4 package shown in
the example. Even worse, it can be shown that the issue is not transitional,
i.e. the team responsible for cyrus-common-2.2 (its maintainers) cannot simply
wait for the issue to go away, they have to manually fix the metadata of their
package so that the cause of the uninstallability goes away. The challenge here is
that, while it is easy to reason on simple cases like this one, distribution editors
actually need semi- or fully-automated tools able to spot this kind of quality
assurance issues and point them to the most likely causes of troubles.

Paper Structure. In the following we provide a short summary of research from
the past decade on the formal aspects of FOSS packages. We first present, in
Sect. 2, different formal models able to capture the parts of package metadata

Formal Aspects of Free and Open Source Software Components 219

that are relevant to attack both issues faced by users and by distributions. Then,
in Sect. 3, we give an overview of results that foster the development of complete
and expressive package managers that would provide a better package manage-
ment experience to users. Finally, in Sect. 4, we do the same with research results
that have been used to develop and deploy semi-automated quality assurance
tools used daily by editors of popular FOSS distributions to assess the quality
of their package repositories.

2 Formal Package Models

Different formal treatments of packages and their relationships are needed for
different purposes. Two main approaches have been devised: a syntactic (or
concrete) one which captures the syntax of inter-package relationships, so that
they can be treated symbolically, similarly to how package maintainers reason
about them. We will use such an approach to reason about the future evolution
of repositories (see Sect. 4), taking into account yet unknown package versions.

A more abstract package model is useful too, in order to make the modeling
more independent from specific component technologies and their requirement
languages. We will use this kind of modeling to recast the problem of verifying
package installability as a SAT problem (see Sect. 2.3).

2.1 Concrete Package Model

A concrete package model, originally inspired by Debian packages, has been
given in [5] and further detailed in [6]. In this model packages are captured as
follows:

Definition 1 (Package). A package (n, v,D,C) consists of

– a package name n ∈ N,
– a version v ∈ V,
– a set of dependencies D ⊆ ℘(N ×Con),
– a set of conflicts C ⊆ N×Con,

where N is a given set of possible package names, V a set of package versions,
and Con a set of syntactic constraints on them like �, = v, > v, ≤ v, . . . The
intuition is that dependencies should be read as conjunctions of disjunctions.
For example: {{(p,≥ 1), (q,= 2)}, {(r,< 5)}} should be read as ((p ≥ 1) ∨ (q =
2)) ∧ (r < 5). Starting from this intuition, the expected semantics of package
constraints can be easily formalized.

Notation 1. Given a package p we write p.n (resp. p.v, p.D, p.C) for its name
(resp. version, dependencies, conflicts).

Repositories can then be defined as package sets, with the additional constraint
that name/version pairs are unambiguous package identifiers:

220 R.D. Cosmo, R. Treinen, and S. Zacchiroli

Table 1. Sample package repository

Package: a Package: b Package: d

Version: 1 Version: 2 Version: 3

Depends: b (≥ 2) | d Conflicts: d

Package: a Package: c Package: d

Version: 2 Version: 3 Version: 5

Depends: c (> 1) Depends: d (> 3)

Conflicts: d (= 5)

Definition 2 (Repository). A repository is a set of packages, such that no
two different packages carry the same name and version.

A pair of a name and a constraint has a meaning with respect to a given reposi-
tory R, the precise definition of which would depend on the formal definition of
constraints and their semantics:

Notation 2. Given a repository R, n ∈ N and c ∈ Con, we write [[(n, c)]]R for
the set of packages in R with name n and whose version satisfies the constraint c.

We can then finally capture the important notions of installation and of
(co-)installability:1

Definition 3 (Installation). Let R be a repository. An R-installation is a set
of packages I ⊆ R such that ∀p, q ∈ I:

abundance for each element d ∈ p.D there exists (n, c) ∈ d and a package q ∈ I
such that q ∈ [[(n, c)]]R.

peace for each (n, c) ∈ p.C: I ∩ [[(n, c)]]R = ∅
flatness if p �= q then p.n �= q.n

Definition 4 (Installability). p ∈ R is R-installable if there exists an R-
installation I with p ∈ I.

Definition 5 (Co-Installability). S ⊆ R is R-co-installable if there exists an
R-installation I with S ⊆ I.

Example 1 (Package Installations). Consider the repository R shown in Table 1.
The following sets are not R-installations:

– R as a whole, since it is not flat;

1 We remind that this is a specific concrete package model, inspired by Debian pack-
ages. Therefore not all installation requirements listed here have equivalents in all
component technologies. Most notably the presence of the flatness property varies
significantly from technology to technology. As discussed in [4,6] this does not affect
subsequent results.

Formal Aspects of Free and Open Source Software Components 221

– {(a, 1), (c, 3)}, since both a’s and b’s dependencies are not satisfied;
– {(a, 2), (c, 3), (d, 5)}, since there is a conflict between c and d.

The following sets are valid R-installations: {(a, 1), (b, 2)}, {(a, 1), (d, 5)}. We can
therefore observe that the package (a, 1) is R-installable, because it is contained
in an R-installation.

The package (a, 2) is not R-installable because any installation of it must also
contain (c, 3) and consequently (d, 5), which will necessarily break peace. �

2.2 Abstract Package Model

A more abstract package model [43] was the basis for several of the studies
discussed in the present work. The key idea is to model repositories as non
mutable entities, under a closed world assumption stating that we know the set
of all existing packages, that is that we are working with respect to a given
repository R.

Definition 6. An abstract repository consists of

– a set of packages P ,
– an anti-reflexive and symmetric conflict relation C ⊆ P × P ,
– a dependency function D:P −→ ℘(℘(P)).

The nice properties of peace, abundance, and (co-)installability can be easily
recast in such a model.

The concrete and abstract models can be related. In particular, we can trans-
late instances of the concrete model (easily built from real-life package reposi-
tories) into instances of the more abstract model, preserving the installability
properties. To do that, the main intuition is that (concrete) package constraints
can be “expanded” to disjunctions of all (abstract) packages that satisfy them.
For example, if we have a package p in versions 1, 2, and 3, then a dependency
on p ≥ 2 will become {{(p, 2), (p, 3)}}. For conflicts, we will add a conflict in the
abstract model when either one of the two (concrete) packages declare a conflict
on the other, or when we have two packages of the same name and different
versions. The latter case implements the flatness condition. Formally:

Notation 3. Let R be a repository in the concrete model. We can extend the
semantics of pairs of names and constraints to sets as follows:

[[{(n1, c1), . . . , (nm, cm)}]]R = [[(n1, c1)]]R ∪ . . . ∪ [[(nm, cm)]]R

Definition 7 (Concrete to Abstract Model Translation). Let R be a
repository in the concrete model. We define an abstract model Ra = (Pa, Da, Ca).

– Pa: the same packages as in R
– We define the dependency in the abstract model:

Da(p) = {[[φ]]R | φ ∈ p.D}
– We define conflicts in the abstract model:

Ca = {(p1, p2) | p1 ∈ [[p2.C]]R ∨ p2 ∈ [[p1.C]]R}
∪ {(p1, p2) | p1.n = p2.n ∧ p1.v �= p2.v}

222 R.D. Cosmo, R. Treinen, and S. Zacchiroli

Install libc6 version

2.3.2.ds1-22 in

Package: libc6
Version: 2.2.5 -11.8

Package: libc6
Version: 2.3.5 -3

Package: libc6
Version: 2.3.2.ds1 -22
Depends: libdb1 -compat

Package: libdb1 -compat
Version: 2.1.3 -8
Depends: libc6 (>= 2.3.5-1)

Package: libdb1 -compat
Version: 2.1.3 -7
Depends: libc6 (>= 2.2.5 -13)

⇒

libc62.3.2.ds1−22

∧
¬(libc62.3.2.ds1−22 ∧ libc62.2.5−11.8)
∧
¬(libc62.3.2.ds1−22 ∧ libc62.3.5−3)
∧
¬(libc62.3.5−3 ∧ libc62.2.5−11.8)
∧
¬(libdb1-compat2.1.3−7∧libdb1-compat2.1.3−8)
∧
libc62.3.2.ds1−22 →
(libdb1-compat2.1.3−7∨libdb1-compat2.1.3−8)
∧
libdb1-compat2.1.3−7 →
(libc62.3.2.ds1−22 ∨ libc62.3.5−3)
∧
libdb1-compat2.1.3−8 → libc62.3.5−3

Fig. 2. Example: package installability as SAT instance

2.3 On the Complexity of Installability

Now that we have rigorously established the notion of package (co-)installability,
it is legitimate to wonder about the complexity of deciding these properties.
Is it “easy enough” to automatically identify non-installable packages in large
repositories of hundreds of thousands of packages? The main complexity result,
originally established in [43], is not encouraging:

Theorem 1. (Co-)installability is NP-hard (in the abstract model).

The gist of the proof is a bidirectional mapping between boolean satisfiability
(SAT) [19] and package installability. For the forward mapping, from packages
to SAT, we use one boolean variable per package (the variable will be true if
and only if the corresponding package is installed), we expand dependencies as
implications p → (r1 ∨ · · · ∨ rn) where ri are all the packages satisfying the
version constraints, and encode conflicts as ¬(p∧ q) clauses for every conflicting
pair (p, q). Thanks to this mapping, we can use SAT solvers for checking the
installability of packages (see Fig. 2 and Sect. 4).

The backward mapping, from SAT to package installability, can be established
considering 3-SAT instances, as detailed in [30].

Given that the proof is given for the abstract model, one might wonder to
which kind of concrete models it applies. The question is particularly relevant
to know whether dependency solving in the context of specific component tech-
nologies can result in corner cases of unmanageable complexity or not. Several
instances of this question have been answered in [4], considering the common fea-
tures of several component models such as Debian and RPM packages, OSGi [45]
bundles, and Eclipse plugins [20,15]. Here are some general results:

Formal Aspects of Free and Open Source Software Components 223

– Installability is NP-complete provided the component model features con-
flicts and disjunctive dependencies.

– Installability is in PTIME if the component model does not allow for conflicts
(neither explicitly, nor implicitly with clauses like Eclipse’s “singleton”).

– Installability is in PTIME if the component model does not allow for disjunc-
tive dependencies or features, and the repository does not contain multiple
versions of packages.

3 Upgrade Optimization

The discussed complexity results provide convincing evidence that dependency
solving is difficult to get right, more than developers might imagine at first.
Several authors [39,34,40,55,51,54,24,36] have pointed out two main deficien-
cies of state-of-the-art package managers in the area of dependency solving—
incompleteness and poor expressivity—some of them have proposed various al-
ternative solutions.

A dependency solving problem, as usually faced by dependency solvers, can
be described as consisting of: (i) a repository of all available packages (some-
times also referred to as a package universe); (ii) a subset of it denoting the set
of currently installed packages on the target machine (package status); (iii) a
user request usually asking to install, upgrade, or remove some packages. The
expected output is a new package status that both is a proper installation (in
the sense of Def. 3) and satisfies the user request. Note that, due to the presence
of both implicit and explicit disjunctions in the dependency language, there are
usually many valid solutions for a given upgrade problem. In fact, it has been
shown in [4] that there are exponentially many solutions to upgrade problems in
all non-trivial repositories.

A dependency solver is said to be complete if it is able to find a solution to
an upgrade problem whenever one exists.

Given the huge amount of valid solutions to any given upgrade problem, we
need languages that allow the user to express her preferences such as “favor
solutions that minimize the amount of used disk space”, “favor solutions that
minimize the changes to the current package status”, “do not install packages
that are affected by outstanding security issues”, etc.

Unfortunately, most state-of-the-art package managers are neither complete
nor offer expressive user preference languages [53].

3.1 The Common Upgradeability Description Format

CUDF [52,4] (the Common Upgradeability Description Format)2 is a language
devised to solve the issues of completeness and expressivity by inducing a syn-
ergy among package managers developers and researchers in the various fields of
constraint solving. At first glance, a CUDF document captures an instance of a

2 http://www.mancoosi.org/cudf/, retrieved May 2013

http://www.mancoosi.org/cudf/

224 R.D. Cosmo, R. Treinen, and S. Zacchiroli

preamble:
property: bugs: int = 0, suite : enum(stable ,unstable) = "stable ",

package: car

version: 1

depends: engine , wheel > 2, door , battery <= 13

instal led : true
bugs: 183

package: bicycle

version: 7

suite: unstable

package: gasoline -engine

version: 1

depends: turbo

provides: engine

conf l i cts: engine , gasoline -engine

instal led : true
...

request:
i ns ta l l : bicycle , gasoline -engine = 1

upgrade: door , wheel > 3

Fig. 3. Sample CUDF document

dependency solving problem using a human readable syntax, as shown in Fig. 3.
CUDF is an extensible language—i.e. it allows to represent ad-hoc package prop-
erties that can then be used to express user preferences—and provides a formal
semantics to unambiguously determine whether a given solution is correct with
respect to the original upgrade problem or not.

CUDF is also neutral on both specific packaging and solving technologies.
Several kinds of package manager-specific upgrade problems can be encoded in
CUDF and then fed to solvers based on different constraint solving techniques.
Fig. 4 enumerates a number of packaging technologies and solving techniques
that can be used together, relying on CUDF for data exchange.

This is achieved by instrumenting existing package managers with the abil-
ity to communicate via the CUDF format with external dependency solvers.
Such an arrangement, depicted in Fig. 5 and studied in [3,7], allows to share
dependency solvers across package managers. Several modern package managers
have followed this approach either offering the possibility to use external CUDF
solvers as plugins, or even abandoning the idea of an integrated solver and always
using external CUDF solvers. Examples are the APT package manager used by
the Debian and Ubuntu distributions, the P2 provisioning platform for Eclipse
plugins, and the OPAM package manager for the OCaml language.

Formal Aspects of Free and Open Source Software Components 225

Fig. 4. Sharing upgrade problems and solvers among communities

3.2 User Preferences

In itself, CUDF does not mandate a specific language for user preferences, but
supports them, in various ways. On one hand, CUDF captures and exposes all
relevant characteristics of upgrade problems (e.g. package and user request prop-
erties) that are needed to capture user preferences in common scenarios [53].
Also, CUDF does so in an extensible way, so that properties that are specific to
a given package technology can still be captured. On the other hand, the CUDF
model is rigorous, providing a solid base to give a clear and measurable seman-
tics to user preferences, which would allow to compare solutions and decide how
well they score w.r.t. user preferences.

Several proposals of user preference languages have been advanced. The main
challenge consists in finding a middle ground between the expressivity that users
desire and the capabilities of modern constraint solvers.

Historically, OPIUM [55] has used SAT-based optimization to hard-code a
fairly typical user preference, corresponding to the desire of minimizing the num-
ber of packages that are installed/removed to satisfy user request.

For the first time in [4], a flexible preference language has been proposed,
based on a set of metrics that measure the distance between the original pack-
age status and the solution found by the dependency solver. Distance can be
measured on various axes: the number of packages removed, newly installed,
changed, that are not up to date (i.e. not at the latest available version), and
with unsatisfied “weak” dependencies (i.e. packages that are “recommended” to
be installed together with others, but not strictly required). Those metrics can
be combined using a dictionary of aggregation functions that are commonly sup-
ported by solvers capable of multicriteria optimization [49], in particular lexico-
graphic orderings and weighted sums. Using the resulting formalism it is possible
to capture common user preference use cases such as the following paranoid one

paranoid = lex (−removed ,−changed)

The solution scoring best under this criterion is the one with the smallest num-
ber of removed functionalities, and then with the smallest number of changes

226 R.D. Cosmo, R. Treinen, and S. Zacchiroli

Fig. 5. Modular package manager architecture

(e.g. upgrade/downgrade/install actions). A trendy preference, i.e. the desire of
having the most recent versions of packages, is also easy to write as:

trendy = lex (−removed ,−notuptodate,−unsatrec,−new)

This set of preference combinators is bound to grow to encompass new user needs.
For example, it is often the case that a single source package can produce many
binary packages, and that using a mix of binary packages coming from different
versions of the same source package is problematic. In recent work, it has been
shown how to implement an optimization criterion that allows to specify that
some packages need to be aligned, for different notions of alignment [23].

3.3 The MISC Competition

The existence of a language like CUDF allows to assemble a corpus of challenging
(for existing dependency solvers) upgrade problems coming from actual users of
different package managers. Using such a corpus, researchers have established
the MISC (for Mancoosi International Solver Competition)3 that has been run
yearly since 2010. The goal of the competition is to advance the state of the art
of real dependency solvers, similarly to what has happened in others fields with,
e.g., the SAT competition [35].

A dozen solvers have participated in the various editions, attacking CUDF-
encoded upgrade problems using solvers based on a wide range of constraint
solving techniques. Table 2 shows a sample of MISC participants from the 2010
and 2011 editions.

Analysis of the competition results has allowed us to experimentally establish
the limits of state-of-the-art solvers. In particular, they have been shown to sig-
nificantly degrade their ability to (quickly) find solutions as the number of used
package repositories grows, which is a fairly common use case. Each competi-
tion edition has established one or more winners, e.g. one winner in the trendy
track and one in the paranoid one. Modular package managers that follow the
architecture of Fig. 5 can then use winning solvers, or other entrants, as their
dependency solver of choice.

3 http://www.mancoosi.org/misc/, retrieved May 2013

http://www.mancoosi.org/misc/

Formal Aspects of Free and Open Source Software Components 227

Table 2. Sample of MISC competition entrants, ed. 2010 and 2011

solver author/affiliation technique/solver

apt-pbo [54] Trezentos / Caixa Magica Pseudo Boolean Optimization
aspcud Matheis / University of Potsdam Answer Set Programming
inesc [9] Lynce et. al / INESC-ID Max-SAT
p2cudf [9] Le Berre and Rapicault / Univ. Artois Pseudo Boolean Optimization

/ Sat4j (www.sat4j.org)
ucl Gutierrez et al. / Univ. Luvain Graph constraints
unsa [44] Michel et. al / Univ. Sophia-Antipolis Mixed Integer Linear Programming

/ CPLEX (www.cplex.com)

Solvers able to handle these optimization combinators can also be used for a
variety of other purposes. It is worth mentioning one of the most unusual, which
is building minimum footprint virtual images for the cloud: as noticed in [46],
virtual machine images often contain largely redundant package selections, wast-
ing disk space in cloud infrastructures. Using the toolchain available in the dose
library,4 which is at the core of the MISC competition infrastructure, one can
compute the smallest distribution containing a given set of packages. This prob-
lem has actually been used as one of the track of the 2012 edition of the MISC
competition.

More details on CUDF and MISC are discussed in [4,7].

4 Quality Assurance of Component Repositories

A particularly fruitful research line tries to solve the problems faced by the
maintainers of component repositories, and in particular of FOSS distributions.

A distribution maintainer controls the evolution of a distribution by regulat-
ing the flow of new packages into and the removal of packages from it. With
the package count in the tens of thousands (over 35.000 in the latest Debian de-
velopment branch as of this writing), there is a serious need for tools that help
answering efficiently several different questions. Some are related to the current
state of a distribution, like: “What are the packages that cannot be installed
(i.e., that are broken) using the distribution I am releasing?”, “what are the
packages that block the installation of many other packages?”, “what are the
packages most depended upon?”. Other questions concern more the evolution
of a distribution over time, like: “what are the broken packages that can only
be fixed by changing them (as opposed to packages they depend on)?”, “what
are the future version changes that will break the most packages in the distribu-
tion?”, “are there sets of packages that were installable together in the previous
release, and can no longer be installed together in the next one?”.

In this section, we highlight the most significant results obtained over the past
years that allow to answer some of these questions, and led to the development
of tools which currently are being adopted by distribution maintainers.

4 http://www.mancoosi.org/software/, retrieved May 2013

www.sat4j.org
www.cplex.com
http://www.mancoosi.org/software/

228 R.D. Cosmo, R. Treinen, and S. Zacchiroli

4.1 Identifying Broken Packages

As we have seen in Sect. 2.3, the problem of determining whether a single package
is installable using packages from a given repository is NP-hard. Despite this
limiting result, modern SAT solvers are able to handle easily the instances coming
from real world repositories. This can be explained by observing that explicit
conflicts between packages are not very frequent, even if they are crucial when
they exist, and that when checking installability in a single repository one usually
finds only one version per package, hence no implicit conflicts. As a consequence,
there is now a series of tools, all based on the original edos-debcheck tool
developed by Jérôme Vouillon in 2006 [43], that are part of the dose library and
can check installability of Debian or RPM packages, as well as Eclipse plugins,
in a very short time: a few seconds on commodity desktop hardware are enough
to handle the ≈ 35.000 packages from the latest Debian distribution.5

4.2 Analyzing the Dependency Structure of a Repository

Identifying the packages that are not installable in a repository is only the first
basic analysis which is of interest for a distribution maintainer: among the large
majority of packages that are installable, not all have the same importance, and
not all can be installed together.

It is quite tempting, for example, to use the number of incoming dependencies
on a package as a measure of its importance. Similarly, it is tempting to analyze
the dependency graph trying to identify “weak points” in it, along the tradition
of studies on small-world networks [8]. Several studies in the literature do use
explicit dependencies, or their transitive closure, to similar ends (e.g. [37,42]).
The explicit, syntactic dependency relation p → q is however too imprecise
for them and can be misleading in many circumstances. Intuitively, this is so
because paths in the explicit dependency graph might connect packages that are
incompatible, in the sense that they cannot be installed together. To solve that
problem we need to distinguish between the syntactic dependency graph and a
more meaningful version of it that takes into account the actual semantics of
dependencies and conflicts.

This was the motivation for introducing the notion of strong dependency [1]
to identify the packages that are at the core of a distribution.

Definition 8. A package p strongly depends on q (written p ⇒ q) with respect
to a repository R if it is not possible to install p without also installing q.

This property is easily seen equivalent to the implication p → q in the logical
theory obtained by encoding the repository R, so in the general case this problem
is co-NP-complete, as it is the dual of an installation problem, and the strong
dependency graph can be huge, because it is transitive. Nevertheless, it is pos-
sible on practical instances to compute the strong dependency graph of a recent

5 A daily updated showcase of uninstallable Debian packages, used by
the distribution for quality assurance purposes, is currently available at
http://edos.debian.net/edos-debcheck/ (retrieved January 2013).

http://edos.debian.net/edos-debcheck/

Formal Aspects of Free and Open Source Software Components 229

Table 3. Top sensitive packages in Debian 5.0 “Lenny”

package deps s. deps closure

1 gcc-4.3-base 43 20128 20132
2 libgcc1 3011 20126 20130
3 libc6 10442 20126 20130
4 libstdc++6 2786 14964 15259
5 libselinux1 50 14121 14634
6 lzma 4 13534 13990
7 libattr1 110 13489 14024
8 libacl1 113 13467 14003
9 coreutils 17 13454 13991

10 dpkg 55 13450 13987
11 perl-base 299 13310 13959
12 debconf 1512 11387 12083
13 libncurses5 572 11017 13466
14 zlib1g 1640 10945 13734
15 libdb4.6 103 9640 13991

. . .

Debian distribution in a few hours on a modern multicore machine. The opti-
mized algorithms able to do so have been discussed in [1] and are implemented
in the dose toolchain.6

Once the strong dependencies graph is known, it is possible to define the
impact set of a package, as the set of packages that strongly depend on it: this is
a notion of robustness, as removing p from the distribution renders uninstallable
all packages in its impact set, while this is not the case if one uses direct or
transitive dependencies.

In Table 3 are shown the ten packages from the Debian Lenny distribution
with the largest impact set, and it is easy to see that the number of direct incom-
ing dependencies is totally unrelated to the real importance of the package, while
the number of transitive incoming dependencies is always an overapproximation.

In the list of Table 3, a knowledgable maintainer will recognize a cluster
of interrelated packages: gcc-4.3-base, libgcc1 and libc6 are all essential
components of the C library, and they have similar sized impact sets. In the
general case, though, as shown by the examples configurations drawn in Fig. 6,
two packages having similar sized impact sets need not be correlated.

To identify those packages that are correlated, and identify the most relevant
ones among them, one can define, on top of the strong dependency graph, a
dominance relation similar to the one used in traditional flow graphs [41].

Definition 9 (Strong Dominance). We say that q strongly dominates r if:

– q strongly depends on r, and
– every package that strongly depends on r also strongly depends on q.

6 http://www.mancoosi.org/software/, retrieved May 2013

http://www.mancoosi.org/software/

230 R.D. Cosmo, R. Treinen, and S. Zacchiroli

p1

�� ���
��

��
��

��
��

��
��

��
��� pi

���
��
��
��
��
��
��

����
��
��
��
��
��
�

��� pn

����
��
��
��
��
��
��
��
�

��
q r

(a) Coincidence

p1

���
��

��
��

�
��� pi

��

��� pn

����
��
��
��

s1

����
��
��
��
��
��
��
��
��

��� sk

��			
			

			
			

			
			

			
			

q

��
r

(b) General case

p1

���
��

��
��

�
��� pi

��

��� pn

����
��
��
��

q

��
r

(c) Dominance

Fig. 6. Significant configurations in the strong dependency graph

Intuitively, in a strong dominance configuration, that looks like Fig. 6c, the
strong dependency on r of packages in its impact set is “explained by” their
strong dependency on q.

Strong dominance can be computed efficiently [13] and properly identifies
many relevant clusters of packages related by strong dependencies like the libc6
one, but the tools built on the work of [1] also allow to capture partial dominance
situations as in Fig. 6b.

4.3 Analyzing the Conflict Structure of a Repository

In a repository there are packages that can be installed in isolation, but not
together: despite the existence of interesting approaches that make it possible
to reduce the need for package conflicts when installing user-level packages [29],
there are good reasons for making sure, for example, that only one mail transport
agent, or database server, is installed on a given machine, and that only one copy
of a dynamic library needs to be updated if a security issue is uncovered. This is
why in the current Debian distribution one can find over one thousand explicit
conflicts declared among packages [10,11].

Once conflicts are part of a distribution, it is important to be able to assess
their impact, identifying those packages that are incompatible. This is not an
easy task, even when looking just for incompatibilities between package pairs,
that are known as strong conflicts [17], as opposed to “ordinary” conflicts.

Definition 10 (Strong Conflicts). The packages in S are in strong conflict
if they can never be installed all together.

Indeed, by duality with the installability problem, one obtains the following

Theorem 2. Determining whether S is in strong conflict in a repository R is
co-NP-complete.

In practice, though, strong conflicts can be computed quite efficiently [25], and
this allows to identify packages with an abnormal number of incompatibilities,
that are simply undetectable using other kinds of metrics. For example, Table 4
lists the ten packages from Debian Lenny with the highest number of strong

Formal Aspects of Free and Open Source Software Components 231

conflicts, and the package ppmtofb clearly stands out as a problematic one: it
is installable, so it will not be flagged by the edos-debcheck tool, but it is in
practice incompatible with a large part of the Debian distribution. It turned out
that this package depended on an old version of Python, which was phased out,
but was never updated; after reporting the issue, the package was dropped from
the distribution, because of lack of maintainers, but could have been adapted to
the latest Python versions too.

Table 4. Top packages with the highest number of strong conflicts in Debian Lenny

Strong Package Explicit Explicit Cone Cone
Conflicts Conflicts Dependencies Size Height

2368 ppmtofb 2 3 6 4
127 libgd2-noxpm 4 6 8 4
127 libgd2-noxpm-dev 2 5 15 5
107 heimdal-dev 2 8 121 10
71 dtc-postfix-courier 2 22 348 8
71 dtc-toaster 0 11 429 9
70 citadel-mta 1 6 123 9
69 citadel-suite 0 5 133 9
66 xmail 4 6 105 8
63 apache2-mpm-event 2 5 122 10

More generally, one is interested in identifying the sets of packages that are
incompatible, and in providing a way for a distribution maintainer to visualize
the problematic configurations. With over 35.000 packages, and hundreds of
thousands of relationships, this may look like an impossible task.

The key idea for properly addressing this challenge is to extract from the
original, huge repository, a much smaller one, called a coinstallability kernel, that
contains a representative of each package of the original repository, and preserves
co-installability of packages [25]. That is, even if a coinstallability kernel is a
much more compact representation of package relationships than the original
one, all relevant information to decide whether packages are co-installable or
not is retained by it.

To obtain a coinstallability kernel, we start from the original repository and
perform a series of transformations on it. As a first step, one builds a transitive
closure of the dependency relation, reminiscent of the conversion to conjunctive
normal form of propositional formulae, but dropping at the same time some
redundant dependencies to avoid combinatorial explosion. This phase produces
a repository that has a two-level structure, which one may simplify further by
removing other redundant dependencies that are exposed by the transitivization
phase; after closing the dependency function reflexively, one can finally collapse
packages that have the same behavior with respect to co-installability into equiv-
alence classes, and then remove the reflexive dependencies to obtain a compact
visualization of the kernel of the repository.

232 R.D. Cosmo, R. Treinen, and S. Zacchiroli

(a) Original
repository

(b) Transitivity (c) Pruning

(d) Self dependency
addition

(e) Simplification (f) Quotient

(g) Drawing

Fig. 7. Transformations of a repository. Conflicts edges are denoted with #; arrows
denote direct (conjunctive) dependencies, whereas disjunctive dependencies use explicit
“OR” nodes. Dashed lines are used, at each phase, to highlight edges that will disappear
in the next phase.

These phases are shown on a sample repository in Fig. 7: it is clear from this
example that in the final repository package g can always be installed, while
b and c are incompatible, and all the packages a, d, e, f behave the same
with respect to co-installability, and are only incompatible with c. Due to the
fundamental theorems proved, and machine checked, in [25], this is also the case
in the original repository.

On real-world repositories, the simplification obtained is astonishing, as can
be seen in the following table, that also indicates the running time of the coinst
tool7 on a commodity laptop:

Debian Ubuntu Mandriva

before after before after before after

Packages 28919 1038 7277 100 7601 84
Dependencies 124246 619 31069 29 38599 8
Conflicts 1146 985 82 60 78 62

Running time (s) 10.6 1.19 11.6

4.4 Predicting Evolutions

Some aspects of the quality assessment in FOSS distributions are best modeled
by using the notion of futures [2,5] of a package repository. This allows to in-
vestigate under which conditions a potential future problem may occur, or what

7 http://coinst.irill.org, retrieved January 2013

http://coinst.irill.org

Formal Aspects of Free and Open Source Software Components 233

Package: bar

Version: 2.3

Package: baz

Version: 2.5

Conflicts : bar (> 2.4)

Package: foo

Version: 1

Depends: (baz (=2.5) | bar (=2.3)) ,

(baz (<2.3) | bar (>2.6))

Fig. 8. Package foo in version 1 is outdated

changes to a repository are necessary to make a currently occurring problem
go away. This analysis can give package maintainers important hints about how
problems may be solved, or how future problems may be avoided. The precise
definition of these properties relies on the definition of the possible future of a
repository:

Definition 11 (Future). A repository F is a future of a repository R if the
following two properties hold:

uniqueness R ∪ F is a repository; this ensures that if F contains a package p
with same version and name as a package q already present in R, then p = q;

monotonicity For all p ∈ R and q ∈ F : if p.n = q.n then p.v ≤ q.v.

In other words, when going from the current repository to some future of it
one may upgrade current versions of packages to newer versions, but not down-
grade them to older versions (monotonicity). One is not allowed to change the
meta-data of a package without increasing its version number (uniqueness), but
besides this the upgrade may modify the meta-data of a package in any possible
way, and may even remove a package completely from the repository, or intro-
duce new packages. This notion models all the changes that are possible in the
maintenance process usually used by distribution editors, even if the extreme
case of a complete change of meta-data allowed in this model is quite rare in
practice. Note that the notion of future is not transitive as one might remove a
package and then reintroduce it later with a lower version number.

The first property using futures that we are interested in is the following one:

Definition 12 (Outdated). Let R be a repository. A package p ∈ R is out-
dated in R if p is not installable in any future F of R.

That is, p is outdated in R if it is not installable (since R is itself one of its
futures) and if it has to be upgraded to make it ever installable again. In other
words, the only way to make p installable is to upload a fixed version of the
package since no modification to other packages than p can make p installable.
This information is useful for quality assurance since it pinpoints packages where
action is required. An example of an outdated package is given in Fig. 8.

234 R.D. Cosmo, R. Treinen, and S. Zacchiroli

Definition 13 (Challenges). Let R be a repository, p, q ∈ R, and q installable
in R. The pair (p.n, v), where v > p.v, challenges q if q is not installable in any
future F which is obtained by upgrading p to version v.

Intuitively (p.n, v) challenges q, when upgrading p to a new version v without
touching any other package makes q not installable. This permits to pinpoint
critical future upgrades that challenge many packages and that might therefore
need special attention before being pushed to the repository. An example is given
in Fig. 9.

Package: foo

Version: 1.0

Depends: bar (<= 3.0) | bar (>= 5.0)

Package: bar

Version: 1.0

Package: baz

Version: 1.0

Depends: foo (>= 1.0)

Fig. 9. Package bar challenges package foo for versions in the interval]3.0, 5.0[

The problem in deciding these properties is that any repository has an infinite
number of possible futures. The two properties we are interested in belong to
the class of so-called straight properties. For this class of properties it is in fact
sufficient to look at a finite set of futures only which cover all of the problems that
may occur in any future. One can show [5] that it is sufficient to look at futures
where no package has been removed and new packages have been introduced
only when their name was already mentioned in R, and where all new versions
of packages have no conflicts and no dependencies. For any package there is an
infinite space of all future version numbers, however, there is only a finite number
of equivalence classes of these with respect to observational equivalence where
the observations are the constraints on versions numbers used in R.

In reality, the definition of a future is more involved than the one given in
Def. 11. In almost all distributions, packages are in fact not uploaded inde-
pendently from each other but are updated together with all other packages
stemming from the same source package. The complete definition of a future
also takes into account a notion of clusters of packages, which are in our case
formed by all binary packages stemming from the same source. Def. 13 has to
be adapted accordingly, by allowing for all packages in the same cluster as p to
be upgraded.

The full version of the algorithms in presence of package clusters, together
with their proof of soundness, can be found in [5].

The top challenging upgrades in Debian Lenny found by our tool are listed in
Table 5. Regularly updated reports on outdated Debian packages are available
as part of the distribution quality assurance infrastructure.8

8 http://edos.debian.net/outdated.php, retrieved January 2013

http://edos.debian.net/outdated.php

Formal Aspects of Free and Open Source Software Components 235

Table 5. Top 13 challenging upgrades in Debian lenny

Source Version Target Version Breaks

python-defaults 2.5.2-3 ≥ 3 1079
python-defaults 2.5.2-3 2.6 ≤ . < 3 1075
e2fsprogs 1.41.3-1 any 139
ghc6 6.8.2dfsg1-1 ≥ 6.8.2+ 136
libio-compress-base-perl 2.012-1 ≥ 2.012. 80
libcompress-raw-zlib-perl 2.012-1 ≥ 2.012. 80
libio-compress-zlib-perl 2.012-1 ≥ 2.012. 79
icedove 2.0.0.19-1 > 2.1-0 78
iceweasel 3.0.6-1 > 3.1 70
haskell-mtl 1.1.0.0-2 ≥ 1.1.0.0+ 48
sip4-qt3 4.7.6-1 > 4.8 47
ghc6 6.8.2dfsg1-1 6.8.2dfsg1+ ≤ . < 6.8.2+ 36
haskell-parsec 2.1.0.0-2 ≥ 2.1.0.0+ 29

With the same philosophy of identifying the impact of repository evolutions,
it is important for quality assurance to be able to spot easily whether a new
release has introduced new errors, and one particular error that affects FOSS
distributions is the introduction of new incompatibilities among packages that
were co-installable in a previous version. At first sight, identify such errors seems
unfeasible: one would need to enumerate all possible sets of incompatible pack-
ages in the new distribution, and then check whether they were already incom-
patible in the previous release. Since there are 2n package sets in a distribution
with n packages, and n is in the tens of thousands, this approach is unfeasible.
Recent work has shown that by introducing a notion of cover for incompati-
ble package sets, it is actually possible to identify all such new errors in a very
limited amount of time [21].

5 Related Work

Upgrade Simulation. Incompleteness and poor expressivity are just some of the
issues that might be encountered while upgrading FOSS-based systems [18,24].
Several other issues can be encountered during actual package deployment, due
to the unpredictability of configuration scripts execution on target machines.
The formal treatment of those scripts is particularly challenging due to the fact
that they are usually implemented in languages such as shell script and Perl,
which are Turing-complete languages that also heavily rely on dynamic features
such as shell expansions.

Model-driven techniques [12] have been applied to first capture the syntax
and semantics of common high-level actions performed by configuration scripts
in popular FOSS distributions, and then to instrument package deployment with
simulators able to predict a significant range of upgrade failures before the actual
target machine is affected [22,48,14,28].

236 R.D. Cosmo, R. Treinen, and S. Zacchiroli

Packages and Software Components. Packages share important features with
software components [50,38], but exhibit also some important differences. On
the one hand, packages, like components, are reusable software units which can
be combined freely by a system administrator; they are also independent units
that follow their own development time-line and versioning scheme.

On the other hand, packages, unlike what happens in many software com-
ponent models, cannot be composed to build a larger component, and it is not
possible to install more than one copy of a given package on a given system. Fur-
thermore, installation of packages, and execution of software contained in pack-
ages, acts on shared resources that are provided by the operating system, like
creating files on the file system, or interacting through the systems input/out-
put devices. As a consequence, packages may be in conflict with each other, a
phenomenon which is not (yet?) commonplace for software components.

Software components come with an interface describing their required and
provided services. In the case of packages, requirements and provided features
are given by symbolic names (either names of packages, or names of abstract
features) whose semantics is defined separately from the package model. For
instance, a policy document may describe how an executable must behave in
order to provide a feature mail-transport-agent, or an external table will tell
us which symbols have been provided in version 1.2.3 of library libfoo.

Packages and Software Product Lines. Issues similar to dependency solving are
faced by semi-automatic configurators for software product lines [16]: they too
have dependencies and conflicts, this time among features, and need to find a
subset of them that work well together. Independently from packaging work,
the application of SAT solving to feature selection has been investigated, among
others, in [34].

The analogy between software product lines (SPL) and package repositories
have been recently observed in other works, that explicitly show how to map
one formalism into the other and vice-versa. The goal is to allow sharing of tools
and techniques between the two worlds. The mapping from software product
lines, based on the feature diagram formalism, to package repositories has been
established in [26]; whereas a converse mapping, from Debian packages to SPL,
has been more recently proposed in [32].

Packages and the Cloud. The idea of relying on automated tools to configure a
software system based on (i) a repository of components and (ii) a user request to
satisfy, can be applied in contexts larger than a single machine. The idea can in
fact be extended to networks of heterogeneous machines, where each machine is
associated to a specific package repository, and to higher-level services that span
multiple machines and might induce inter-dependencies (and conflicts) among
them.

This approach has been recently explored in the context of the Aeolus project
[27], which directly tries to apply constraint solving to network and cloud settings
and, with a slightly narrower but more easily automatable scope, also in the
context of the Engage system [31].

Formal Aspects of Free and Open Source Software Components 237

References

1. Abate, P., Boender, J., Di Cosmo, R., Zacchiroli, S.: Strong dependencies between
software components. In: ESEM 2009: 3rd International Symposium on Empirical
Software Engineering and Measurement, pp. 89–99 (2009)

2. Abate, P., Di Cosmo, R.: Predicting upgrade failures using dependency analysis.
In: Abiteboul, S., Böhm, K., Koch, C., Tan, K.L. (eds.) Workshops Proceedings
of the 27th International Conference on Data Engineering, ICDE 2011, Hannover,
Germany, April 11-16, pp. 145–150. IEEE (2011)

3. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: Mpm: a modular package
manager. In: CBSE 2011: 14th International ACM SIGSOFT Symposium on Com-
ponent Based Software Engineering, pp. 179–188. ACM (2011)

4. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: Dependency solving: a sepa-
rate concern in component evolution management. Journal of Systems and Soft-
ware 85(10), 2228–2240 (2012)

5. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: Learning from the future
of component repositories. In: CBSE 2012: 15th International ACM SIGSOFT
Symposium on Component Based Software Engineering, pp. 51–60. ACM (2012)

6. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: Learning from the future of
component repositories. Science of Computer Programming (2012) (to appear)

7. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: A modular package manager
architecture. Information and Software Technology 55(2), 459–474 (2013)

8. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex net-
works. Nature 406(6794), 378–382 (2000)

9. Argelich, J., Le Berre, D., Lynce, I., Marques-Silva, J., Rapicault, P.: Solving Linux
upgradeability problems using boolean optimization. In: LoCoCo: Logics for Com-
ponent Configuration. EPTCS, vol. 29, pp. 11–22 (2010)

10. Artho, C.V., Di Cosmo, R., Suzaki, K., Zacchiroli, S.: Sources of inter-package con-
flicts in debian. In: LoCoCo 2011 International Workshop on Logics for Component
Configuration (2011)

11. Artho, C.V., Suzaki, K., Di Cosmo, R., Treinen, R., Zacchiroli, S.: Why do soft-
ware packages conflict? In: MSR 2012: 9th IEEE Working Conference on Mining
Software Repositories, pp. 141–150. IEEE (2012)

12. Bézivin, J.: On the unification power of models. SOSYM 4(2), 171–188 (2005)
13. Boender, J.: Efficient computation of dominance in component systems (Short pa-

per). In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041,
pp. 399–406. Springer, Heidelberg (2011)

14. Cicchetti, A., Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: A model
driven approach to upgrade package-based software systems. In: Maciaszek, L.A.,
González-Pérez, C., Jablonski, S. (eds.) ENASE 2008/2009. CCIS, vol. 69, pp.
262–276. Springer, Heidelberg (2010)

15. Clayberg, E., Rubel, D.: Eclipse Plug-ins, 3rd edn. Addison-Wesley Professional
(December 2008)

16. Clements, P., Northrop, L.: Software product lines. Addison-Wesley (2002)
17. Cosmo, R.D., Boender, J.: Using strong conflicts to detect quality issues in

component-based complex systems. In: Padmanabhuni, S., Aggarwal, S.K., Bel-
lur, U. (eds.) ISEC, pp. 163–172. ACM (2010)

18. Crameri, O., Knezevic, N., Kostic, D., Bianchini, R., Zwaenepoel, W.: Staged de-
ployment in mirage, an integrated software upgrade testing and distribution sys-
tem. SIGOPS Oper. Syst. Rev. 41(6), 221–236 (2007)

238 R.D. Cosmo, R. Treinen, and S. Zacchiroli

19. Davis, M., Putnam, H.: A computing procedure for quantification theory.
J. ACM 7(3), 201–215 (1960)

20. Des Rivières, J., Wiegand, J.: Eclipse: a platform for integrating development tools.
IBM Systems 43(2), 371–383 (2004)

21. Vouillon, J., Di Cosmo, R.: Broken sets in software repository evolution. In: ICSE
2013. ACM (to appear, 2013)

22. Di Cosmo, R., Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: Sup-
porting software evolution in component-based FOSS systems. Science of Computer
Programming 76(12), 1144–1160 (2011)

23. Di Cosmo, R., Lhomme, O., Michel, C.: Aligning component upgrades. In:
Drescher, C., Lynce, I., Treinen, R. (eds.) LoCoCo 2011 International Workshop
on Logics for Component Configuration, vol. 65, pp. 1–11 (2011)

24. Di Cosmo, R., Trezentos, P., Zacchiroli, S.: Package upgrades in FOSS distribu-
tions: Details and challenges. In: HotSWUp 2008: Hot Topics in Software Upgrades.
ACM (2008)

25. Di Cosmo, R., Vouillon, J.: On software component co-installability. In: Gyimóthy,
T., Zeller, A. (eds.) SIGSOFT FSE, pp. 256–266. ACM (2011)

26. Di Cosmo, R., Zacchiroli, S.: Feature diagrams as package dependencies. In: Bosch,
J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 476–480. Springer, Heidelberg
(2010)

27. Di Cosmo, R., Zacchiroli, S., Zavattaro, G.: Towards a formal component model
for the cloud. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 156–171. Springer, Heidelberg (2012)

28. Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: Towards maintainer
script modernization in FOSS distributions. In: IWOCE 2009: International Work-
shop on Open Component Ecosystem, pp. 11–20. ACM (2009)

29. Dolstra, E., Löh, A.: NixOS: A purely functional linux distribution. In: ICFP (2008)
(to appear)

30. EDOS Project: Report on formal management of software dependencies. EDOS
Project Deliverables D2.1 and D2.2 (March 2006)

31. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: a deployment management
system. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI, pp. 263–274. ACM (2012)

32. Galindo, J., Benavides, D., Segura, S.: Debian packages repositories as software
product line models. towards automated analysis. In: Dhungana, D., Rabiser, R.,
Seyff, N., Botterweck, G. (eds.) ACoTA. CEUR Workshop Proceedings, vol. 688,
pp. 29–34. CEUR-WS.org (2010)

33. Gonzalez-Barahona, J., Robles, G., Michlmayr, M., Amor, J., German, D.: Macro-
level software evolution: a case study of a large software compilation. Empirical
Software Engineering 14(3), 262–285 (2009)

34. Janota, M.: Do SAT solvers make good configurators? In: SPLC: Software Product
Lines Conference, vol. 2, pp. 191–195 (2008)

35. Järvisalo, M., Berre, D.L., Roussel, O., Simon, L.: The international SAT solver
competitions. AI Magazine 33(1) (2012)

36. Jenson, G., Dietrich, J., Guesgen, H.W.: An empirical study of the component
dependency resolution search space. In: Grunske, L., Reussner, R., Plasil, F. (eds.)
CBSE 2010. LNCS, vol. 6092, pp. 182–199. Springer, Heidelberg (2010)

37. LaBelle, N., Wallingford, E.: Inter-package dependency networks in open-source
software. CoRR cs.SE/0411096 (2004)

38. Lau, K.K., Wang, Z.: Software component models. IEEE Trans. Software
Eng. 33(10), 709–724 (2007)

Formal Aspects of Free and Open Source Software Components 239

39. Le Berre, D., Parrain, A.: On SAT technologies for dependency management and
beyond. In: SPLC 2008: Software Product Lines Conference, vol. 2, pp. 197–200
(2008)

40. Le Berre, D., Rapicault, P.: Dependency management for the Eclipse ecosys-
tem. In: IWOCE 2009: International Workshop on Open Component Ecosystems,
pp. 21–30. ACM (2009)

41. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 1(1), 121–141 (1979)

42. Maillart, T., Sornette, D., Spaeth, S., von Krogh, G.: Empirical tests of zipf’s law
mechanism in open source linux distribution. Phys. Rev. Lett. 101, 218701 (2008),
http://link.aps.org/doi/10.1103/PhysRevLett.101.218701

43. Mancinelli, F., Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Leroy, X.,
Treinen, R.: Managing the complexity of large free and open source package-based
software distributions. In: ASE 2006: Automated Software Engineering, pp. 199–
208. IEEE (2006)

44. Michel, C., Rueher, M.: Handling software upgradeability problems with MILP
solvers. In: LoCoCo 2010: Logics for Component Configuration. EPTCS, vol. 29,
pp. 1–10 (2010)

45. OSGi Alliance: OSGi Service Platform, Release 3. IOS Press, Inc. (2003)
46. Quinton, C., Rouvoy, R., Duchien, L.: Leveraging feature models to configure vir-

tual appliances. In: Proceedings of the 2nd International Workshop on Cloud Com-
puting Platforms, CloudCP 2012, pp. 2:1–2:6. ACM, New York (2012),
http://doi.acm.org/10.1145/2168697.2168699

47. Raymond, E.S.: The cathedral and the bazaar. O’Reilly (2001)
48. Ruscio, D.D., Pelliccione, P., Pierantonio, A.: EVOSS: A tool for managing the

evolution of free and open source software systems. In: Glinz, M., Murphy, G.C.,
Pezzè, M. (eds.) ICSE, pp. 1415–1418. IEEE (2012)

49. Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation and Applica-
tion. Wiley (1986)

50. Szyperski, C.: Component Software. Beyond Object-Oriented Programming.
Addison-Wesley (1998)

51. Treinen, R., Zacchiroli, S.: Solving package dependencies: from EDOS to Mancoosi
(2008)

52. Treinen, R., Zacchiroli, S.: Common upgradeability description format (CUDF)
2.0. Technical Report 3, The Mancoosi Project (November 2009),
http://www.mancoosi.org/reports/tr3.pdf

53. Treinen, R., Zacchiroli, S.: Expressing advanced user preferences in component in-
stallation. In: IWOCE 2009: International Workshop on Open Component Ecosys-
tems, pp. 31–40. ACM (2009)

54. Trezentos, P., Lynce, I., Oliveira, A.: Apt-pbo: Solving the software dependency
problem using pseudo-boolean optimization. In: ASE 2010: Automated Software
Engineering, pp. 427–436. ACM (2010)

55. Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: OPIUM: Optimal package instal-
l/uninstall manager. In: ICSE 2007: International Conference on Software Engi-
neering, pp. 178–188. IEEE (2007)

http://link.aps.org/doi/10.1103/PhysRevLett.101.218701
http://doi.acm.org/10.1145/2168697.2168699
http://www.mancoosi.org/reports/tr3.pdf

	Formal Aspects of Free and Open Source Software Components
	Introduction
	Formal Package Models
	Concrete Package Model
	Abstract Package Model
	On the Complexity of Installability

	Upgrade Optimization
	The Common Upgradeability Description Format
	User Preferences
	The MISC Competition

	Quality Assurance of Component Repositories
	Identifying Broken Packages
	Analyzing the Dependency Structure of a Repository
	Analyzing the Conflict Structure of a Repository
	Predicting Evolutions

	Related Work

