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Abstract

The success of modern software distributions in the Free and Open Source world
can be explained, among other factors, by the availability of a large collection
of software packages and the possibility to easily install and remove those com-
ponents using state-of-the-art package managers. However, package managers
are often built using a monolithic architecture and hard-wired and ad-hoc de-
pendency solvers implementing some customized heuristics.

In this paper we propose a modular architecture relying on precise interface
formalisms that allows the system administrator to choose from a variety of
dependency solvers and backends. We argue that this is the path that leads to
the next generation of package managers that will deliver better results, offer
more expressive preference languages, and be easily adaptable to new platforms.

We have built a working prototype—called MPM—following the design ad-
vocated in this paper, and we show how it largely outperforms a variety of
current package managers.
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1. Introduction

Free and Open Source Software (FOSS) distributions, as well as other com-
plex software platforms, strive to provide modular software components, called
packages, that can be assembled to provide the user with the desired functional-
ities. Packages are equipped with a rich set of metadata providing information
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on their content and the relationships to other packages, that describe the re-
quirements for a package to run properly on a target system.

Packages, as found in FOSS distributions, share important features with
software component models [14], but exhibit also some important differences.
On one side, packages, like components, are reusable software units which can
be combined freely by a system administrator; they are also independent units
that follow their own development time-line and versioning scheme.

On the other side, packages, unlike what happens in many software compo-
nent models, cannot be composed to build a larger component, and it is not
possible to install more than one copy of a given package on a given system.
Furthermore, installation of packages, and execution of software contained in
packages, acts on shared resources that are provided by the operating system,
like creating files on the file system, or interacting through the systems in-
put/output devices. As a consequence, packages may be in conflict with each
other, a phenomenon which is not yet commonplace for software components.

Software components come with an interface describing their required and
provided services. In the case of packages, requirements and provided features
are given by symbolic names (either names of packages, or names of abstract
features) whose semantics is defined separately from the package model (for
instance, a policy document may describe how an executable must behave in
order to provide a feature mail-transport-agent, or an external table will tell us
which symbols have been provided in version 1.2.3 of library libfoo).

A key component for maintaining and deploying software systems based on
packages are the tools used to perform installation, upgrade and removal of pack-
ages on the target machines. These tools, called package managers, incorporate
numerous functionalities: they allow to retrieve components from remote repos-
itories, and eventually checking their integrity; they compute upgrade paths
that respect inter-component constraints (a functionality known as dependency
solving); they handle the interaction with the user to allow for fine-tuning of
the choice of components; and finally, they perform the actual deployment of
upgrades by removing and adding components in the right order, aborting the
operation if problems are encountered.

Package managers take a very abstract view by considering only constraints
between packages identified by names. Even though the package model is quite
simple and abstract, package managers face two major challenges:

Logical complexity Packages are defined in terms of positive (dependencies)
and negative constraints (conflicts), and dependencies may be composed
by using logical conjunctions and disjunctions.

Scale Package repositories include tens of thousands of packages. This chal-
lenge is even more complex when package managers may pick packages
from several repositories.

Until recently, package managers in FOSS distributions followed a mono-
lithic architecture (re-)implementing all functionalities to fit specific formats of
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metadata and user requests. In particular, dependency solving was often imple-
mented by ad-hoc algorithms instead of employing well known solver technolo-
gies. Surprisingly little was known about the intrinsic complexity of dependency
solving. It is only in [8] that some of the authors have shown that for packages
in FOSS distributions determining whether a component can be installed is an
NP-complete problem. This result has been established by showing the equiv-
alence of package installation with Boolean satisfiability, which has opened the
door to show that installation in other component models is NP-complete as
well. These results and the straightforward encoding into Boolean satisfiabil-
ity [18] have pushed various communities to incorporate SAT solvers directly
in package managers, instead of writing ad-hoc solvers as it was previously the
case [16, 21, 26, 27].

In this paper—which extends and formalizes the preliminary results of [2]—
we argue that decoupling dependency solving from other functionalities will
yield better package managers

• that succeed in finding an upgrade path where existing package managers
fail,

• that are more powerful by accepting an input language that is more ex-
pressive than the ones currently supported,

• and that are more flexible by being easily adaptable to new platforms.

We propose a modular architecture to build component managers that de-
couples the front-end, which is in charge of interacting with the user and in-
stalling and removing individual components, from a generic back-end, which
is in charge of finding the best upgrade path according to some user-specified
criteria. As a uniform interface between the front-end and the back-end, our ar-
chitecture relies on two domain specific languages: the Common Upgradeability
Description Format (CUDF), which captures all the relevant information about
component dependencies, and the user preferences language, which describes
the criteria used to determine the best solution.

In particular we describe MPM, the Mancoosi Package Manager, which is a
proof-of-concept implementation of this modular package manager architecture
for Debian based systems. MPM largely outperforms the mainstream package
managers available in the Debian FOSS distribution in terms of quality of the
proposed solution.

This article is organized as follows: Section 2 introduces the package instal-
lation problem, describes the state of the art in the area of package managers,
and provides a paradigmatic example of the limitations of current tools. Sec-
tion 3 presents the modular architecture that we advocate for building package
managers, and formally defines the two interface languages used to interconnect
their components, CUDF and the user preferences language. Section 4 intro-
duces MPM, our new modular package manager which is able to cope efficiently
with different installation scenarios. Section 5 gives an overview of the perfor-
mances of MPM in comparison with other package manages. Before concluding,
we discuss related and future work in Section 6.
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The appendix contains the precise syntax (Appendix A) and semantics
(Appendix B) of the CUDF format, as well as our translation from Debian
metadata and RPM meta-data to CUDF (Appendix C and Appendix D).

2. The upgrade problem

Mainstream FOSS distributions undergo a quality assurance process which
aims, among other goals, at assuring a high degree of coherence of the packages
contained in the distribution. In particular, a stable distribution will avoid ship-
ping packages referring to other packages not included in the same distribution,
and excludes packages which are impossible to install because of some unsatis-
fiable relation to other packages in the same distribution [23]. Furthermore, a
released FOSS distribution usually contains only one version of each package.1

As a consequence, the initial installation of a FOSS system from scratch usually
runs little risk of incurring dependency problems, and installing, removing, and
upgrading components in such a scenario is a task that can be correctly handled
by the large majority of legacy package managers.

However, as new releases are rolled out, it is common practice to add the new
stable distribution as an extra source of packages (or package “baseline”) and
use it to perform upgrades on the machines, instead of reinstalling the machine
from scratch, or performing a full upgrade. Unfortunately, as we will show in
Section 5, using multiple package sources makes the problem considerably harder
because there are now multiple versions of packages from which to choose, and
the set of possible configurations of the machine grows very quickly.

As time goes by, this situation often leads to what is known as dependency
hell : the user gets entangled in an inextricable web of dependencies and conflicts
that state-of-the-art package managers are unable to handle. Users are left
on their own, and as a last resort the user may even be requested to guide
interactively the package manager, by suggesting choices among packages which
may seem totally unrelated to the original request.

2.1. A paradigmatic example

As a real-world example of this unsatisfactory situation, we have taken a
stable installation of the Debian sarge release, gradually added some more
recent releases, etch and lenny, and looked at how difficult it is to install a
single, apparently innocuous package, python-simpy, that provides a process-
based discrete-event simulation language based on Python. This configuration
is far from unusual since sarge, etch and lenny are three consecutive stable
Debian releases, which have passed strict quality assurance tests.

In this particular configuration, three versions of the python-simpy package
are available: 1.5.1-2, 1.7.1-1 and 1.8.1.

1Notwithstanding the case where different upstream versions of the same software are
organized into packages with distinct names, as it is often the case for packages of the Linux
kernel
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We tested the package managers apt-get (v. 0.9.7), aptitude (v. 0.6.7),
smart (v. 1.4), and cupt (v. 2.5.6); their default behavior is to try to install
the latest available version of the requested package (python-simpy), which is
1.8.1. The results obtained in our tests (see Section 5) are not encouraging.

Installing python-simpy with apt-get. Apt-get proposes to the user a solution
with 119 upgraded packages, and 203 newly installed, which might be accept-
able for a user enjoying a lot of disk space. Unfortunately, the solution proposed
by apt-get also requires to remove 414 installed packages, which is clearly un-
acceptable.

apt-get --without-recommends install python-simpy

The following extra packages will be installed:

binutils ca-certificates coreutils cpp cpp-4.3

...

tk8.4 totem-common whois xinit xkb-data zlib1g

The following packages will be REMOVED:

abiword-common abiword-gnome amor apt apt-utils

...

xserver-common xserver-xfree86 yelp zenity

The following NEW packages will be installed:

ca-certificates cpp-4.3 dbus

...

system-tools-backends totem-common whois

The following packages will be upgraded:

binutils coreutils cpp debconf dia-libs

...

ocaml-interp perl perl-base perl-modules

119 upgraded, 203 newly installed, 414 to remove

and 338 not upgraded.

Installing python-simpy with aptitude. Aptitude’s solution is more conservative
with “only” 25 packages upgraded, 16 newly installed and 18 to remove.

aptitude --without-recommends install python-simpy

The following NEW packages will be installed:

debian-archive-keyring{a} [2010.08.28~lenny1]

... python-simpy [1.8-1] ...

python2.5-minimal{a} [2.5.2-15+lenny1]

The following packages will be REMOVED:

aptitude{a} [0.2.15.9-2] dia-common{a}

...

synaptic{a} [0.55+cvs20050503-4] tasksel{a}

The following packages will be upgraded:

apt [0.5.28.6 -> 0.7.20.2+lenny2]

...

zlib1g-dev [1:1.2.3.3.dfsg-12]

25 packages upgraded, 16 newly installed,

18 to remove and 784 not upgraded.
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Installing python-simpy with cupt or smart. The last two package managers
in our list do not manage to find a solution in an acceptable time: cupt fails
immediately, while smart enters into a long computation phase that we aborted
after 10 minutes.

smart install python-simpy

Loading cache...

Updating cache... ####################### [100%]

Computing transaction...

^C

2.2. Using MPM

As we will show in Section 3.2, the Mancoosi Package Manager (MPM) allows
the user to specify high-level user-defined optimization criteria, which are used
to choose a solution well adapted to the user needs, and which is computed by
resorting to an efficient external solver.

On our example, calling MPM with a very conservative policy, namely to
minimize the number of removed and changed packages, leads to a very simple
solution which consists of installing an old version of the package (which might
be sufficient for the user’s needs).

mpm -c "-removed,-changed" install python-simpy

Summary of proposed changes:

new: 2

removed: 0

replaced: 0

upgraded: 0

downgraded: 0

unsatisfied recommends:: 97

changed: 2

uptodate: 128

notuptodate: 824

New packages:

python-simpy (1.5.1-2) python2.3-simpy (1.5.1-2)

The user may require a different version of the package by specifying it on
the command line, as python-simpy=1.8.1. This allows to obtain a solution
from MPM that can be directly compared to the ones found in the previous
experiments run with the legacy package managers. In this case MPM provides
a solution that is slightly better than the one found by aptitude with 15 new,
17 removed and 21 upgraded packages.

mpm -c "-removed,-changed" install python-simpy=1.8.1

Summary of proposed changes:

new: 15

removed: 17
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replaced: 1

upgraded: 21

downgraded: 0

unsatisfied recommends:: 92

changed: 54

uptodate: 146

notuptodate: 801

New packages:

python-minimal (2.4.4-2) python-simpy (1.8-1)

...

readline-common (5.2-3.1)

Removed packages: aptitude (0.2.15.9-2)

dia-gnome (0.94.0-7sarge3) gnome (64)

...

python2.3-numeric (23.8-1) synaptic

Replaced packages: linux-kernel-headers

Upgraded packages: apt [0.5.28.6] (0.7.20.2+lenny2)

(0.7.20.2+lenny2) binutils [2.15-6]

...

libxslt1.1 [1.1.12-8] (1.1.19-3)

In this particular example, the total running time of MPM is 10 seconds, 2
of which are spent by the solver to find a solution and 8 to write the CUDF file
and read the solution. For comparison, apt-get took 3 seconds total running
time, and aptitude 8 seconds. In order to compete with legacy solvers we will
have to speed up the CUDF file handling between the external solver and the
package manager component. However, since the solver component takes only
a minor fraction of the running time, we are confident that these details can be
easily addressed in a future release of MPM.

As we will see in the rest of the paper, this is not an isolated case: when
confronted with installation problems mixing different repositories, MPM sig-
nificantly outperforms all the legacy package managers.

3. Modular package management

Among all functionalities of a package manager, dependency solving is the
most difficult, recurrent, and apparently underestimated one. Re-developing
from scratch dependency solvers as soon as dependencies and conflicts are in-
troduced in yet another component model seems to have not served well FOSS
users thus far. We argue that an alternative, more modular, approach is possi-
ble by treating dependency solving as a separate concern from other component
management issues. The goal is to decouple the evolution of dependency solving
from that of specific package managers and component models.

To attain this goal we have designed a modular architecture (see Figure 1)
which uses two well defined interfaces to interconnect the components: the first
is a common format for describing package upgrade problems, CUDF that is
both distribution-agnostic and neutral with respect to the solving technology.
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The second is a simple, yet powerful optimization language for specifying com-
mon user requirements and selecting an optimal solution.

Figure 1: modular package manager architecture

This architecture brings back separation of concerns to package management
design:

Conversion using a pivot format. CUDF adapters are developed and main-
tained once for each component model by the developers maintaining the
package metadata format, or by CUDF experts working with them;

Reuse of dependency solvers. Solvers are created and maintained once by
solver experts, who will see their technology gain many new fields of appli-
cation by just supporting one generic I/O format—CUDF—which comes
with a rigorous semantics, relieving the pain of interpreting the meaning
of platform-specific component metadata.

Using this framework, the developer of a package manager for a specific
component distribution only needs to be concerned with the front-end, the other
parts being reusable components built and maintained only once, and evolving
independently from the package manager.

In terms of architectural constraints, we notice that our proposal makes
no assumptions on the localization of the different components: a distributed
implementation might very well run a solver farm on a remote cluster, even if
this would require to address reliability and fault tolerance issues more deeply
than a centralized implementation.

In the next section we will present MPM, our own centralized implemen-
tation of the architecture of Figure 1, but first of all, we give here a detailed
presentation of the CUDF format and of the user preferences language, as well
as an overview of the existing solvers that already support CUDF.

3.1. A unified description of upgrades, using CUDF

Treating dependency solving as a separate concern in component upgrade
planning requires a language able to capture all relevant aspects of upgrade
problem instances. In this section we present a DSL called CUDF (for Common
Upgradeability Description Format), whose documents describe instances of the
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component upgrade problem. The design of CUDF has been guided by a few
general principles:

Platform independence CUDF is a common format to describe upgrade sce-
narios coming from diverse environments. As a consequence, CUDF makes
no assumptions on a specific component model, version schema, depen-
dency formalism, or package manager. In fact, translators from different
package formats have been implemented (see Subsection 3.1.3).

Solver independence In contrast to encodings of inter-component relations
which are targeted at specific solver techniques (see Section 6), CUDF
stays close to the original problem, in order to preserve its structure and
avoid bias towards specific solver. The existence of solvers using CUDF
as input format and that are based on very different solver technologies
(Section 3.3) shows that this goal has been achieved.

Readability CUDF is a compact plain text format which makes it easy for
humans to read upgrade scenario, and eases interoperability with package
managers. As evidence of the benefits of this choice, CUDF is routinely
used by the Eclipse P2 team to reason about upgrade scenarios, instead
of the native XML encoding that comes with Eclipse2.

Extensibility Only core component properties that are shared by mainstream
package formats and that are essential to the meaning of upgrade scenar-
ios are predefined in CUDF. Other auxiliary properties can be declared
and used in CUDF documents, to allow the preservation of relevant in-
formation that can then be used in optimization criteria, e.g. component
size, number of bugs, etc. As an example of additional properties demon-
strating the extensibility of the format, Figure 2 shows both declaration
and use of custom properties bugs and suite.

Formal semantics CUDF comes with a rigorous semantics that allows pack-
age manager and solver developers to agree on the meaning of upgrade
scenarios. For example, the fact that self-conflicts are ignored is not a tacit
convention implemented by some obscure line of code, but a property of
the formal semantics. The formal semantics will be summarized below in
Section 3.1.2.

3.1.1. Language overview

An upgrade scenario is represented by a CUDF document. It consists of
a sequence of stanzas, each of which is a collection of key-value pairs called
properties. Properties are typed within a simple type system containing basic
data types (integers, booleans, strings) and more complex, component-specific

2See http://wiki.eclipse.org/Equinox/p2/Meetings/20091221, retrieved December
2011
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data types such as boolean formulae over atomic package constraints used to
represent inter-component relationships.

Each CUDF document is made up of three logical sections: a preamble,
a component universe, and a request. The universe contains one component
stanza for each component known to the package manager. Both installed and
non-installed (but available) components are represented uniformly in the same
document, in contrast to current platforms which often spread this information
over different locations using different formats.

The properties used in package stanzas may be core properties of the CUDF
format, or extra properties that have been declared in the preamble of the CUDF
document. Properties may have a default value, and in this case are allowed to
be absent from a stanza. The core properties of CUDF are:

package with values of type string denoting the name of a package (indepen-
dent from a particular version).

version with non-negative integer values denoting the version of a package.

depends with values that are conjunctions of disjunctions of atomic package
constraints. Dependencies express positive context requirements.

conflicts with values that are lists of atomic package constraints. Conflicts
express negative context requirements.

provides with a list of equational package constraints. A provided package
may be used to satisfy a dependency, and has to be taken into account for
conflicts.

installed with boolean values indicating whether the package is currently in-
stalled or not.

keep with values indicating whether the package is allowed to be removed or
updated.

An atomic package constraint consists of a package name and a unary predi-
cate on version numbers, like the empty predicate (which is true for all versions),
= 17, 6= 17, > 42 or ≤ 17. Equational package constraints are only allowed to
use the empty predicate, or an equality on the version number like = 25.

Figure 2 shows a sample CUDF document. The component universe contains
several component stanzas, where both core and extra properties are used. Extra
properties must be declared in the preamble, which starts the document. Extra
properties account for extensibility of the format and enable type checking of
CUDF documents. A request stanza encodes the user request and concludes the
document. In its general form, the request stanza details the components the
user wants to install, remove, or upgrade (using the homonymous properties),
possibly specifying version requirements. The value of such a request is a list of
atomic package constraints.

Appendix A defines the full syntax of CUDF in form of an EBNF grammar.
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preamble:
property: bugs: int = 0, suite: enum(stable ,unstable) = "stable"

package: car

version: 1

depends: engine , wheel > 2, door , battery <= 13

insta l led : true
bugs: 183

package: bicycle

version: 7

suite: unstable

package: gasoline -engine

version: 1

depends: turbo

provides: engine

conf l i c t s : engine , gasoline -engine

insta l led : true

...

request:
i n s t a l l : bicycle , gasoline -engine = 1

upgrade: door , wheel > 3

Figure 2: Sample CUDF document

3.1.2. Overview of CUDF formal semantics

In order to simplify the description of the semantics we ignore here the keep

property, and take into account only installation and removal requests (but
no upgrade requests). A solution to a CUDF document U is a subset of the
universe of U , consisting of the packages that are installed on a system as a
result of the upgrade operation. For any subset S of the universe of U , let
dom(S) be the set of pairs of package name and version of its packages (in a
valid CUDF document, package name and version uniquely identify a package).
Furthermore, let pro(S) be the set of pairs (name, version) that are provided
by packages in S. The version of a provided package is either the one explicitly
mentioned, or any version in case the version predicate is empty (the set pro(S)
may, as a consequence, be infinite).

One defines easily what it means for a set of pairs (name,version) to satisfy
an atomic package constraint. Then, a subset S of the universe of U is

• abundant if every disjunction in the dependency of every package in S
contains a package constraint that is satisfied by dom(S) ∪ pro(S);

• peaceful if no atomic package constraint in the conflicts of any package
p ∈ S is satisfied by dom(S − {p}) ∪ pro(S − {p}),
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Figure 3: Sharing upgrade problems and solvers among communities

A subset S of the universe of U satisfies a request

• install φ if every atomic constraint in φ is satisfied by dom(S)∪ pro(S);

• remove φ if no element of φ is satisfied by dom(S) ∪ pro(S).

S is a solution if it is abundant, healthy, and satisfies the request. Note that a
solution is allowed to contain several packages with the same name (which then
have to differ in version). Also, there is a subtlety in the definition of health,
in that a package (and the packages provided by it) are not taken into account
when evaluating its own conflicts.

The full formal semantics of CUDF is given in Appendix B.

3.1.3. Expressiveness

As CUDF lays at the “interface” between package managers and depen-
dency solvers, its expressiveness should be validated looking from both angles.
From the point of view of package managers, we have shown that upgrade sce-
narios coming from several major component models can be encoded in CUDF;
adapters are already available for: Debian (see Appendix C) and RPM (see Ap-
pendix D) packages, Eclipse [6]—with an extension for full OSGi bundles in the
working— and common feature diagram formalisms used in software product
lines [7]. All encodings are linear in the number of components to encode, even
in the presence of XOR dependencies.3

From the converse angle, that of dependency solvers, we observe that en-
trants in the MISC competition [3] have used very different solver technologies:
boolean satisfiability (SAT), Mixed Integer Linear Programming (MILP), An-
swer Set Programming (ASP), and graph constraints. They have all been able
to handle upgrade problems encoded as CUDF documents, providing convincing
evidence that CUDF is adequate for a large spectrum of solving techniques.

Hence, at the time of writing, CUDF is already a unique pivot format that
allows on the one hand to share solvers among different package managers, and

3while usual SAT encodings blow up quadratically in the number of XOR dependencies.
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on the other hand to share a corpus of challenging upgrade problems among
solver communities, as shown in Figure 3. The number of supported solver
technologies and component frameworks has grown steadily over the past years
and it is likely to keep growing in the future.

3.1.4. Implementations

CUDF has been subject to an ad-hoc standardization process, resulting in
a specification [24]. libcudf is the “reference” implementation of the specifi-
cation; it consists of a parsing and pretty-printing library for CUDF, as well as
an implementation of CUDF semantics. The latter consists in:

1. given a CUDF document, libcudf can verify whether installed compo-
nents are consistent, i.e. whether they satisfy abundance and peace;

2. given a CUDF document and an encoding of a potential solution, libcudf
can verify whether the solution is valid, i.e. abundance, peace, and request
satisfaction.

libcudf comes with the cudf-check command line tool which provides the
above two features out of the box. libcudf is Free Software and can be used
both from the OCaml and C programming languages; it is available at http:

//www.mancoosi.org/software/.
The authors are aware of other CUDF implementations. Some have been

developed in the context of the Mancoosi project to capture FOSS distribution
upgrade scenario descriptions into CUDF, in order to build a cross-distribution
corpus of upgrade problem instances [4]. Using the tools we have verified that
the average size of an upgrade scenario encoded in CUDF is linear with the size
of the original package manager information and usually smaller, since metadata
not relevant for describing the upgrade problem can be dropped. For instance,
on a large Debian installation, using both testing and unstable suites (totaling
≈ 45.000 packages), APT information on disk amounts to 14 Mb while the
corresponding CUDF document is only 9 Mb.

An independent CUDF implementation is also available in CUPT [17], a new
APT-compatible package manager for Debian. In CUPT, CUDF is used as an
interface format to pipe upgrade scenarios to external solvers, so that upgrade
planning can be decoupled from other package manager activities. While no
stable software has been released yet, work is ongoing to implement CUDF
in APT and APT2 in order to decouple dependency solving from the package
managers.

3.2. User preferences as multicriteria optimization

The DSL presented in the previous section addresses the need of grasping
those aspects of an upgrade scenario that are related to the correctness of a
given solution (i.e. “does the solution satisfy the user request as well as the ex-
pectations of all installed components?”). Quality aspects of solutions (i.e. “is
the proposed solution to my liking?”) are much less known, not to mention
agreed upon, and hence they do not yet constitute suitable material for DSL
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standardization. Nonetheless, to improve the state of the art in upgrade plan-
ning we do need at the very least a rigorous framework to reason about solution
quality. In this section we propose one such formalism.

As we have seen in Section 2 it is necessary to allow users to express their
preferences about the desired solution. The state-of-the-art approach is to
present one particular solution—found according to some built-in strategies gen-
erally unknown to the user—and then allow the user to interactively fiddle with
the solution. This, however, may lead to an unacceptable burden on the user.
The solver may, for instance, propose a solution that upgrades as many packages
as possible to the latest available version, while the user might actually prefer
a solution that changes as few packages as possible. In this case, an interactive
correction of the solution will require many manual steps.

An alternative approach is to let the user specify high-level criteria that
capture what she considers important in a solution: she may be concerned
about the packages that are changed, the packages that are not up to date, the
packages that get removed, or even “the number of installed security fixes”,
or “the overall installed size”. On top of CUDF semantics, we can build an
extensible dictionary of well-defined criteria like the above and then let the user
inform the solvers that the required solution should maximize, or minimize, a
given criterion.

It is quite natural for the user to combine several of these criteria: to compare
two solutions s and s′ whose criteria have values (c1, . . . , cn) and (c′1, . . . , c

′
n),

the user will prefer s over s′ if all criteria of s are better or equal than s′

(i.e. s is Pareto-better then s′). Unfortunately, when one has more than one
criterion, there may be many incomparable Pareto-optimal solutions; this is the
core problem of multicriteria optimization which has been extensively studied
in the optimization research community [20]. Many different approaches have
been proposed to aggregate multiple criteria, the most common being:

Lexicographic The criteria are ordered by importance, and compared lexico-
graphically: (c1, . . . , cn) is better than (c′1, . . . , c

′
n) iff there exists an i s.t.

for all j < i cj = c′j , and ci > c′i; for example, a security upgrade may be
considered more important than any other criterion, and put first in the
order.

Weighted sum The criteria are aggregated into a single measure using user-
specified weights ki: (c1, . . . , cn) is better than (c′1, . . . , c

′
n) iff

∑
1≤i≤n kici >∑

1≤i≤n kic
′
i; this may be useful when trying to balance different criteria

for which no clear order is established.

More sophisticated approaches exists, like leximin and leximax [10], and an
extensive literature is devoted to them. According to the use case, the best
choice of an aggregation function may vary widely. Our own proposal for a high
level user preferences formalism is simple yet expressive:

1. define a dictionary of useful criteria ci;
2. define a dictionary of aggregation functions lex, weightedsum, leximin,

etc.
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Table 1: Optimization criteria

removed(I, S) = {name | V (I, name) 6= ∅ and V (S, name) = ∅}
new(I, S) = {name | V (I, name) = ∅ and V (S, name) 6= ∅}
changed(I, S) = {name | V (I, name) 6= V (S, name)}
notuptodate(I, S) = {name | V (S, name) 6= ∅ and does not contain

the most recent available version of name}
unsatrec(I, S) = {(name, v, c) | v is an element of V (S, name)

and (name, v) recommends ..., c, ...
and c is not satisfied by S}

sum(name)(I, S) =
∑
p∈S p.name

3. write the user preference as an expression op(k1c1, . . . , kncn) where ki can
be one of {+,−} to indicate maximization or minimization of the criterion
(for aggregation functions like lex, leximin and leximax), or an integer
(for aggregation functions like weightedsum).

Formally we define the criteria as in Table 1, where I is the initial installation
and S is a proposed new installation. We write V (X,name) the set of versions
in which name (the name of a component) is installed in X, where X may be
I or S. That set may be empty (name is not installed), contain one element
(name is installed in exactly that version), or even contain multiple elements in
case a component is installed in multiple versions.4 Using this formalism, it is
quite easy to define a paranoid preference as

paranoid = lex (−removed ,−changed)

The solution scoring best under this criterion will be the one with the mini-
mum number of removed functionalities, and then with the minimum number
of changes. A trendy preference is also easy to write

trendy = lex (−removed ,−notuptodate,−unsatrec,−new)

The last optimization criterion, sum(name) is the sum over all installed
packages of the value of their field name, where name is a property of type int
or of one of its subtypes (nat, posint). This property can be one of the core
properties defined in the CUDF specification, or a property that is declared in
the preamble of the CUDF document.

Currently, each criterion and aggregation function must be specifically en-
coded for a given solver technology, but work on a generic system which will be
able to produce these encodings automatically is ongoing [25].

3.3. Dependency solvers

Any dependency solver that uses CUDF as input and output format, and
that accepts the optimization criterion language described in Section 3.2 can

4The CUDF component allows to install multiple versions of a package, so-called flat
models that allow for only one version per package to be installed can be encoded [4].

15



be used in conjunction with MPM. CUDF is precisely the input format of the
Mancoosi International Solver Competition (MISC) [3], and the optimization
criterion language has been introduced into MISC since November 2010. This
competition has been launched in 2010 with the goal to bring together modern
problem solving techniques with the challenging optimization problems that
arise from component installation management.

Six different solvers participated in the 2010 and 2011 editions of the MISC
competition, and use CUDF as input and output format:

1. apt-pbo [26], using a PBO solver

2. aspcud [11], based on Answer Set Programming using Potassco, the Pots-
dam Answer Set Solving Collection

3. inesc [5], using the p2cudf parser (from Eclipse) and the MaxSAT solver
MSUnCore

4. p2cudf [15, 16], a family of solvers on top of the Eclipse Provisioning
Platform p2, based on the SAT4J library

5. ucl, based on graph constraints

6. unsa [19], based on ILOG’s CPLEX

Since November 2010, four of these solvers already accept the user preference
language, and are hence eligible as solver plugin to MPM. The current prototype
implementation of MPM employs aspcud.

4. The Mancoosi package manager

The Mancoosi package manager (MPM) is a proof-of-concept implementa-
tion which integrates solver technology and optimization criteria to solve real
world installation problems. The back-end of MPM leverages the infrastructure
of the apt package manager both to parse command line arguments and to per-
form package installation, but is modular with respect to the dependency solver
component.

To facilitate the acceptance of MPM we decided to maintain a strict compat-
ibility with existing tools. In particular, MPM has been developed to be used
as a drop-in replacement for apt-get/aptitude and to provide an easy-to-use
alternative to solve complicated problems for which the apt solvers are unable
to find a solution.

4.1. Using MPM

Currently, four different utility functions are defined that can be used in the
definition of the optimization criterion. These are defined in terms of the effect
that realizing a proposed solution would have:

removed is the number of packages that would be removed by a solution;

new is the number of packages newly installed by a solution;

changed is the number of packages that would be changed by a solution (that
is, removed, newly installed, upgraded or downgraded)
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notuptodate is the number installed packages that, after installation of the
solution, would be installed in a version that is older than the latest known
version;

The current implementation of MPM allows a user to

• specify a solver plugin with the option -s <solver>, and

• specify an optimization criterion with the option -c <option>, where
<option> is either one of the predefined criteria paranoid or trendy, as
defined in Section 3.2 or an arbitrary optimization criteria specified by
giving a lexicographic combination of the available utility functions.

• Besides, any option argument to the -o option is passed as an option
to apt.

The actual request may be any of install, remove, or upgrade, together with
a list of package names (possibly with a constraint on the respective version of
the package).

A user may very well use different optimization criteria for upgrade request
than for install/remove requests (upgrade means possibly replacing a package
by a newer version). This is due to the fact that certain criteria that are useful
with one type of requests may just not make sense when combined with another
type of requests. For instance, the paranoid criterion defined in Section 3.2 may
be chosen by a careful sysadmin when installing or removing packages, but it
is certainly not useful for upgrade request: due to the CUDF semantics, not
changing at all the installation status of packages would be a correct solution to
any upgrade request of packages that are already installed, and it would even
be the optimal solution. This is certainly not what the user had in mind. When
issuing an upgrade request one most likely will chose an optimization criterion
that puts high priority on minimizing the number of not-up-to-date packages.

4.2. Implementation

The implementation of MPM makes use of some of the components and tools
that have been developed by the Mancoosi project, and that are centered around
the CUDF format. Since MPM is targeted to Debian we use debtodudf [4] to
translate Debian package metadata to CUDF; translators to CUDF are also
available for the metadata format of rpm [4] and Eclipse [6]. MPM communi-
cates with the CUDF solvers via apt-cudf which translates a context-specific
exchange format (EDSP) to CUDF and returns the solution from the solver
to the MPM in the same format. Acting as a pipe, apt-cudf runs during the
entire solving phase to reduce the translation overhead. The EDSP format is a
simple text based encoding of the Packages universe and the user request.

MPM is written in python and uses the python bindings to libapt to access
the apt API. For this reason MPM maintains full backward compatibility with
apt, reusing the same configuration files and settings.

MPM supports all command-line options of apt (see the apt-get (1) man
page). In addition, the user may specify a solver and an optimization criterion
to be used to satisfy the current request.
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APT::Solver::name "aspcud-paranoid-1.3";

APT::Solver::criteria "-removed,-changed";

Since MPM aims to replace only the dependency solver part of apt, every-
thing else will still be handled by the underlying library. In particular, once
a solution is found by the dependency solver, apt will be in charge of finding
an “installation plan” for the proposed solution. This installation plan defines
the order in which packages will be installed on the system, and specifically the
invocation order of dpkg, the low level debian package installer.

As a consequence of the separation of concerns allowed by our architecture,
the size of the code of the MPM prototype itself is rather small, with less than
500 lines of Python.

5. Experimental validation
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Figure 4: Comparison of mainstream meta-installers with MPM on increasingly large package
universes. Baselines are formed taking increasingly large sets of Debian releases, indexed by
the first letter of their name: sarge, etch, lenny, squeeze, sid.

We compared MPM to the latest version available in Debian of four different
state of the art packages managers. Our goal was to assess the improvements in
the quality of the solution that are attainable using our modular architecture by
reusing solvers which participated in the latest Mancoosi International Solver
Competition (MISC 2011) [1, 3].

For this particular experiment, MPM has been configured to use the aspcud

solver, one of the winners of the MISC 2011 competition: based on Answer
Set Programming, this solver is available under an Open Source license and is
readily available in the Debian distribution.

We did not take execution time into account for two reasons: on the one
hand side, MPM is a prototype which is not optimized for reading, writing and
caching package repositories; on the other hand, as the results show, on difficult
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problems MPM is the only package manager able to find a solution, so there is
nothing to compare with.

Experimental environment. Since performance was not a goal of this study, our
simulation environment was established in a clean Debian chroot on a com-
modity x86 machine. All relevant tools and raw data are available online at
http://data.mancoosi.org/papers/ist2012/.

Method. We performed five groups of tests, using the same installation / re-
moval requests with a combination of different Debian releases - or baselines -
(sarge, etch, lenny, squeeze and sid). The initial status for these experiments
was selected as a set of installed packages on a Debian server running sarge.

The package managers selected for these tests were apt-get 0.9.7, aptitude
0.6.7, smart 1.4, and cupt 2.5.6. The first two package managers are the most
representative ones as they are the standard tools in Debian; the last two were
selected because they were available at the time of writing in the Debian dis-
tribution and at the same time capable of working with Debian metadata. All
package managers were used with their default options.

All these legacy solvers have some kind of optimization criterion hardwired
in their implementation. Hence, it is not obvious how to compare them in a
fair manner. Since the algorithms of these tools all work locally (they try to
satisfy the user request by only looking at the dependencies directly related to
the request) we decided to compare their solutions with respect to the paranoid
optimization function described in Section 3.2 which privileges conservative so-
lutions.

In order to compare solutions from different solvers we reused tools that
were originally developed for the MISC solver competition [1], by converting
the package-manager’s output into a CUDF solution and then comparing them
using the paranoid optimization criterion.

Experimental Data. A problem instance for our test is composed of three parts:
an installation status (a set of packages which are already installed on the ma-
chine that the users wants to modify), a universe of packages available for in-
stallation, and a user request (which packages to install or remove).

In all our problem sets, the installation status is the same, and is the im-
age of the installation of a standard server running Debian sarge. We used
five different universes of packages, obtained by progressively adding together,
in chronological order, all the packages available in the last five Debian base-
lines: sarge, etch, lenny, squeeze and sid. The smallest universe, with only
sarge, contains 15.000 packages, while the largest universe, with the union of
all baselines, adds up to 60.000 packages.

On each of these five universes, we have run 162 user requests, one half of
them requiring the installation of 5 packages and the other half requiring the
removal of 5 packages. Test problems are generated by choosing 5 packages at
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random from the initial installation status5. To provide a realistic scenario, we
ensure that all the problems have a solution.

Package managers were tested with different timeouts, ranging from 60 to
300 seconds for each request. Since there are no noticeable differences, in the
following we only show the results for the run executed with a 300 seconds
timeout.

Assessment. In Figure 4 we show the aggregate results of our tests where so-
lutions are ranked according to the “paranoid” criterion and then divided into
three categories, best solution, sub-optimal and failure. The first two categories
contain respectively the best solutions found (including ex-aequos) and not op-
timal, but still correct solutions. Note that best solution here means the best
solution among all solutions delivered by all participating solvers, and not nec-
essarily the theoretically best possible solution, which we do not know.

The failure category aggregates all results that were either not a solution or
were the result of a timeout or a crash of the package manager.

When looking for a solution in a universe containing only the sarge baseline,
all solvers find a solution in most cases, and this solution is optimal in roughly
75% of the cases, with the smart approaching the performance of MPM.

The situation changes radically as soon as more than one baseline is consid-
ered: all legacy package manager fail to find a solution in almost 50% of the
cases. This is consistent with the folklore experience of FOSS distribution users
who know that maintaining an old machine using these tools becomes more
difficult over time.

On the other side, MPM is remarkably stable, and consistently finds the
best solution, no matter what the composition of the universe is. This is not
a surprise, as MPM employs a state-of-the-art external solver. This solver is
designed to find a global solution that is optimal with respect to the paranoid
criterion, unlike the legacy package managers which apply ad-hoc local search
algorithms.

These results also justify the fact of not comparing execution times: when
the maintenance problem become difficult, MPM is the only viable tool, even
in its prototype, non-optimized form.

6. Related work

6.1. State of the art package managers

The world of FOSS distributions has grown very complex over time: the
dedicated page6 on Linux Weekly News lists more than 600 of them. Despite
this large variety, most distributions use one of two mainstream package formats,
RPM and DEB, originally designed for the RedHat and Debian distributions
respectively, but now largely adopted by most of the others.

5The test generation suite is available as part of the dose3 software library
6http://lwn.net/Distributions/, retrieved December 2011
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Each of these two different package formats comes with standard tools for
the low level operations on packages, namely rpm and dpkg. One finds a greater
variety of package managers, that is tools for higher level operations like fetch-
ing packages, validating their signatures, solving dependencies, and planning
upgrades. The most used package managers in the RPM universe are: urpmi,
yum, yast, and apt-pbo. Urpmi and yum are front-ends to rpm and have a mono-
lithic architecture and a custom dependency solver. Yast, on the other hand,
uses an external satisfiability solver (libzypp), but preferences are hard coded
in the problem encoding [21, 22]. apt-pbo [26] is a fork of apt-get (or apt

for short) and uses a pseudo-Boolean solver as dependency solving engine. It is
possible to specify custom optimization functions to reflect user preferences.

The Debian ecosystem of package managers is less fragmented with apt-get

and aptitude playing the main role, and many other alternative package man-
agers striving to gain acceptance in the community. Notably, the cupt package
manager [17] in its latest revision implements an experimental CUDF back-end.
apt-get and aptitude are both based on libapt, apt-get’s low-level library
used to handle configuration files, package retrieval, and installation planning.
Both apt-get and aptitude contain an ad-hoc dependency solver. apt-get

has experimental support to use an external SAT solver, however it is still not
possible to specify user criteria directly.7

One exception to this classification is the cross distribution package manager
smart. It has a modular architecture with respect to the package installer
backend and the metadata format. The notion of a best solution is specified
by a policy which assigns weights to different solutions, and thus allows smart

to choose the most suitable one. By trying to obtain an optimal solution, the
smart dependency solving algorithm explores a potentially huge solution space,
using some heuristics to avoid getting lost.

The problem of finding an optimal installation candidate, with respect to
some criteria, is computationally hard and is treated differently by different
tools. Some rely on special heuristics, like apt-get and urpmi, that perform
reasonably well on well-behaved repositories, and ensure that an answer will be
reported in a limited time, but at the price of giving up completeness. These
tools may fail to find an installation candidate when it is located too far from the
solution suggested by the heuristics. Others, like smart, strive to be complete,
and really try to explore the solution space, using some special heuristic to try
and limit the effect of the combinatorial explosion of the solution space, but at
the price of requiring unacceptably high computation time in some cases.

Table 2 summarizes the characteristics of the tools we compared in our work;
the fact that apt-get, cupt and aptitude are not complete is shown in the
experimental results of Section 5, where several problem instances that admit
a solution are not solved by these tools. The completeness of smart is an open

7as discussed among authors and apt-get developers starting at http://lists.debian.

org/deity/2010/05/msg00088.html and implemented starting from http://packages.qa.

debian.org/a/apt/news/20110629T214718Z.html (URLs retrieved December 2011)
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Tool Solver Optimization Complete
apt-get internal hard-coded no
aptitude internal hard-coded no
cupt internal hard-coded no
smart internal programmable maybe

Table 2: Summary comparison of the different package managers

question: in our experiments we did not find a counterexample, but the tool
times out very often.

6.2. Formal approaches

Several attempts at using formal techniques to attack dependency solving
problems have been made in the past; in some cases they resulted in the devel-
opment of package manager prototypes.

A first formal encoding of the upgrade problem in SAT, together with a
proof of the NP-Completeness of the problem, has been initially proposed in
the context of the EDOS project [9, 18]. Following that initial encoding, the
use of SAT technology in package managers has seen a raise in popularity. The
OPIUM system [27] used in 2006 a SAT solver with an optimization in line
with our paranoid criterion, SUSE libzypp [21] incorporated a SAT solver in
2007, the Eclipse P2 system includes the Sat4J solver since 2007 [15]. This
trend seems to continue steadily: a very recent entrant is apt-pbo, introduced
in the Caixa Mágica GNU/Linux distribution just a few months ago [26]. In this
paper we have not benchmarked against some of them for applicability reasons,
in particular: apt-pbo as of now does not support removal requests (a quite
severe limitation) while, in contrast to our benchmark data, libzypp is targeted
at RPM packages.

Several alternative encodings of the upgrade problem have been proposed:
SAT [18, 27, 15], Pseudo Boolean Optimization [26], Partial Weighted Max
SAT [5], Mixed Integer Linear Programming [19], as well as some others cham-
pioned by entrants in the 2010 and 2011 editions of the MISC competition (see
Section 3.3).

Jenson [13] proposes a component model without explicit (or implicit) com-
ponent conflicts and does not handle component removal in neither requests nor
solutions. As a consequence, such a degenerate upgrade problem is way sim-
pler than the problem considered in this paper and can be solved in polynomial
time, even though the number of solutions may be huge. Dependency solving
as SAT with optimization has been reviewed in [15] where it was also observed
that much of the complexity stems from multiple versions of components and
the constraints they entail.

To the best of authors knowledge, the key idea of making dependency solvers
a modular component of package managers only appeared in [2], which is an ear-
lier version of this work. This journal article provides more extensive discussion
of the relevance of the approach and related works, and adds a self-contained
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presentation of the CUDF language, all the details about the conversion process
into CUDF from the metadata found in various FOSS distributions, and more
up-to-date experimental results.

7. Conclusions

We have presented in this work a modular package manager architecture
that allows to rely on external state-of-the-art solvers for dependency handling,
thanks to the formally defined CUDF format coming from the MISC solver
competition. Our architecture also provides the user with a flexible, high-level
preference language that allows to tailor the solution to one’s needs.

We have built a proof-of-concept package manager, called MPM, for Debian-
based FOSS distribution. MPM is based on the architecture proposed in this
paper, and makes use of the modular components already available: solvers com-
ing from the MISC competition, converters between the Debian package format
and CUDF, and low level package management libraries for Debian coming from
the apt library.

Despite the fact that MPM is only a proof of concept, it significantly outper-
forms all legacy package managers, as soon as installation problems with more
than a single release are to be solved.

These results fully validate our approach, and MPM may already be used as
a drop-in replacement of legacy package managers for complex installation or
upgrade tasks on which legacy tools fail.
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Appendix A. CUDF syntax

Overall structure.

cudf ::=preamble? universe request

Flow elements.

ssep::=(comment |‘\n’) ∗ ‘\n’ (comment |‘\n’)∗
comment ::=‘#’ line

line::=[^\n] ∗ ‘\n’

Document parts.

preamble::=‘preamble: ’ line stanza ssep
universe::=package∗
package::=‘package: ’ pkgname stanza ssep
request ::=‘request: ’ line stanza comment∗

Stanzas.

stanza::=(property ‘\n’ | comment)∗
property ::=propname ‘: ’ value

propname::=ident
value::=bool | enum | int | nat | posint | string | pkgname | ident | typedecl

| vpkg | veqpkg | vpkgformula | vpkglist | veqpkglist

Values: CUDF types.

bool ::=‘true’ | ‘false’
int ::=(‘+’|‘-’)? [0-9]+

string ::=[^\r\n]∗
vpkg ::=pkgname (sp + vconstr)?

vpkgformula::=andfla | ‘true!’ | ‘false!’
vpkglist ::=‘’ | vpkg (sp ∗ ‘,’sp ∗ vpkg)∗

enum::=ident
pkgname::=[A-Za-z0-9+./@()%-]+

ident ::=[a-z][a-z0-9-]∗
nat ::=‘+’[0-9]+

posint ::=‘+’[0-9] ∗ [1-9][0-9]∗
veqpkg ::=pkgname (sp + veqconstr)?

veqpkglist ::=‘’ | veqpkg (sp ∗ ‘,’ sp ∗ veqpkg)∗
typedecl ::=‘’ | typedecl1 (sp ∗ ‘,’ sp ∗ typedecl1 )∗
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Value: gory details.

vconstr ::=reop sp + ver
veqconstr ::=‘=’ sp + ver

relop::=‘=’ | ‘!=’ | ‘>=’ | ‘>’ | ‘<=’ | ‘<’
sp::=‘’ | ‘\t’

ver ::=posint
andfla::=orfla (sp∗ ‘,’ sp ∗ orfla)∗

orfla::=atomfla (sp∗ ‘|’ sp ∗ atomfla)∗
atomfla::=vpkg

typedecl1 ::=ident sp ∗ ‘:’ sp ∗ typeexpr(sp ∗ = sp ∗ ‘[’ value ∗ ‘]’)?
typeexpr ::=typename | ‘enum’ sp ∗ ‘[’ ident (‘,’ sp ∗ ident) ∗ ‘]’

typename::=‘bool’ | ‘int’ | ‘nat’ | ‘posint’ | ‘string’ | ‘pkgname’
| ‘ident’ | ‘vpkg’ | ‘veqpkg’ | ‘vpkgformula’ | ‘vpkglist’
| ‘veqpkglist’

Appendix B. CUDF formal semantics

The semantics is defined in a style similar to [18], however, we now have to
deal with an abstract semantics that is closer to “real” problem descriptions,
and that contains artifacts like features. This induces some complications for
the definition of the semantics. In [18] this and similar problems were avoided
by a pre-processing step that expands many of the notions that we wish to keep
in the CUDF format.

Appendix B.1. Abstract syntax and semantic domains

For any of the CUDF types t defined in Appendix A we denote by V(t)
its semantic domain. For instance, V(posint) is the set of positive natural
numbers. If X is any set then we write P (X) for its powerset. In addition, we
give the following definitions:

Definition 1. • Constraints is the set of version constraints, consisting
of the value > and all pairs (relop, v) where relop is one of =, 6=, <,>,≤,≥
and v ∈ V(posint).

• Keepvalues is the set of the possible values of the keep property of pack-
age information items, that is: {version, package, feature, none}.

The abstract syntax of a CUDF document is a pair consisting of a package
description (as defined in Definition 2) and a request (see Definition 4).

Definition 2 (Package description). A package description is a partial function

V(ident)× V(posint)  

V(bool)×Keepvalues× V(vpkgformula)× V(vpkglist)× V(veqpkglist)

The set of all package descriptions is noted Descr. If φ is a package description
then we write Dom(φ) for its domain. If φ(p, n) = (i, k, d, c, p) then we also write
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• φ(p, n).installed = i

• φ(p, n).keep = k

• φ(p, n).depends = d

• φ(p, n).conflicts = c

• φ(p, n).provides = p

It is natural to define a package description as a function since we can have
at most one package description for a given pair of package name and version in
a CUDF document. The function is generally only partial since we clearly do
not require to have a package description for any possible pair of package name
and version.

We define the removal operation of a particular versioned package from a
package description. This operation will be needed later in Definition 13 to
define the semantics of package conflicts in case a package conflicts with itself
or a feature provided by the same package.

Definition 3 (Package removal). Let φ be a package description, p ∈ V(ident)
and n ∈ V(posint). The package description φ− (p, n) is defined by

Dom(φ− (p, n)) = Dom(φ)− {(p, n)}
(φ− (p, n))(q,m) = φ(q,m) for all (q,m) ∈ Dom(φ− (p, n))

Definition 4 (Request). A request is a triple (li, lu, ld) with li, lu, ld ∈ V(vpkglist).

In a triple (li, lu, ld), li is the list of packages to be installed, lu the list of
packages to be updated, and ld the list of packages to be deleted.

Appendix B.2. Installations

Definition 5 (Installation). An installation is a function from V(ident) to
P (V(posint)).

The idea behind this definition is that the function describing an installation
associates the set of versions that are installed to any possible package name.
This set is empty when no version of the package is installed.

We can extract an installation from any package description as follows:

Definition 6 (Current installation). Let φ be a package description, the current
package installation of φ

iφ:V(ident)→ P (V(posint))

is defined by

iφ(p) := {n ∈ V(posint) | (p, n) ∈ Dom(φ) and φ(p, n).installed = true}
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A package can declare zero or more features that it provides. The function
fφ defined below associates to any package name (here intended to be a the
name of a virtual package) the set of version numbers with which this virtual
package is provided by some of the packages installed by φ:

Definition 7 (Current features). Let φ be a package description, the current
features of φ

fφ:V(ident)→ P (V(posint))

is defined by

fφ(p) := {n ∈ V(posint) | exists q ∈ Dom(iφ) exists m ∈ iφ(q) such that

(((=, n), p) ∈ φ(q,m).provides or (>, p) ∈ φ(q,m).provides)}

The second case in the definition above expresses the fact that providing a
feature without a version number means providing that feature at any possible
version.

In order to define the semantics of a CUDF document, we will frequently need
to merge two installations. This will mainly be used for merging an installation
of packages with an installation of provided features. The merging operation is
formalized as follows:

Definition 8 (Merging). Let f, g:V(ident) → P (V(posint)) be two installa-
tions. Their merge f ∪ g:V(ident)→ P (V(posint)) is defined as

(f ∪ g)(p) = f(p) ∪ g(p) for any p ∈ V(ident)

Appendix B.3. Consistent package descriptions

We define what it means for an installation to satisfy a constraint:

Definition 9 (Constraint satisfaction). The satisfaction relation between a nat-
ural number n and a constraint c ∈ Constraints, noted n |= c, is defined as
follows:

n |= > for any n n |= (<, v) iff n < v
n |= (=, v) iff n = v n |= (>, v) iff n > v
n |= (6=, v) iff n 6= v n |= (≤, v) iff n ≤ v

n |= (≥, v) iff n ≥ v

Now we can define what it implies for a package installation to satisfy some
formula:

Definition 10 (Formula satisfaction). The satisfaction relation between an in-
stallation I and a formula p, noted I |= p, is defined by induction on the struc-
ture of p:

• I |= (c, p) where, c ∈ Constraints and p ∈ V(ident), iff there exists an
n ∈ I(p) such that n |= c.

• I |= φ1 ∧ . . . ∧ φn iff I |= φi for all 1 ≤ i ≤ n.
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• I |= φ1 ∨ . . . ∨ φn iff there is an i with 1 ≤ i ≤ n and I |= φi.

We can now lift the satisfaction relation to sets of packages:

Definition 11. Let I be an installation, and l ∈ V(vpkglist). Then I |= l if
for any (c, p) ∈ l there exists n ∈ I(p) with n |= c.

Note that, given that V(veqpkglist) ⊆ V(vpkglist), this also defines the
satisfaction relation for elements of V(veqpkglist). Also note that one could
transform any l ∈ V(vpkglist) into a formula l∧ ∈ V(vpkgformula), by con-
structing the conjunction of all the elements of l. The semantics of l is the same
as the semantics of the formula l∧.

Definition 12 (Disjointness). The disjointness relation between an installation
I and a set l ∈ V(vpkglist) of packages possibly with version constraints, is
defined as: I ‖ l if for any (c, p) ∈ l and all n ∈ I(p) we have that n 6|= c.

Definition 13. A package description φ is consistent if for every package p ∈
V(ident) and n ∈ iφ(p) we have that

1. iφ ∪ fφ |= φ(p, n).depends

2. iφ−(p,n) ∪ fφ−(p,n) ‖ φ(p, n).conflicts

In the above definition, the first clause corresponds to the Abundance prop-
erty of [18]: all the dependency relations of all installed packages must be satis-
fied. The second clause corresponds to the Peace property of [18]. In addition,
we now have to take special care of packages that conflict with themselves, or
that provide a feature and at the same time conflict with that feature: we only
require that there be no conflict with any other installed package and with any
feature provided by some other package

Appendix B.4. Semantics of requests

The semantics of a request is defined as a relation between package descrip-
tions. The idea is that two package descriptions φ1 and φ2 are in the relation
defined by the request r if there exists a transformation from φ1 to φ2 that
satisfies r.

First we define the notion of a successor of a package description:

Definition 14 (Successor relation). A package description φ2 is called a suc-
cessor of a package description φ1, noted φ1� φ2, if

1. Dom(φ1) = Dom(φ2)

2. For all p ∈ V(ident) and n ∈ V(posint): if φ1(p, n) = (i1, k1, d1, c1, p1)
and φ2(p, n) = (i2, k2, d2, c2, p2) then k1 = k2, d1 = d2, c1 = c2, and
p1 = p2.

3. For all p ∈ V(ident)

• for all n ∈ iφ1(p): if φ1(p, n).keep = version then n ∈ iφ2(p).

• if there is an n ∈ iφ1
(p) with φ1(p, n).keep = package then iφ2

(p) 6= ∅
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• for all n ∈ iφ1(p): if φ1(p, n).keep = feature then iφ2 ∪ fφ2 |=
φ1(p, n).provides

The first and the second item of the above definitions indicate that a succes-
sor of a package description φ may differ from φ only in the status of packages.
The third item refines this even further depending on keep values:

• If we have a keep status of version for an installed package p and version
n then we have to keep that package and version.

• If we have a keep status of package for some installed version of a pack-
age p then the successor must have at least one version of that package
installed.

• If we have a keep status of feature for some installed version n of a
package p then the successor must provide all the features that where
provided by version n of package p.

Definition 15 (Request semantics). Let r = (li, lu, ld) be a request. The se-

mantics of r is a relation
ry⊆ Descr×Descr defined by φ1

ry φ2 if

1. φ1� φ2
2. φ2 is consistent

3. iφ2
∪ fφ2

|= li
4. iφ2

∪ fφ2
‖ ld

5. iφ2
∪ fφ2

|= lu, and for all p such that (c, p) ∈ lu we have that (iφ2
∪

fφ2
)(p) = {n} (i.e., is a singleton set) where n ≥ n′ for all n′ ∈ (iφ1

∪
fφ1

)(p).

Appendix C. Translating Debian package metadata to CUDF

In this section we provide the details of the translation of Debian package
metadata to CUDF. Debian semantics is carefully described and documented in
the Debian Policy [12] and enforced by various quality assurance tools currently
used by Debian contributors. However, despite the thoroughness of the Debian
Policy, this offers only an informal description.

Appendix C.1. Debian metadata

Debian package metadata is stored in different files on user machines. These
files are handled by the low level package installer dpkg and the package manager
apt-get. Data that is kept up to date by the package installer are related to the
actual state of the machine while packages maintained by the package manager
are mainly—but not only—information related to all available packages available
in Debian repositories. The status of the machine consists of a snapshot of the
current state of the installer.

The package universe is the set of all packages known to the package man-
ager. The universe for an upgrade problem is available on a machine as the lists
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of packages known to apt. These files are downloaded when the update action
is performed, and constitute a local cache of package listings coming from the
Debian archive or its mirrors around the world.

There are many other files used to specify specific parameters of the low and
high level package manager as well as to specify remote resources used by the
high level package managers to retrieve binary packages from the net. These
are not interesting in this context.

Appendix C.2. Mapping Debian metadata to CUDF

To produce a valid CUDF document from a Debian universe and status
we need to address both syntactic and semantic differences. In particular, the
conversion of the Debian universe involves the following three steps:

1. version and package name normalization,

2. addition of self conflicts,

3. virtual package normalization, and

4. marking of the installed packages

The overall complexity of this transformation is superlinear with a low co-
efficient in the number of packages in the universe.

Version and name normalization. The CUDF specification [24] requires version
numbers to be integers. In order to normalize Debian versions, it is necessary
to collect for each package all versions mentioned in the document (including
in conflicts and dependencies), and to sort these versions in ascending order
according to the Debian version comparison function (see Section 5.6.12 of [12]).
Then, the versions are mapped to integers 1, 2, . . ., so that the order is preserved.

Furthermore, CUDF syntax also requires a normalization on package names
by escaping characters that are not permitted by the CUDF specification.

Self conflicts. Debian semantics does not allow more than one version of the
same package to be installed at the same time. In order to make this constraint
explicit in the CUDF document, we add to each package a self conflict without
a version.

This implies that we have to rename any virtual package that carries the
same name as a concrete package. Without this renaming, installation of a
package providing some virtual package p together with a concrete package p
would be artificially excluded by package p conflicting with p.

Example 1. Consider the Debian packages in Figure C.5(a).
In Debian semantics, package foo (in either version 1 or 2) can be installed

together with package bar. Exactly the same file, but interpreted in CUDF
semantics, would allow to install versions 1 and 2 of foo at the same time,
which is not possible in Debian. We hence have both versions of foo conflict
with foo in order to retrieve the mutual exclusion between both versions of foo
(Figure C.5(b))
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Package: foo

Version: 1

Package: foo

Version: 2

Package: bar

Version: 42

Provides: foo

(a)

package: foo

version: 1

conflicts: foo

package: foo

version: 2

conflicts: foo

package: bar

version: 42

provides: foo

(b)

package: foo

version: 1

conflicts: foo

package: foo

version: 2

conflicts: foo

package: bar

version: 42

provides: foo--virtual

(c)

Figure C.5: Two attempts to translate Debian metadata (a) into CUDF (b), (c).

This renaming has the unwanted side-effect that now foo and bar are in
conflict. We hence rename the virtual package provided by bar, and obtain
finally the correct encoding in Figure C.5(c).

In the following we will see a different case where virtual packages must be
renamed.

Virtual package normalization. In Debian, a package can be both a virtual
package and a concrete package. Dependencies and conflicts on virtual packages
possibly carry a version constraint (see Section 7.5 of [12]). If they do not carry
a version constraint then both virtual packages and concrete packages may be
used to satisfy a dependency, and both are relevant for conflicts. If a relation
carries a version constraint then only concrete packages are relevant. On the
other hand, Provides in Debian do not carry a version, and can never satisfy a
dependency on a package that carries a version constraint. In CUDF, however,
provides without a version constraint are quantified universally over all available
versions.

Example 2. Consider the Debian packages in Figure C.6(a).
The package foo has a constrained dependency on baz which is in turn

provided by the package extra. In Debian, this dependency can only be satisfied
by the concrete package baz and not by the concrete package extra since the
virtual package baz provided by extra cannot satisfy a dependency with a version
constraint. If we were to propose a naive translation from the fragment above
to CUDF then there would be a mismatch between the Debian and the CUDF
semantics. In particular, in the latter case, the package extra would allow to
satisfy foo’s dependencies, while in Debian this is not the case.

In order to reconcile the two different semantics of Debian and CUDF we
perform the following translation:

• All package names p in some provides property for which there exists a
concrete package with the same name or a version constraint associated
to it are replaced by a new package name p--virtual.
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Package: foo

Version: 1

Depends: baz (>= 2)

Package: bar

Version: 1

Depends: baz

Package: baz

Version: 2

Package: extra

Version: 2

Provides: baz

(a)

package: foo

version: 1

conflicts: foo

depends: baz >= 2

package: bar

version: 1

conflicts: bar

depends: baz | baz--virtual

package: baz

version: 2

conflicts: baz

package: extra

version: 2

conflicts: extra

provides: baz--virtual

(b)

Figure C.6: (Correctly) translating dependencies of Debian packages (a) into CUDF (b).

• All relations without a version constraint to a package that exists in the
CUDF document as virtual package are expanded to an alternative con-
sisting of all matching concrete or (renamed) virtual packages.

• All relations without a version constraint that match only concrete pack-
ages in the CUDF document are left untouched, since for concrete packages
the Debian semantics and CUDF semantics coincide.

• All relations carrying a version constraint are left untouched as they are
not going to match a virtual package anyway (since these have been re-
named)

For instance, consider the following Debian packages in Figure C.6(a) where
the package baz is both a concrete package and a virtual package (provided by
the package extra).

The corresponding CUDF document is in Figure C.6(b), where the virtual
package baz is replaced by a new package name baz--virtual and the depen-
dency of the package baz is replaced by a disjunction as it is not constrained.

Note that in this example, using the Debian semantics, package baz and
package extra can be installed together. Without the renaming packages baz

and extra could not be installed together in CUDF because of the self conflict.
A concrete example of the conversion of a Debian package description to

CUDF format is as follows :

Package: 6tunnel

Priority: optional
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Section: net

Installed-Size: 68

Maintainer: Thomas Seyrat <tomasera@debian.org>

Architecture: i386

Version: 0.11rc2-2

Depends: libc6 (>= 2.3.6-6)

Filename: pool/main/6/6tunnel/6tunnel_0.11rc2-2_i386.deb

Size: 12810

MD5sum: 5471e156d43755878763ec51a86ac1aa

SHA1: 8af63219150ad7079e5fb412c37b0b8e78904159

SHA256: 192db6cede7fc2794bccc6662b29f6935e84a59bb5cbf64b15989d114bc15c8a

Description: TCP proxy for non-IPv6 applications

The CUDF conversion results in the following stanza where additional fields
not relevant to CUDF have been omitted:

package: x6tunnel

version: 0

depends: libc6 >= 1

conflicts: x6tunnel

Appendix D. Translating RPM package metadata to CUDF

This section describes the translation from a RPM package archive to CUDF.
The RPM semantics is not formally described, but it is supposed to be consistent
with the latest implementation of the RPM utilities. In this document we refer
to the implementation of librpm version 4.4.2.2.

Appendix D.1. Version expansion

RPM versions are triples of the form epoch, version, release. The epoch
term is an integer and it is used to allow to replace new RPM packages where
RPM considers the new package version number to be lower than the installed
package. The default epoch is zero and it is usually not specified. The ver-
sion term is a sequence of alpha-numeric characters identifying the upstream
version of the package. The release term is a sequence of alpha-numeric char-
acters commonly identifying a distribution-specific release code. RPM versions
identify concrete packages as a triple, while it is written as a string of the form
epoch:version-release when used in dependency information items. In order
to normalize RPM versions into a common format, we rewrite all RPM versions
as strings.

Consider the following representation of a RPM package:

package: bash

version: 1.3

epoch: 1

release: ex2010

We associate to this package the canonical version string 1:1.3-ex2010. If the
epoch is not specified then it defaults to 0.
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Algorithm 1 RPM version comparison

function vercmp(〈e1, v1, r1〉, 〈e2, v2, r2〉)
re← epochcmp(e1, e2)
if re = 0 then

rv ← rpmvercmp(v1, v2)
if rv = 0 then

return relcmp(r1, r2)
else

return rv
end if

else
return re

end if
end function

Appendix D.2. RPM comparison function

RPM versions are compared using four functions: vercmp (shown in Algo-
rithm 1), epochcmp, relcmp and rpmvercmp. The function vercmp compares
two RPM triples 〈epoch, version, release〉. First we compare the epoch using
epochcmp. If these are equal then we compare the versions using rpmvercmp,
and if these are equal again we compare the releases using relcmp.

rpmvercmp is the RPM comparison function as implemented in the RPM
library. Since the RPM comparison function has no normative specification, we
do not describe its algorithm here.

The epochcmp function compares the two epoch if they are present, and
returns 1 or −1 if only one is present, 0 otherwise. Similarly, the relcmp function
compares the two releases if they are both present, and return 1 or −1 if only
one is present, 0 otherwise.

Appendix D.3. CUDF version mapping

CUDF versions are strictly positive integers [24]. RPM versions, which are
strings, must hence be mapped from string to integer. However, the naive ap-
proach of having a bijective mapping does not work since the RPM comparison
function above does not provide a total order of RPM versions. To overcome this
problem, the mapping from rpm versions to CUDF version is done by explicitly
computing all constraints during the translation phase using, hence providing
an explicit (and specific) ordering of all considered rpm versions. A second
phase assigns an integer to each rpm version using the order induced by this
procedure.

Appendix D.4. Dependency mapping

Since all version constraints are fully expanded in the CUDF document, the
dependencies translation is straightforward. There are two minor points to no-
tice. The first point is that we remove dependencies on files provided by the
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same package, as well as dependencies on the package itself and dependencies
on packages provided by the same package. This reduces the size of the result-
ing CUDF document and removes redundant information. The second point
concerns relations to non-existing packages. In order to remain faithful to the
CUDF mission, hence to retain all information contained in the source format,
versions are numbered starting from 2 while non-existing packages are num-
bered 1. This information is available at the conversion stage because of the
constraint expansion.

The mapping algorithm works in two stages. In the first stage, we build a
unit table which maps package names to arrays of constraints. The indices of
the array will be used as CUDF versions.

In the second stage, for each dependency expansion, a constraint of the form
(name,flag,version) will be matched against the list of constraints in the
units table. If the constraint overlaps the constraint in the units table then the
associated index is added to the dependency list in the form (name,"=",cudf

version). Otherwise it is ignored.
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