
A Generative Approach
to the Implementation of Language Bindings

for the Document Object Model?

Luca Padovani Claudio Sacerdoti Coen Stefano Zacchiroli
{lpadovan, sacerdot, zacchiro}@cs.unibo.it

Department of Computer Science, University of Bologna
Mura Anteo Zamboni, 7 – 40127 Bologna, IT

Abstract. The availability of a C implementation of the Document
Object Model (DOM) offers the interesting opportunity of generating
bindings for different programming languages automatically. Because of
the DOM bias towards Java-like languages, a C implementation that
fakes objects, inheritance, polymorphism, exceptions and uses reference-
counting introduces a gap between the API specification and its actual
implementation that the bindings should try to close. In this paper we
overview the generative approach in this particular context and apply it
for the generation of C++ and OCaml bindings.

1 Introduction

The widespread use of XML imposes every mainstream programming language
to be equipped with an implementation of the main W3C technologies, among
which is the Document Object Model (DOM) [7, 8]. Quite often these standard
technologies require substantial development efforts that small communities can-
not always afford. One way to address this problem is the introduction of a com-
mon platform, like the recent .NET, that enables direct library sharing among
different languages. The alternative, traditional solution is to implement a given
API in a low-level programming language (typically C) and to write bindings
to this implementation for all the other programming languages. This approach
has the advantage of requiring no modification to the language implementation.
On the other hand the low-level implementation introduces a gap between the
original high-level specification of the API and the low-level provided interface.
The gap must be closed in the binding process by providing a high-level API
that is as close as possible to the original specification. In this paper we overview
a framework for the generation of bindings for a C DOM implementation.1

? This work was partly supported by the European Project IST-2001-33562 MoWGLI.
Luca Padovani received partial support from the Ontario Research Centre for Com-
puter Algebra.

1 We take Gdome [1, 5], the GNOME DOM Engine, as our representative DOM imple-
mentation. See http://gdome2.cs.unibo.it.

The DOM API, as well as several other W3C technologies, is blatantly biased
towards an object-oriented programming language with support for inheritance,
polymorphism, exceptions and garbage collection, like Java. This bias is perfectly
acceptable in the bleak world of mainstream programming languages where even
sensibly different languages tend to converge towards a common, limited set of
syntactical and semantical aspects. In other communities this tendency turns
out to be too constraining. In particular, the larger the gap between the binding
target language and Java, the greater the efforts for implementing smoothly the
aforementioned APIs.

In order to get a clearer idea of the problems, let us have a look at some
code that uses the Gdome C DOM implementation. The following code fragment
is meant to perform an apparently trivial task: iterate over the child elements of
a given element el, and perform some unspecified action on each of them:

GdomeException exc;

GdomeNode *p = gdome_el_firstChild (el, &exc);

while (p != NULL) {

GdomeNode *next = gdome_n_nextSibling (p, &exc);

if (gdome_n_nodeType (p, &exc) == GDOME_ELEMENT_NODE) {

GdomeElement *pel = gdome_el_cast (p);

/* do something with the element */

}

gdome_n_unref (p, &exc);

p = next;

}

Note how: (1) each method invocation carries an extra argument exc for de-
tecting exceptions and that, for brevity, we do not perform error checking;
(2) safe downcasting is done via explicit macros, but there is always the dan-
gerous temptation of using C casting because, all considered, “it works”; (3)
reference-counted objects requires lots of careful coding to avoid memory leaks.
Besides, Gdome uses its own UTF-8 strings meaning that, prior to calling any
method accepting a string as a parameter, the programmer has to allocate a
GdomeDOMString object, initialize it, and free it after the call. These details,
which are not visible at the DOM specification level, sensibly increase the pro-
grammer’s discomfort and annoyance.

Since DOM provides a set of standard interfaces with good uniformity of
names and types, there is the interesting opportunity of generating language
bindings automatically, instead of hand-coding them. The advantages of this
approach include reduced development time, increased maintainability and mod-
ularity of the bindings. Besides, an XML specification of the DOM interfaces is
already available within the DOM recommendation itself. Although its main use
is for generating documentation and test cases, it happens to have most of the
information needed for the generation of a language binding once the appropriate
design choices have been made.

The architecture we propose for the automatic generation of DOM bindings
is shown in Figure 1. On the left hand side we have the XML specification of

Fig. 1. Architecture of the generator for DOM bindings.

the DOM interfaces. Most of the specification is the actual W3C XML specifi-
cation, but, as we will see in Section 2, we need additional information that is
contained in a separate document. Being the specification encoded in XML, we
have implemented the generator as the combination of an XSLT engine along
with a set of XSLT stylesheets [6]. The code of different bindings based on dif-
ferent binding logics is generated by different XSLT stylesheets. The generated
code is then combined with hand-written code which cannot be generated auto-
matically (it amounts to a handful of lines) and linked against the Gdome DOM
implementation in order to produce the final binding library.

The outline of the paper is as follows: in Section 2 we overview the format of
the high-level DOM specification, what kind of information is available and how
it is organized. Sections 3 and 4 cover the main design choices for the bindings
currently implemented: C++ and OCaml [12]. In particular, we emphasize those
aspects of the DOM API for which C++ and OCaml provide more natural
implementations than C does. In Section 5 we show three templates for the
three bindings highlighting similarities and differences among them. These also
show what kind of XSLT code is required to be written when following our
approach. We conclude the paper in Section 6 trying to quantify the effectiveness
of the whole approach. The source code of the framework is freely available at
the address http://gmetadom.sourceforge.net. In the rest of the paper some
knowledge of the Document Object Model is assumed.

2 DOM Interface Specification

In this section we briefly overview the XML description of the DOM interfaces as
it is provided by the W3C.2 Each DOM interface is described by an interface
element characterized by a name and possibly the base interface this interface
2 This description is not directly advertised by the W3C, it can be

found as part of the source XML files of the DOM recommendation,
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/DOM2-Core.zip.

derives from. In the following example we see the Element interface extending
the Node interface:

<interface name="Element" inherits="Node" id="ID-745549614">

<descr>...</descr>

...

</interface>

In several places within the XML elements there are descr elements whose con-
tent is meant to be informal and used for documentation purposes. Although use-
less for code generation, they may be used for producing documenting comments
aside method and class declarations in the generated code, possibly adhering to
some standardized conventions.3

The most important components of an interface are the descriptions of at-
tributes and methods. Each attribute is specified in terms of a name, a type,
and a readonly flag. Here is the declaration for the nextSibling attribute in
the Node interface:

<attribute readonly="yes" type="Node" name="nextSibling"

id="ID-6AC54C2F">

<descr>

<p>The node immediately following this node.

If there is no such node, this returns

<code>null</code>.</p>

</descr>

</attribute>

Methods are characterized by a name, a list of parameters, the type of the
returned object, and an optional raises section which lists the exceptions that
can be raised by the method. Each parameter comes with a name, a type, and
passing style which, in the case of DOM interfaces, is always in (that is, in-
put parameters). Here is the declaration for the replaceChild method in the
Element interface:

<method name="replaceChild" id="ID-785887307">

<descr>...</descr>

<parameters>

<param name="newChild" type="Node" attr="in">

<descr>...</descr>

</param>

<param name="oldChild" type="Node" attr="in">

<descr>...</descr>

</param>

</parameters>

<returns type="Node">

<descr>...</descr>

</returns>

<raises>

3 These are typically simplified forms of literal programming.

<exception name="DOMException">

<descr>

<p>HIERARCHY_REQUEST_ERR: ...</p>

<p>WRONG_DOCUMENT_ERR: ...</p>

...

</descr>

</exception>

</raises>

</method>

There is only one DOM exception (at least within the Core DOM module), which
is parameterized by an exception code (whose symbolic names can be seen in
the description within the exception element).

Occasionally an interface also defines a list of constants within a group el-
ement. Each constant has a symbolic name, a type, and a value. The most
important constants are those determining the type of a DOM node and can be
found inside the Node interface:

<group id="ID-1841493061" name="NodeType">

<descr>

<p>An integer indicating which type of node this is.</p>

...

</descr>

<constant name="ELEMENT_NODE" type="unsigned short" value="1">

<descr>...</descr>

</constant>

<constant name="ATTRIBUTE_NODE" type="unsigned short" value="2">

<descr>...</descr>

</constant>

<constant name="TEXT_NODE" type="unsigned short" value="3">

<descr>...</descr>

</constant>

...

</group>

There is one piece of information that is missing from the XML description of
the DOM interfaces and that is important during the code generation phase: no
indication is given as to whether an attribute, a parameter or the value returned
by a method can be null.4 This detail has no practical consequences in Java
simply because in this language null is a special, distinguished value that any
pointer can take. But this is not the case in general: for example, a C++ refer-
ence cannot be null; hence C++ references cannot be used for representing types
of nullable entities. Even more delicate are functional languages, where there is
usually no notion of “null object”, or at least this notion has to be used in a
type-safe manner: there can be an empty list or an empty tree, but the general

4 In some cases this can be heuristically inferred by the description of the entity (see
the nextSibling attribute shown previously). What we mean is that there is no
systematic, exploitable information about this fact.

approach for representing nullable or optional values is to use the α option type
(in Objective Caml and SML) which permits the construction of “an object x”
as Some x and the construction of “no object” as None. Symmetrically, optional
values must be properly deconstructed using pattern matching. Clearly this may
become annoying and exceedingly verbose, especially in those cases when a pa-
rameter is required to be non-null or a returned value cannot be null. What is
missing is a nullable attribute in the XML specification of DOM attributes,
methods and parameters indicating whether that particular entity admits null
among the possible values. This way, during the code generation phase, we are
able to generate the most appropriate type. In particular, when generating code
for a functional language we are forced to use optional values only where strictly
needed. As a side effect, the API produced is also lighter and more usable.

Instead of modifying the original XML specifications, we have preferred to
store this information in a parallel set of complementary XML resources, called
annotations. A fragment of these annotations relative to the Node interface is
shown below:

<Annotations>

...

<Attribute name="parentNode" nullable="yes"/>

<Attribute name="childNodes" nullable="no"/>

...

<Method name="insertBefore" nullable="no">

<Param name="newChild" nullable="no"/>

<Param name="refChild" nullable="yes"/>

</Method>

...

</Annotations>

3 C++ Binding

We have decided to keep the C++ binding as much lightweight as possible,
considering the overhead that is intrinsic in the layered architecture of the DOM
implementation.5 The C++ binding consists of a set of classes, one for each
DOM interface, which act like wrappers for the corresponding, lower-level C
structures. Wrappers provide one method for each method in the DOM interface,
and getter/setter methods for attributes (the setter method is only generated
if the attribute is writable). The classes are declared in the GdomeSmartDOM
namespace, which is typically abbreviated in the application source code with
an alias directive

namespace DOM = GdomeSmartDOM;

Basically the wrapping classes are smart pointers [9–11] that relieve the pro-
grammer from worrying about memory management. The only unusual feature
5 The Gdome DOM implementation is itself a wrapper for a non-conformant, DOM-like

library.

is that the counter is already present at the Gdome level, so the wrappers only
automate the increment and decrement operations. Each wrapper class has two
constructors:

class Node

{

public:

explicit Node(GdomeNode* = 0);

protected:

explicit Node(GdomeNode* obj, bool) : gdome_obj(obj) { }

...

};

The public constructor behaves normally from the developer’s viewpoint, it in-
crements the reference counter of the Gdome object whenever this is non-null.
The protected constructor, distinguished because of an unused boolean argu-
ment, is used internally in the generated code for initializing a wrapper with an
object returned by a Gdome method: Gdome already increments the counter of any
returned object, hence it would be an error to increment it twice (or we would
have to decrement it explicitly at some extra cost). The following code fragment
shows the generated implementation of the setAttributeNode method in the
Element interface:

Attr

Element::setAttributeNode(const Attr& newAttr) const

{

GdomeException exc_ = 0;

GdomeAttr* res_ =

gdome_el_setAttributeNode(

(GdomeElement*) gdome_obj, // self

(GdomeAttr*) newAttr.gdome_obj, // projection Attr -> GdomeAttr*

&exc_);

if (exc_ != 0)

throw DOMException(exc_, "Element::setAttributeNode");

return Attr(res_, true); // promotion GdomeAttr* -> Attr

}

As inheritance and polymorphism are handled at the Gdome level, the only
support that we have automated has been the provision for casting. This is pos-
sible because the XML description of the DOM interfaces includes information
about the relationship between interfaces. Upcasting is implemented by deriv-
ing wrapping classes for extended interfaces from wrapping classes for the base
interface:

class Element : public Node { ... };

Safe downcasting is implemented by generating, in each wrapping class for
a derived interface, a set of constructors taking as a parameter a wrapper class
for an ancestor interface:

class Text : public CharacterData

{

// ...

Text(const Text&);

Text(const CharacterData&);

Text(const Node&);

};

If the cast fails the wrapper object is initialized with a NULL pointer (this is
the same behavior of the dynamic_cast operator on plain C++ pointers). Casts
like Element to Text, which are statically known to be unsafe, are prevented
simply because no suitable copy-constructor that applies is generated. Finally,
appropriate cast constructors are also generated whenever a DOM object is
meant to implement multiple DOM interfaces (this is the case of Node and
EventTarget, which belong to different, orthogonal DOM modules).

String management had to be coded manually, but since it is completely un-
related to all the other design choices related to the C++ binding it has been
separated from the rest of the code so that it is reusable from alternative C++
bindings that we might want to experiment with in the future. Gdome has its
own (reference counted) structures for representing strings encoded in UTF-
8, whereas C++ comes with an extremely general string implementation in the
STL library, but such implementation does not take into account encoding issues
directly. We wanted to provide easy conversions from Gdome’s internal encoding
(which, in principle, the programmer should not be concerned about), to a lim-
ited set of generally useful encodings (UTF-16 and UCS4) without introducing
at the same time gratuitous inefficiencies. Hence we have structured string man-
agement on two levels. At the bottom level is the DOM::GdomeString class which
is just a wrapper to Gdome’s GdomeDOMString type and provides only basic op-
erations like comparison and initialization from plain C++ strings. At a higher
level are DOM::UTF8String, DOM::UTF16String, DOM::UCS4String, which are
typedefs for instantiations of std::basic_string with appropriate char types
chosen to match the required number of bits but also the standard C++ char
types. On most architectures, DOM::UTF8String and DOM::UCS4String are just
aliases for std::string and std::wstring respectively.

Appropriate operators and constructors are provided for transparent encod-
ing translation passing through the DOM::GdomeString type. It is thus possible
to write

DOM::UTF16String s = n.get_nodeName();

// ...do something with s...

n.set_nodeValue(s);

without worrying about the fact that those methods return and accept
DOM::GdomeString parameters. Note however that a string returned by a DOM
method and passed unchanged to another DOM method need not go through
any conversion.

Once all the pieces are put together, the conceptually simple but obfuscated
example shown in Section 1 can be recast to the following crystal clear piece of
C++ code:

for (DOM::Node p = el.get_firstChild(); p; p = p.get_nextSibling())

if (DOM::Element pel = p) {

// do something with the element

}

4 OCaml Binding

Objective Caml (OCaml) is a class-based, object-oriented extension of Caml, a
multi-paradigm language of the ML family whose main characteristics are the
strongly-typed functional core augmented with imperative constructs, memory
management delegated to a garbage collector, a type-inference based type system
that relieves the programmer from having to explicitly declare the type of each
function, and an expressive module system that can effectively replace objects
and classes whenever late binding is not necessary. Higher-order functions and
parametric polymorphism yield a very expressive type system where casts are
not necessary at all, and are left out of the language.

The object-oriented capabilities of OCaml differ from traditional object-
oriented languages like Java or C++ in that in OCaml subtyping is not related
to inheritance. OCaml inheritance is just syntactic sugar to avoid code dupli-
cation, and subtyping and interfaces are not necessary: the type of a function
or a method can be a generic object type τ that is the type of all the objects
that expose at least the methods listed in τ . For instance, every object that
has a as_xml method that returns an XML representation of the object itself
matches the generic object type τ = < method as_xml: xml ; ... >, which
can be used to type the argument of a method. Despite these differences, a Java
class hierarchy can be faithfully mapped using the OCaml class system, so we
are able, at least in principle, to provide a DOM binding which can be used in a
way that is syntactically similar to more conventional object-oriented languages.

Unfortunately, in OCaml it is not possible to bind directly external functions
to object methods. Thus, to provide an object-oriented DOM binding we are
forced to adopt a layered approach: the lower level is a binding for the functional
core of the language; the upper level builds an object-oriented abstraction on
top of the lower level. An user can choose, according to her preferences and pro-
gramming style, the functional interface of the lower level, or the object-oriented
interface. In the latter case the lower level can remain completely hidden.

Assuming the existence of the lower level, the second layer is not complex.
A DOM object of type T is implemented as a value of type T ′ at the lower level
and as an object of an OCaml class T ′′ at the higher level. At the lower level a
DOM method is implemented as a pre-method, a function whose first argument
is the self parameter of type T ′. As the C DOM implementation is also based
on pre-methods, the OCaml function is easily bound to its native counterpart.

At the higher level the OCaml class has one field of type T ′ representing self
at the lower level. This field is hidden to the user, but it is available within the
OCaml class via a as_T ′ method. All the requests sent to an object are delegated
to the lower level. Any parameter of type T ′′ which is pertinent to the higher
level is converted to the corresponding type T ′ at the lower level by means of the
as_T ′ projection. Conversely, any value of type T ′ returned by the pre-method
is wrapped by a new object instance of type T ′′. The following example, which
shows a fragment of the generated implementation of the OCaml element class,
should clarify the basic mechanisms:

class element (self : TElement.t) = (* TElement.t lower-level type *)

object

inherit (node (self :> TNode.t)) (* TElement.t subtype of TNode.t *)

method as_Element = self (* projection method *)

method setAttributeNode ~newAttr =

let res =

IElement.setAttributeNode (* pre-method call *)

~this:self

~newAttr:

((newAttr : attr)#as_Attr) (* projection attr -> TAttr.t *)

in

new attr res (* promotion TAttr.t -> attr *)

end

The similarity of the OCaml higher-level binding with the C++ binding
should be evident. In both cases, the code builds an object-oriented abstraction
on top of a pre-method system. The same similarity is also found between the two
binding logics, described in the XSLT stylesheets, and provides further evidence
in favor of the generative approach. String management, that was a major design
decision for the C++ binding, has also been solved in a similar way for the
OCaml binding. Thus the only major difference between the two bindings is the
handling of NULL values, which was discussed in Section 2.

The low-level OCaml binding presents all the difficulties already faced in the
C++ binding and a few new challenges, such as the interaction of the Gdome ref-
erence counting machinery with the OCaml garbage collector. In particular, the
DOM Events Module API requires callback functions for event listeners, thus
Gdome must register OCaml callback functions. Since OCaml functions are rep-
resented at run-time as closures that are managed by the garbage collector, their
memory location can change at each collection. As a consequence the generated
code is quite involved, and the most part of the bugs found in the development
phase were related to memory management.

Notwithstanding the previous considerations, the greatest challenge in the
design of the low-level OCaml binding has been related to typing issues. In
particular, the problem consists in defining a collection of OCaml types T for
which the subtyping relation is in accordance with the inheritance relation be-
tween DOM interfaces. For instance, for the previous example to be statically
well-typed, we have to define two types TElement.t, TNode.t ∈ T such that
TElement.t is a subtype of TNode.t.

The simplest solution is declaring a different abstract data type for each
Gdome class. The type must be abstract since the OCaml compiler has no direct
way of manipulating external C values, which are wrapped in garbage collected
memory references and which can be manipulated only by external C functions.
Since up-casts from a subtype S to a supertype T are always safe C casts in the
Gdome implementation, we can make functions of the C casts and bound them to
OCaml external functions of type S → T . One major drawback of this solution
is that the obtained code is quite inefficient, since the frequently called casting
functions, which are nothing more than identity functions, cannot be optimized
neither by the C compiler, nor by the OCaml compiler. Moreover, up-casting
a value to one of its ancestor classes would require a number of applications of
externally defined casting functions equal to the length of the path from the sub-
class to the super-class in the inheritance graph or, alternatively, the definition
of one distinct casting function between each pair of classes in the inheritance
relation.

Due to the previous issues, an alternative, more complex solution has been
preferred to the simpler one. The alternative solution is based on a combination
of the phantom types technique [2, 3] with polymorphic variants [4], which are
an extension of the type system of OCaml that introduce subtyping in the core
language without resorting to the object-oriented extension. As the following
explanation should make clear, the combination of the two techniques is cum-
bersome and definitely not suitable for manual application in large contexts,
as a language binding is. Moreover, a local change in the DOM class hierar-
chy, like those introduced when a new DOM module is implemented, implies
global changes in the binding code that are annoying and error prone. Meta-
programming solves the problem in an elegant and effective way.

The basic idea is to declare just one abstract phantom data type α τ , con-
travariant in the type parameter α. An instance of α τ is bound to each foreign
C type that corresponds to a DOM class. The type α τ is called a phantom type
since it is parameterized over a type variable α that is not used in the definition
of the phantom type and that has no influence on the run-time representation of
values. In other words, two values of distinct types σ1 τ and σ2 τ have the same
memory representation and could be casted — if casts were part of the language
— to any other type instance σ τ . The latter propriety is interesting in our
context since we want to simulate in the OCaml type system the subsumption
rule of the DOM type system, that is casting a value of type σ1 τ bound to a
DOM class c1 to the type σ2 τ bound to a DOM class c2 when c2 is a supertype
of c1. At the same time, we want to statically rule out every pre-method appli-
cation that is ill-typed at the DOM level. Since OCaml does not have casts nor
an implicit subsumption rule, we must simulate both features using parametric
polymorphism only.

Our solution consists in declaring any foreign function whose input is a DOM
class c1 and whose output is a DOM class c2 as having type [c1]i τ → [c2]o τ
where []i and []o are two encodings from DOM classes to OCaml types such
that for each pair of DOM classes c′1 and c′2, if c′1 is a subtype of c′2 in the DOM

type system, then a value of type [c′1]o τ is a valid input for a function of type
[c2]i τ → σ in the OCaml type system. Notice that the latter property is the
counterpart for parametric polymorphism of asking [c′1]o τ to be a subtype of
[c′2]i τ for subtype polymorphism. Polymorphic variants [4] can be used to declare
two meta-level functions []i and []o that satisfy the required constraints.

Table 1. Example of corresponding types in the DOM specification and in the low-level
OCaml binding.

DOM OCaml

Supertype Node [‘Node] τ

Subtype Element [‘Node | ‘Element] τ

Relation Element <: Node because
Element extends Node

[‘Node | ‘Element] τ <: [‘Node] τ
because α is contravariant in α τ
and [‘Node] <: [‘Node | ‘Element]

since {‘Node} ⊂ {‘Node,‘Element}

Method m : Node→ T m : [> ‘Node | ..] τ → [T]o

Object e : Element e : [‘Node | ‘Element] τ

Application m(e) well typed because
e : Element ⇒ e : Node by
subsumption

m(e) well typed because
[‘Node | ‘Element] τ matches
[> ‘Node | ..] τ

Intuitively, a polymorphic variant value is a tag associated with an optional
value (its content). Since we are not interested in the content, we simplify the
picture saying that a polymorphic variant is simply a tag. For instance, ‘Node
and ‘Element are two values whose tags are respectively Node and Element.
A close polymorphic variant type lists several distinct tags. For instance, σ1 =
[‘EventTarget | ‘Node] is the type of all the values that are either a ‘Node
or an ‘EventTarget. The subtyping relation between close polymorphic variant
types is in accordance with the subset relation between the sets of tags, hence
for example [‘Node] is a subtype of [‘EventTarget | ‘Node]. A parametric
polymorphic variant type has an unnamed parameter representing an unspecified
tag set. For instance, σ2 = [> ‘EventTarget | ..] is the parametric type of
all the values that are either an ‘EventTarget or belong to the unnamed tag
set parameter indicated by the ellipsis. Moreover, the type σ1 τ matches σ2 τ
(by instantiating the unnamed parameter .. with the singleton set {‘Node}),
hence the application of a function of type σ2 τ → σ to a value of type σ1 τ is
well-typed. On the contrary, the application of the same function to a value of
type [‘NodeList] τ is not well-typed.

We can interpret the list of tags in a closed contravariant phantom type in-
stance as a list of provided capabilities of an object (e.g. providing both the

EventTarget and Node interfaces in σ1 τ) and the list of tags in a parametric
contravariant phantom type instance as a list of required capabilities (e.g. requir-
ing at least the EventTarget interface in σ2). The contravariance requirement
must be understood in terms of this interpretation: σ1 τ is a subtype of σ2 τ
when σ1 has more capabilities than σ2, i.e. when σ2 is a subtype of σ1. Table 1
summarizes the type relationships in the specific case of the Element interface.

According to the previous observations, we can implement in XSLT the two
meta-level functions []i and []o in the following way: let cn be a DOM class
that recursively inherits from c1, . . . , cn−1 by means of either single or multiple
inheritance; we define [cn]i as the polymorphic variant type [> ‘C1 | . . . | ‘Cn]
and [cn]o as the polymorphic variant type [‘C1 | . . . | ‘Cn] where Ci is a tag
obtained by mangling the name of the class ci. For instance, TElement.t is
defined as [Element]o = [‘EventTarget | ‘Node | ‘Element] since a DOM
Element inherits from a DOM Node (see the DOM Core Specification [7]) and
it is also an EventTarget (as described in the DOM Events Specification [8]).

The following example shows the generated code for the low-level OCaml
binding of the setAttributeNode method:

module GdomeT = struct

type -’a t (* abstract phantom type, contravariant in ’a *)

end

module TElement = struct

type t = [‘EventTarget | ‘Node | ‘Element] GdomeT.t

end

module TAttr = struct

type t = [‘EventTarget | ‘Node | ‘Attr] GdomeT.t

end

external setAttributeNode :

this:[> ‘Element] GdomeT.t ->

newAttr:[> ‘Attr] GdomeT.t ->

TAttr.t

= "ml_gdome_el_setAttributeNode"

The C function ml_gdome_el_setAttributeNode, which is also automati-
cally generated as part of the low-level binding, is defined as follows:

value

ml_gdome_el_setAttributeNode(value self, value p_newAttr)

{

CAMLparam2(self, p_newAttr); /* Directive to the garbage collector */

GdomeException exc_;

GdomeAttr* res_;

res_ = gdome_el_setAttributeNode(Element_val(self),

Attr_val(p_newAttr), &exc_);

if (exc_ != 0)

/* Raises an Ocaml exception */

throw_exception(exc_, "Element.setAttributeNode");

g_assert(res_ != NULL);

CAMLreturn(Val_Attr(res_)); /* Directive to the garbage collector */

}

Once all the pieces are put together, the conceptually simple but obfuscated
example shown in Section 1 can be recast to the following pieces of OCaml code:

(* Object-oriented *) (* Purely functional *)

let rec iter = let rec iter =

function function

None -> () None -> ()

| Some p when p#get_nodeType = | Some p when INode.get_nodeType p =

GdomeNodeTypeT.ELEMENT_NODE GdomeNodeTypeT.ELEMENT_NODE

-> ->

let p’ = let p’ =

Gdome.element_of_node p in IElement.of_Node p in

(* do something with p’ *) (* do something with p’ *)

iter p#get_nextSibling iter (INode.get_nextSibling ~this:p)

| Some p -> | Some p ->

iter p#get_nextSibling iter (INode.get_nextSibling ~this:p)

in in

iter el#get_firstChild iter (INode.get_firstChild ~this:el)

The code is slightly more verbose than the C++ equivalent. This is mainly
a consequence of the bias of the DOM API towards an imperative, first order
approach. Note also that, whereas in the object-oriented API inheritance relieves
the user from remembering in which class a method is defined, in the purely
functional approach each pre-method is qualified with the name of the module
it is defined in. For instance, we have to remember that the get_nextSibling
is a pre-method of the DOM Node class.

5 Generator Logic

In this section we look at significant fragments of the XSLT stylesheets that
implement the generator logic for the various bindings. We classify the generated
code according to the following tasks:

1. prepare the pre-method arguments: objects are projected, primitive values
are converted if needed;

2. invoke the pre-method (high-level OCaml binding) or the Gdome method
(C++ and low-level OCaml binding);

3. check if the pre-method has raised a DOM exception, and, if so, propagate
the exception at the target language level. This is only done for the C++
and low-level OCaml bindings only since the high-level OCaml binding uses
the same exceptions as the low-level one;

4. return the method result by promotion or conversion as necessary.

In addition, each template may also perform a few operations that are specific
to the target language.

Here is the template for the C++ binding:

1 <xsl:template match="method">

2 <xsl:param name="interface" select="’’"/>

3 <xsl:param name="prefix" select="’’"/>

4 <xsl:call-template name="returnTypeOfType">

5 <xsl:with-param name="type" select="returns/@type"/>

6 </xsl:call-template>

7 <xsl:text> </xsl:text>

8 <xsl:value-of select="$interface"/>

9 <xsl:text>::</xsl:text>

10 <xsl:value-of select="@name"/>

11 (<xsl:apply-templates select="parameters"/>) const

12 {

13 GdomeException exc_ = 0;

14 <xsl:apply-templates select="parameters" mode="convert"/>

15 <xsl:call-template name="gdome-result">

16 <xsl:with-param name="type" select="returns/@type"/>

17 <xsl:with-param name="init">

18 <xsl:text>gdome_</xsl:text>

19 <xsl:value-of select="$prefix"/>

20 <xsl:text>_</xsl:text>

21 <xsl:value-of select="@name"/>

22 ((Gdome<xsl:value-of select="$interface"/>*) gdome_obj,

23 <xsl:apply-templates select="parameters" mode="pass"/>

24 &exc_)

25 </xsl:with-param>

26 </xsl:call-template>;

27 <xsl:apply-templates select="parameters" mode="free"/>

28 if (exc_ != 0)

29 throw DOMException(exc_,

30 "<xsl:value-of select="$interface"/>

31 <xsl:text>::</xsl:text>

32 <xsl:value-of select="@name"/>");

33 <xsl:call-template name="return-result">

34 <xsl:with-param name="type" select="returns/@type"/>

35 </xsl:call-template>

36 }

37 </xsl:template>

The template invocation on line 23 generates the projection code while
lines 17–25 generate the Gdome method call. The generated code is passed as
a parameter to the template gdome-result (lines 15–26), which is responsible
for adding the promotion code if required. Lines 28–32 produce the code that
checks the result of the function, possibly raising a C++ exception. All the
residual lines handle the language specific issues (e.g. allocating and releasing
temporary variables).

Here is the template for the high-level OCaml binding:

1 <xsl:template match="method">

2 <xsl:param name="interface" select="’’"/>

3 <xsl:param name="prefix" select="’’"/>

4 <xsl:variable name="name" select="@name"/>

5 <xsl:text> method </xsl:text>

6 <xsl:value-of select="@name"/>

7 <xsl:apply-templates mode="left" select="parameters">

8 <xsl:with-param name="@name"/>

9 </xsl:apply-templates>

10 <xsl:text> = </xsl:text>

11 <xsl:call-template name="call_pre_method">

12 <xsl:with-param name="type" select="returns/@type"/>

13 <xsl:with-param name="isNullable"

14 select="document($annotations)/Annotations/Method

15 [@name=$name]/@nullable=’yes’"/>

16 <xsl:with-param name="action">

17 <xsl:text>I</xsl:text>

18 <xsl:value-of select="$interface"/>.

19 <xsl:value-of select="@name"/>

20 <xsl:text> ~this:obj </xsl:text>

21 <xsl:apply-templates mode="right" select="parameters">

22 <xsl:with-param name="name" select="@name"/>

23 </xsl:apply-templates>

24 </xsl:with-param>

25 </xsl:call-template>

26 </xsl:template>

The template invocation on lines 21–23 generates the projection code and
lines 16–24 generate the pre-method call. The generated code is passed as a
parameter to the template call pre method, which is responsible for adding the
promotion code if required. Lines 13–15 retrieve the annotation for the method
which contains information about which arguments of the method are nullable.

Finally, here is the template for the low-level OCaml binding:

1 <xsl:template match="method">

2 <xsl:param name="interface" select="’’"/>

3 <xsl:param name="prefix" select="’’"/>

4 value

5 <xsl:text>ml_gdome_</xsl:text><xsl:value-of select="$prefix"/>

6 <xsl:text>_</xsl:text><xsl:value-of select="@name"/>

7 <xsl:text>(value self</xsl:text>

8 <xsl:apply-templates select="parameters"/>)

9 {

10 <xsl:apply-templates select="parameters" mode="declare"/>

11 GdomeException exc_ = 0;

12 <xsl:if test="returns/@type != ’void’">

13 <xsl:call-template name="gdomeTypeOfType">

14 <xsl:with-param name="type" select="returns/@type"/>

15 </xsl:call-template> res_;

16 </xsl:if>

17 <xsl:apply-templates select="parameters" mode="convert">

18 <xsl:with-param name="methodName" select="@name"/>

19 </xsl:apply-templates>

20 <xsl:if test="returns/@type = ’DOMString’"> value res__;</xsl:if>

21 <xsl:if test="returns/@type != ’void’">res_ = </xsl:if>

22 <xsl:text>gdome_</xsl:text>

23 <xsl:value-of select="$prefix"/>_<xsl:value-of select="@name"/>

24 <xsl:text>(</xsl:text>

25 <xsl:value-of select="$interface"/>_val(self),

26 <xsl:apply-templates select="parameters" mode="pass">

27 <xsl:with-param name="methodName" select="@name"/>

28 </xsl:apply-templates>&exc_);

29 <xsl:apply-templates select="parameters" mode="free">

30 <xsl:with-param name="methodName" select="@name"/>

31 </xsl:apply-templates>

32 <xsl:text>if (exc_ != 0) throw_exception(exc_, "</xsl:text>

33 <xsl:value-of select="$interface"/>.<xsl:value-of select="@name"/>");

34 <xsl:call-template name="methodReturn">

35 <xsl:with-param name="name" select="@name"/>

36 <xsl:with-param name="type" select="returns/@type"/>

37 </xsl:call-template>

38 }

39 </xsl:template>

Lines 26–28 generate the projection code. Lines 21–28 generate the call to the
Gdome method and store the result in the local variable res_, which is implicitly
used later in the methodReturn template for the generation of the promotion
code (lines 34–37). Lines 32–33 produce the code that checks the result of the
function, possibly raising an OCaml exception using the throw exception func-
tion.

6 Concluding Remarks

Automatic generation of stubs and bindings is a well-established technique with
clear and well-known advantages of increased code correctness and maintenance.
Thus the benefits of its application to bindings of W3C APIs — DOM in primis
— are not under discussion. In this paper we stress the idea a bit further by
developing a framework for the generation of DOM bindings. The main idea
of the framework is to exploit the already existent XML specification that, al-
though meant to be just a source for automatic documentation generation, is
rich enough for automatic code generation. The missing information that is not
available in the XML specification is manually provided and stored in additional
XML documents. The binding logic for each target programming language is
described in an XSLT stylesheet. Any off-the-shelf XSLT engine can be used as
a meta-generator that must be applied to both the binding logic and the XML
specification.

To test our framework, we applied it to the generation of a C++ binding for
the DOM Core module. Later on we also developed two layered OCaml bindings,

Table 2. Differences in binding logic sizes in number of lines.

DOM Core module + DOM Events module
Binding
logic
(XSLT)

Hand written
code (target
language)

Generated
code (target
language)

Binding
logic
(XSLT)

Hand written
code (target
language)

Generated
code (target
language)

C++ 768 1405 4289 +40 +74 +915

+ Caml +1514 +1305 4557 +15 +176 +807

+ OCaml +640 +291 +2407 +4 +44 +284

one that exposes a functional interface based on pre-methods and another one
that exposes an object-oriented interface that is much closer to the DOM API
specification. A few months later an implementation of the DOM Events module
was also released, and the three binding logics have been updated to cover the
new module as well. We are now able to estimate the amount of code that must
be provided to add new DOM modules and new binding logics. Table 2 shows
the number of lines of code required for the original C++ binding of the DOM
Core module, and the number of lines of additional code written to enable the
two OCaml bindings and the DOM Events module. In particular, the numbers
in the column “+ DOM Events module” show the additional lines related to
the Events module with respect to the Core module (i.e. each cell in the right
column shows the increment with respect to the corresponding cell in the left
column, on the same row). In the first column, the “+ Caml” line shows the
increment with respect to the C++ binding, and the “+ OCaml” line shows the
increment with respect to the Caml binding (i.e. the object-oriented layer vs the
purely functional layer).

The data shown in the table deserve an explanation. First of all, let us con-
sider the case of the addition of a new DOM module to the binding. In any one
of the three cases (C++, Caml, OCaml), the number of hand-written lines of
code necessary for the new module is very limited, and much smaller than the
number of lines necessary for the generation of the first module considered. The
number of lines of binding logic that are necessary for the new module is also very
small (e.g. 40 lines vs 768 lines for the C++ binding). Nevertheless, the reader
could have expected this number to be 0. The reason for having to extend the
binding logic can easily be explained: whereas in the DOM Core module there
is just one class hierarchy based on single inheritance, the DOM Events module
introduces new interfaces that must be implemented by the objects described
in the DOM Core module. Thus, to deal with the new module, we had to add
multiple inheritance to the binding logic. From the previous observations we can
conclude that our framework behaves as expected for vertical extension, that is
the application of the framework to new XML specifications.

Let us consider now the extension to a new target language. Comparing the
cells of the first column, we note that the effort required for the Caml binding is
similar to the effort spent for the C++ binding. On the contrary, the addition
of the OCaml binding on top of the previous two bindings was less expensive.

These results can be easily explained. Every code generator is made of a frontend,
which interprets the specification, and a backend for the generation of code. The
C++ binding and the Caml binding share the frontend, but not the backend.
On the contrary, the two OCaml bindings can also share part of the backend,
since they have in common several utility functions used by the binding logic,
such as name mangling functions or the generator of phantom type instances.
One important datum that is not shown in the table is the real amount of code
reuse between the C++ binding and the Caml binding, i.e. the number of lines of
code that form the frontend. Thanks to the adoption of XML technologies in our
framework, this number is basically 0. Indeed, being the specification written in
XML, the meta-generator — an XSLT processor — works directly on the parsed
XML document, reducing the backend to a very few auxiliary functions and
a small set of XSLT template guards. From the previous observations we can
conclude that our framework also behaves positively for horizontal extension,
that is the application of the framework to new target languages.

Our approach was made practical largely because of the availability of the
DOM specification in XML format. Thus we expect that it should be possible to
apply our framework without any major modifications to other W3C standards
as well, provided that a compliant low-level C implementation exists. Indeed, it is
a real pity for the XML specification to be undocumented and almost neglected
by the W3C itself. Surprisingly, we have been able to exploit the specification for
code generation, but we have faced serious problems when trying to automati-
cally document the generated code. The prose in the XML specification contains
pieces of code that are marked to be rendered in a particular way. Nevertheless,
the markup elements do not convey enough information to understand the na-
ture of the values in the code. Thus it is often impossible to convert them to the
sensible values in the target language. For instance, it is not possible to know
whether a value v is of a nullable type, to show it in the OCaml examples as
(Some v).

References

1. Paolo Casarini, Luca Padovani, “The Gnome DOM Engine”, in Markup Languages:
Theory & Practice, Vol. 3, Issue 2, pp. 173–190, ISSN 1099-6621, MIT Press, April
2002.

2. M. Fluet, R. Pucella, “Phantom Types and Subtyping”. Proceedings of the 2nd
IFIP International Conference on Theoretical Computer Science (TCS 2002), pp.
448-460, August 2002.

3. Sigbjorn Finne, Daan Leijen, Erik Meijer and Simon L. Peyton Jones, “Calling
Hell From Heaven and Heaven From Hell”, in Proceedings of the International
Conference on Functional Programming, 114-125, 1999.

4. Jacques Garrigue, “Programming with polymorphic variants”. In ML Workshop,
September 1998.
http://wwwfun.kurims.kyoto-u.ac.jp/~garrigue/papers/variants.ps.gz

5. Raph Levien, “Design considerations for a Gnome DOM”, informal note, 28 March
1999, http://www.levien.com/gnome/dom-design.html

6. James Clark (Eds), “XML Transformations (XSLT) Version 1.0”, W3C Recom-
mendation (1999), http://www.w3.org/TR/1999/REC-xslt-19991116

7. Arnaud Le Hors and Philippe Le Hégaret and Gavin Nicol and Jonathan Ro-
bie and Mike Champion et al. (Eds), “Document Object Model (DOM) Level
2 Core Specification”, Version 1.0, W3C Recommendation, November 2000,
http://www.w3.org/TR/DOM-Level-2-Core/

8. Tom Pixley, “Document Object Model (DOM) Level 2 Events Spec-
ification”, Version 1.0, W3C Recommendation, November 2000,
http://www.w3.org/TR/DOM-Level-2-Events

9. Daniel R. Edelson, “Smart Pointers: They’re Smart, But They’re Not Pointers”,
Proceedings of the C++ Conference, pp. 1–19, 1992.

10. D.Vandevoorde, N. M. Josuttis, “C++ Templates: The Complete Guide”, Addison-
Wesley, 2002.

11. Bjarne Stroustrup, “The C++ Programming Language”, Third Edition, Addison-
Wesley, 1997.

12. Xavier Leroy and Damien Doligez and Jacques Garrigue and Didier Rémy and
Jérôme Vouillon, “The Objective Caml system release 3.07 Documentation and
user’s manual”, http://caml.inria.fr/ocaml/htmlman/

