
Expressing Advanced User Preferences
in Component Installation∗

Ralf Treinen
Université Paris Diderot
PPS, UMR 7126, France

Ralf.Treinen@pps.jussieu.fr

Stefano Zacchiroli
Université Paris Diderot
PPS, UMR 7126, France
zack@pps.jussieu.fr

ABSTRACT
State of the art component-based software collections—such
as FOSS distributions—are made of up to dozens of thou-
sands components, with complex inter-dependencies and
conflicts. Given a particular installation of such a system,
each request to alter the set of installed components has po-
tentially (too) many satisfying answers.

We present an architecture that allows to express advanced
user preferences about package selection in FOSS distri-
butions. The architecture is composed by a distribution-
independent format for describing available and installed
packages called CUDF (Common Upgradeability Descrip-
tion Format), and a foundational language called MooML
to specify optimization criteria. We present the syntax and
semantics of CUDF and MooML, and discuss the partial
evaluation mechanism of MooML which allows to gain effi-
ciency in package dependency solvers.

Categories and Subject Descriptors
K.6.3 [MANAGEMENT OF COMPUTING AND IN-
FORMATION SYSTEMS]: Software Management—Soft-
ware selection; D.2.9 [SOFTWARE ENGINEERING]:
Management—Life cycle

General Terms
Design, Languages, Management

Keywords
FOSS, upgrade, packages, selection, preferences

1. INTRODUCTION
One of the noteworthy characteristics of FOSS (for Free
and Open Source Software) distributions—such as Debian

∗Partially supported by they European Community’s
7th Framework Programme (FP7/2007–2013), Mancoosi
project, grant agreement n. 214898.

GNU/Linux, Red Hat Enterprise Linux, or FreeBSD—is
the availability of large numbers of components (usually
called packages in this environment) that can be installed,
removed, and upgraded as single entities. Systems like De-
bian can have up to dozens of thousands components, grow-
ing steadily across releases and linked by complex inter-
dependencies [1]. Similar architectures exist in other con-
texts where components are used to define the granularity
at which software can be deployed: the analogous of FOSS
packages can be found for example in the Eclipse [3] and
Maven1 platforms; in both cases the number of components
and their inter-relationships are similar to what exists in
common FOSS distributions.

In all such scenarios, user installations are managed us-
ing tools such as package managers which receive user re-
quests to change the installation in some way—e.g. install
a new component—and try to satisfy them equipped with
the knowledge of where to find components and which are
their inter-relationships. When the number of components
grows, a given user request can have thousands of accept-
able solutions. For instance, in satisfying the simple “install
wordpress” request a package manager can be faced by ques-
tions like: “which version of wordpress should be installed?”,
“using which web server?”, “relying on which PHP imple-
mentation”, etc. The number of potential solutions for the
final user can easily grow exponentially; currently, the actual
choice depends on internal heuristics implemented by spe-
cific package managers and is customizable in ad-hoc ways.

This paper focuses on FOSS distributions and presents an
architecture to specify advanced user preferences in that con-
text, abstracting over package manager specific details. The
architecture is composed by two parts: a format to describe
upgrade scenarios called CUDF (Common Upgradeability
Description Format) and a foundational language to encode
user preferences called MooML (MancOosi Optimization
Meta-Language).

The MooML language is foundational in the sense that it
is not (necessarily) meant to be a language for the end user
or the system administrator; it is rather meant as an in-
termediate language with a precise semantics, which can be
used by developers of installation tools as an abstract in-
put language for expressing using preferences, and which on
the other hand can be the target language for representing
the choice a user may have expressed, for instance using

1http://maven.apache.org/

http://www.mancoosi.org
http://maven.apache.org/

some graphic interface. Mancoosi, which gives the name
to MooML, is an ongoing project which aims, among oth-
ers, to develop better algorithms and tools to plan upgrade
paths based on various information sources about software
packages and on optimization criteria [6].

Paper structure. The remainder of this section outlines
the upgrade process FOSS packages are subject to. Sec-
tion 2 presents common optimization criteria for package
upgrade scenarios; there criteria will serve as running exam-
ples throughout the paper. Section 3 summarizes essential
features of the CUDF language for describing upgrade sce-
narios. MooML itself and its partial evaluation mechanism
are presented respectively in Section 4 and 5.

1.1 FOSS Package Upgrade Generalities

Packages. FOSS (binary) distributions are organized as
collections of packages, i.e. abstractions defining the granu-
larity at which users can act (add, remove, upgrade, etc.) on
installed software. Abstracting over format-specific details,
a package is a bundle of the 3 parts depicted in Figure 1.

Package

8>>>>>>><>>>>>>>:

1. Set of files

1.1. Configuration files

2. Set of valued meta-information

2.1. Inter-package relationships

3. Executable configuration scripts

Figure 1: Constituents of a package.

The set of files (1) represents what the package is deliver-
ing: executable binaries, data, documentation, etc. This
set includes configuration files (1.1), that affect the run-
time behavior of the package and are meant to be locally
customized. Package meta-information (2) contains infor-
mation varying from distribution to distribution. A com-
mon core provides: its name (a unique identifier), a version
(taken from a totally ordered set), maintainer and pack-
age description, and most notably inter-package relation-
ships (2.1). The kinds of relationship vary with the package
manager used, but there exists a de facto common subset
including dependencies (the need of other packages to work
properly), conflicts (the inability of being co-installed with
other packages), feature provisions (the ability to declare
named features as provided by a given package, so that other
packages can depend on them), and restricted boolean com-
binations of them [8]. Finally, packages come with a set of
executable configuration (or maintainer) scripts (3). Their
purpose is to let package maintainers attach actions to hooks
executed by the installer; actions are used to finalize package
configuration during deployment.

Upgrades. A distribution is a collection of packages. The
subset of a distribution corresponding to the packages actu-
ally installed on a machine is called package status and is
meant to be altered using a package manager. An upgrade

apt-get install aterm
Reading package lists... Done
Building dependency tree... Done
The following extra packages will be installed:
libafterimage0

0 upgraded, 2 newly installed, 0 to remove and
1786 not upgraded.

Need to get 386kB of archives.
807kB of additional disk space will be used.
Get: 1 http://ftp.debian.org libafterimage0 2.2.8
Get: 2 http://ftp.debian.org aterm 1.0.1-4
Fetched 386kB in 0s (410kB/s)
Selecting package libafterimage0.
(Reading database ... 294774 files and dirs ...)
Unpacking libafterimage0 ...
Selecting package aterm.
Unpacking aterm (aterm_1.0.1-4_i386.deb) ...
Setting up libafterimage0 (2.2.8-2) ...
Setting up aterm (1.0.1-4) ...

Table 1: The package upgrade process. Horizontal
lines separate the phases described in the text.

scenario is the situation in which a user, typically the system
administrator, submits a user request to the package man-
ager, with the intention to alter the packages status. Several
entities and problems are involved in, and should be grasped
by a complete description of, an upgrade scenario [7]. The
main entities are packages and the most relevant problem
for the present paper is upgrade planning ; both are briefly
described below.

Table 1 summarizes the different phases of the upgrade pro-
cess, using as an example the popular apt-get package man-
ager (others follow a similar process). Phase (1) is a user
specification of how the package status should be altered.
The expressiveness of the request language varies with the
package manager: it can be as simple as requesting the in-
stallation/removal of a single package by name, or can also
enable limited expression of per-package preferences such
as APT pinning [11]. Phase (2) (dependency resolution)
checks whether a package status satisfying all dependencies
and user request exists, it has been shown that this prob-
lem is at least NP-complete [8]. If this is the case, one such
package status is chosen—trying to satisfy user preferences,
if any—and gets called solution. Deploying a new status cor-
responding to the solution consists of package retrieval (3)
and unpacking (4), possibly intertwined with several config-
uration phases (5) where maintainer scripts get executed.

Various challenges related to the upgrade process still need
to be properly addressed. An example of a very practi-
cal challenge is the need to provide transactional upgrades,
offering the possibility to roll back in case an unexpected
(and unpredictable in general) failure is encountered during
upgrade deployment [7]. Other challenges concern upgrade
planning. For instance, dependency resolution can fail either
because the user request is unsatisfiable (e.g., user error or
inconsistent distributions [9]) or because the package man-
ager is unable to find a solution. Completeness—the guar-
antee that a solution will be found whenever one exists—is
a desirable package manager property [15], unfortunately
missing in most package managers, with too few claimed
exceptions [10, 17].

User Preferences. While suitable and complete techniques
to provide dependency solving completeness are now well-
known [9] and “just” lack widespread adoption, handling of
complex user preferences is a novel problem for software
upgrade, and is the main concern of this paper. It boils
down to let users specify what constitutes the “best” solu-
tion among all acceptable solutions, and provide mechanisms
to efficiently find it. Example of preferences are policies [10,
16], like minimizing the download size or prioritizing popular
packages, and also more specific requirements such as black-
listing packages maintained by an untrusted maintainer.

The first necessary step to attack the problem is devising
a way to encode user preferences in a flexible way, with-
out hindering package manager ability to respect them. A
prerequisite of that is a rigorous description of upgrade sce-
narios, on top of which the meaning of user preferences will
be defined.

2. USER PREFERENCE SCENARIOS
In the following we will consider several possible scenarios
where user needs can be better encoded as user preferences
in MooML. The actual encoding in MooML will be pre-
sented in Section 4.2, after a more in depth presentation of
the language.

Size Minimizing the total size consumed by the package in-
stallation is a rather most basic optimization criterion
and a frequent need of package managers for embedded
systems.

Freshness Preferring more recent package versions over
older package versions is also very common, and hard-
wired in most package managers. The hard-wiring in
Debian’s APT as a hard constraint is the main cause
for the incompleteness of its dependency solving abili-
ties.

Pinning To avoid forcing the choice of the most recent ver-
sion of a package in all cases, APT enables to specify
different choices for specific packages by the mean of a
mechanism called pinning [11]. In its essence, pinning
consists in specifying integer score values (called pri-
orities) for individual packages based on patterns of
package names, package versions, and origin; among
all the versions of a given package, the one with the
highest priority get chosen. By default, priority follows
versions. This is an example of “local” preferences that
apply to particular packages, in contrast to uniform
constraint like total installation size.

Security updates usually should have highest priority
while choosing which packages have to be upgraded.
We will demonstrate MooML’s multi-criteria capabil-
ities by stating that maximizing security updates has
priority over package freshness.

Multiple packages Some package managers, most notably
rpm, allow for multiple versions of the same package to
be installed; while this is an interesting property, one
might want to automatically “clean up” useless multi-
ple installations. This scenario will show how to mini-
mize the number of packages that are installed in mul-
tiple versions.

Note that, while they are presented as such for the sake of
brevity, scenarios are not mutually exclusive in practice. In
our vision, some optimization criteria will constitute a de-
fault configuration of a given package manager (e.g.: always
prioritizing security upgrades, avoiding package downgrades,
etc.) while some other will be added by users by the mean
of specific user interfaces. Even when the latter possibility
is not exploited, there are advantages in externalize prefer-
ences which are currently hard-wired in solving algorithms:
for instance they will become overrodable by users and it
will be easier to share optimizers among distributions.

MooML allows to combine multiple optimization criteria,
however one has to specify a hierarchy among the multiple
critera. For instance one can require to search for a solution
that is minimal in size first, and among all that solutions
that are minimal in size to choose one with maximal fresh-
ness. It is not possible to optimize two independent criteria
at the same time since in that case an optimal solution might
not exist.

As next section will explain, optimization criteria do not
allow to taint the correctness of a solution, e.g. by allowing
to install at the same time two conflicting packages.

3. DESCRIBING UPGRADE SCENARIOS
State of the art mechanisms for specifying user preferences
highlighted so far [10, 17, 11] suffer from two main draw-
backs: they are package manager specific, and they are not
expressive enough to encode all our user preference scenar-
ios (see Section 2). The first step we pursue in addressing
these shortcoming is devising a rigorous format in which up-
grade scenarios can be encoded; a user preference language
will be then developed on top of such a format (see Section
Section 4). The format is called CUDF (Common Upgrade-
ability Description Format). The specification of CUDF [14]
had been guided by some general design principles:

Be distribution agnostic One of the main purposes of
CUDF is being a common format to encode upgrade
scenarios coming from heterogeneous environments.
As a consequence, CUDF is agnostic to distribution-
specific details such as the used package system or
package manager.

Stay close to the original problem While there are
several possible encoding of upgrade scenarios [9],
CUDF aims to be as close as possible to the original
problem, in order to preserve the ability for humans to
understand the pre-CUDF upgrade scenario, and ease
interoperability with legacy package managers.

Extensibility Core package properties—e.g.: name, ver-
sion, dependencies, . . . —are shared by all distributions
and essential to grasp the meaning of upgrade sce-
narios. Other auxiliary properties are not, but might
be the subject of user preferences (e.g., minimize the
number of “buggy” packages, according to distribution
specific buggyness notions). In order not to hinder
the possibility to express such user preferences on top
of CUDF, the format allows to specify extra package
properties not prescribed by the format specifications.

Transactional semantics The point of view of CUDF is
upgrade planning: the notion of correctness of a solu-
tion with respect to an upgrade scenario expressed in
CUDF is global and does not express the package de-
ployment steps needed to pass from the starting pack-
age status to the final one. Such steps are more low-
level, and mostly uninteresting for user preferences.

Plain text format Technically, CUDF aims at being sim-
ple to parse and to generate. The reason is the con-
sciousness of the generality of the user preference prob-
lem and the desire to make the format popular among
different distributions. As plain text is the universal
encoding for information interchange formats in FOSS
communities [12], using a plain text format makes it
easy for package manager developers to adapt tools to
CUDF.

3.1 CUDF Syntax
The CUDF encoding of an upgrade scenario assumes the
name of CUDF document. Every such document has an ab-
stract logical structure, a formal meaning, and a serialized
form as a plain text file. The logical structure of a CUDF
document—sketched in Figure 2—is based on stanzas, which
are collections of key-value pairs called properties. Values
are typed within a simple type system containing basic data
types (e.g.: integers, boolean, and strings) and more com-
plex, package-specific, data types such as boolean formulae
over versioned packages used to represent inter-package de-
pendencies.

preamble (optional)

package description1

package description2

· · ·
package descriptionn

request description

Figure 2: Overall structure of a CUDF document.

CUDF documents contain one package description stanza
for each package known to the package manager; collectively
they represent the package universe. This means that both
installed and non-installed (but available) packages are rep-
resented in the same way in the same document, in con-
trast to current package installation systems which often
distribute this information over different files using differ-
ent syntactic representations.

Package description stanzas are based on a core set of prop-
erties (sometime optional, but always with default values),
the most important of which are: package and version

(which unambiguously identify packages), depends and con-

flicts (which express package dependencies and conflicts
to be properly installed), provides (which expresses ver-
sioned features that the current package provides for other
packages to depend or conflict upon), and installed (which
state whether the current package is installed or not).

Figure 3 shows the serialization of a sample CUDF docu-
ment. As stanzas are separated by blank lines, the central
part of the figure shows three package description stanzas,

preamble:
property: suite: enum(stable ,unstable) = \
"stable"

property: bugs: int = 0

package: car
version: 1
depends: engine , wheel , door , battery
instal led : true
bugs: 183

package: bicycle
version: 7
suite: unstable

package: gasoline -engine
version: 1
depends: turbo
provides: engine
conf l icts : engine , gasoline -engine
instal led : true

...

request:
in s ta l l : bicycle , gasoline -engine = 1
upgrade: door , wheel > 2

Figure 3: Sample CUDF document.

starting with the package property, where both core and
extra properties are used. The latter must be declared in
the optional preamble stanza, which starts the document in
Figure 3. The ability to declare extra properties accounts
for extensibility and also enables to statically verify the syn-
tactic correctness of CUDF documents. The bottom part
of Figure 3 shows the request description stanza, where the
user request is expressed. In its minimal form, such stanza
is used to express which packages the user wants to install,
remove, or upgrade (using the homonym properties), possi-
bly specifying version requirements.

The example lacks the encoding of user preferences. This
lack, which was our initial motivation for the work reported
here, can be filled by an optional property specifiable in the
request stanza, called preferences. Its content is a MooML
program, discussed in the next section. What is relevant
here is that MooML programs may be part of CUDF doc-
uments and will be able to express preferences referencing
CUDF stanzas.

3.2 CUDF Semantics
Given that a CUDF document completely describes an up-
grade scenario, what does constitute its meaning? Intu-
itively, an upgrade scenario poses a challenge for the pack-
age manager, its solutions are new package statuses. The
meaning, or semantics, of a CUDF document is hence a
characterization of all valid solutions matching the upgrade
scenario. We recall that a package status is just a set of
packages contained in the package universe which we know
is fully encoded in the document. On that basis, we declare
that a solution is valid if and only if:

1. all installed packages have their dependencies satisfied,
i.e. installed as well (abundance);

2. no two packages that are in conflict are installed to-
gether (peace);

3. the user request is satisfied by installed packages (cor-
rectness).

The first two points have been previously formalized rely-
ing on an encoding in propositional logics [9]. That encod-
ing fails to respect the design principle of staying close to
the original problem since, for example, packages with the
same name and different versions are treated as unrelated
boolean variables in the encoding. The formal semantics
of CUDF characterizes all valid solution corresponding to a
given CUDF document as a binary relation among package
statuses, indexed by the user request. We will not give the
full details here, for which the reader is referred to [14], but
rather only discuss the peculiarities of CUDF formal seman-
tics and its differences with respect to previous encodings.

An important semantic difference between existing package
management systems in FOSS distributions is whether they
a priori allow packages to be installed in multiple versions
(like rpm does) or not (like dpkg). CUDF semantics here
follows the rpm philosophy of a priori allowing mulitple ver-
sions of a package to be installed at the same time. To
encode Debian-like upgrade scenarios, where different ver-
sions of the same package are forcibly in conflict, a special
case of conflicts semantics is exploited, namely: self-conflicts
are ignored. Hence, in Figure 3, all packages (potentially)
appearing in multiple versions declare an (unversioned) con-
flict with themselves, as it happens for gasoline-engine.
The semantics ensures that such conflicts are ignored for
the very same version of the package (otherwise those pack-
ages will be useless) but take effect on different versions of
gasoline-engine, granting that only one version of it can
be installed. Such a semantics is coherent with self-conflicts
on virtual packages, which can be exploited to ensure mu-
tual exclusions among different providers of the same fea-
ture. For instance, three packages like postfix, sendmail,
and qmail, all providing the mail-transport-agent feature,
can be made mutually exclusive by having all of them both
provide and conflict with mail-transport-agent.

Finally, feature provision via provides is versioned, meaning
that specific versions of a given feature can be provided. Not
specifying a version—as in provides: foo—is interpreted as
providing all versions of the foo feature.

Equipped with all this, verifying the satisfaction of a user
request boils down to re-use the notions of peace and abun-
dance: an install request is satisfied if and only if the same
line, considered as a dependency, would be satisfied (abun-
dance); a remove request is satisfied if and only if a corre-
sponding conflict is unsatisfied (peace). Only upgrade needs
some caution: in principle it can be handled as install, but
additionally it also requires that all packages mentioned in
the user request are installed in a single version. Further-
more, after upgrade-ing some package we must have a ver-
sion of that package that is at least as new as any previously
installed version of that package.

CUDF also allows to express that a particular package must
not be removed, that it must be kept in its current version,

or that its functionality must be provided by some package
(see [14] for details).

3.3 CUDF Implementations
CUDF has already seen various implementations. The first
implementation—libcudf—is the “reference” implementa-
tion of the CUDF specifications and has been developed by
one of this paper authors. libcudf consists in a library able
not only to parse and pretty print CUDF documents, but
also to verify the CUDF semantics. This latter feature can
be exploited in two ways:

1. given a CUDF document, libcudf can verify whether
the contained package status is consistent, i.e., whether
abundance and peace are verified for all its packages;

2. given a CUDF document and an encoding of a poten-
tial solution, libcudf can verify whether the solution
is valid, i.e., abundance + peace + user-request satis-
faction.

libcudf comes with the cudf-check command line tool
which provides the above two features out of the box. The li-
brary is Free Software and can be user both from the OCaml
and C programming languages; it is available for download
at http://www.mancoosi.org/software/.

The authors are aware of other CUDF implementations.
Some of them are being developed within Mancoosi to con-
vert distribution-specific upgrade scenario descriptions into
CUDF, so that a cross-distribution corpus of upgrade sce-
narios can be formed. They will be released shortly at least
for the following distributions: Mandriva, CaixaMagica, De-
bian GNU/Linux. Using such tools we have verified that the
average size of an upgrade scenario encoded in CUDF is lin-
ear with the size of the origin package manager information
and usually smaller.2

Another independent implementation is already available in
CUPT3, a new APT-compatible package manager for De-
bian. In CUPT, CUDF is used as a syntactic format to
pipe upgrade scenarios to external solvers, so that upgrade
planning can be decoupled from other package manager ac-
tivities. Also, such a choice enables sharing more easily de-
pendency solvers not only inter- and intra-distributions, but
also with the scientific community.

4. EXPRESSING USER PREFERENCES
Having a rigorous description of upgrade scenarios, we can
now devise our language to express user preferences. Our
proposal for such a language—MooML for MancOosi Opti-
mization Meta4-Language—is described in this section. The
design of the language needs to face two requirements that
appear to be in mutual conflict:

2e.g. on a large Debian installation, using both testing and
unstable package repositories for about 45’000 packages, the
package manager information on disk amount to 14 Mb and
the corresponding CUDF document is 9 Mb
3http://wiki.debian.org/Cupt
4The meta is inherited from the ML family of languages, for
our purpose there is no distinguished meta level

http://www.mancoosi.org/software/
http://wiki.debian.org/Cupt

Simplicity programs written in MooML have to be inter-
preted by solver tools that will try to satisfy user pref-
erences. Hence they should be as simple as possible in
order to minimize the burden put on the developers of
these tools.

Expressivity the MooML language should allow to ex-
press sophisticated optimization criteria expressive
enough to encode the scenario we have discussed.

The right choice of a language was to be found between
two extremes. On one extreme a Turing-complete program-
ming language with rich user-defined data structures and
function definitions through unrestricted recursion. This
extreme would provide maximum expressivity by definition,
but would require tool developers to integrate an interpreter
for a full-fledged programming language. On the other ex-
treme a restricted language allowing only for simple combi-
nations of optimization criteria for which a limited choice
of common simple criteria is provided. This extreme would
probably make life easy for tool implementers, but would be
too limited in expressivity. It would also bear the risk of be-
ing obliged to continuously extend the choice of optimization
criteria.

In order to find the right balance between these two extremes
we made the following design choices for MooML:

• MooML allows to separately specify hard constraints
that must be satisfied by“user-approved”solution, and
optimization criteria.

• MooML does not allow to program directly an algo-
rithm that compares alternative solutions5. Instead,
the language allows to define how to compute a mea-
sure of solution quality. Two possible solutions are
compared by comparing their respective measures. A
MooML program specifies the polarity of each mea-
sure (i.e., whether it should be minimised or max-
imised). In case several measures are defined the pro-
gram defines a strict priority hierarchy (technically this
is a lexicographic combination of orders).

• MooML is a strongly typed functional language allow-
ing for polymorphic types and inference of principal
types.

• MooML does not allow for arbitrary use of recursion,
and is deliberately not Turing complete. Instead it pro-
vides for a generic fold-like iterator over lists, which
allows to program primitive recursive functions over
lists.

• MooML does not allow to define custom data types.

• MooML does not have a mechanism to catch excep-
tions but allows to express execution errors.

4.1 MooML Programs
The high-level syntax and structure of a MooML program
is sketched in Figure 4. Such a program is composed by a

5as it happens, for example, with the sort function provided
by the standard library of several programming languages

P ::= program
(let x = e)∗ definition
(constraint e)? constraint
((minimize | maximize) e)∗ criteria

Figure 4: Syntax of MooML programs

e ::= expressions
x variable

| Cv literal
| fun x -> e abstraction
| e e application
| () unit
| (e1, . . . , en) tuple
| {l1 = e1, . . . , ln = en} record
| [] empty list
| e :: e list
| e.l projection
| let p = e1 in e2 let binding
| match e with

pi ⇒ ei | · · · | pn ⇒ en

pat. match

p ::= patterns
x variable

| Cv constant
| () unit
| (p1, . . . , pn) tuple
| {l1 = p1, . . . , ln = pn} record
| ′x enumeration
| [] empty list
| p1 :: p2 list
| ∗ wildcard

Cv ::= CUDF literals
true | false booleans

| . . . | -1 | 0 | 1 | . . . integers
| "s" strings
| ’l enumerations
| . . . formulae, . . .

Figure 5: Syntax of MooML expressions

series of preparatory global definitions, meant to be reused
in the remainder of the program. Then, two main parts
compose a MooML program. The first is a constraint, that
is a boolean expression which, when evaluated to true, indi-
cates a solution considered acceptable by the user. Using a
constraint users can exclude solutions that, in spite of being
valid with respect to CUDF semantics, are undesirable for
them. The second part is a list of optimization criteria, i.e.
expressions of the language returning integers and tagged
with a request to either minimize or maximize them over all
otherwise valid solutions.

The syntax of MooML expressions, as given in Figure 5, has
features borrowed from common functional programming
languages. Expressions sport rich types such as records, tu-
ples and lists defined on top of the basic CUDF types, as well
as expressive constructs such as pattern matching and (non-
recursive) local definitions. The evaluation of a MooML
program is a straightforward ML-style evaluation [4] with

pattern matching [2]; overall it boils down to evaluate the
constraint and optimization criteria expressions in an eval-
uation environment enriched with global definitions. Addi-
tionally, the environment is also enriched with:

• the MooML standard library, which provides the usual
kit of functional programming functions and in partic-
ular the fold iterator (and some of its derivatives, like
map, and filter) without which iterating over list data
structures would be impossible within the language;

• the package universe u denotes a list of records rep-
resenting all the package description stanzas of the
CUDF document from which the MooML program
originated. Each record contains one field for each
package property, and can therefore be properly typed
having around the CUDF preamble. However, the
installed property gets split into two new properties:

was-installed (the same as the original installed,
renamed for clarity) denotes whether the owning
package was installed in the upgrade scenario pre-
sented to the package manager

is-installed denotes whether the owning package is
installed in the proposed solution in the context
of which the MooML program is being evaluated

• the user request r denotes a record corresponding to
the user request stanza of CUDF.

The only way to express iteration over lists is to use the
predefined fold function. An expression

(fold f [an ; ... ; a1] a0)

is evaluated as

(f an (f a(n-1) ... (f a1 a0) ...))

An alternative way to describe its semantics is the following
iterative pseudo-code:

r := a0;

foreach i in 1 .. n do r := (f ai r);

return r;

For instance, the standard library contains a definition of
the sum function to sum up a list of integers:

let sum l = fold add l 0

and other functions like filter, map, max, etc. acting on lists
can easily be defined the same way.

Note that all properties, except the is-installed property,
of packages are given by the CUDF document on which a
MooML program is applied. The input CUDF document
describes the was-installed property of any package, it is
the role of the MooML program to impose constraints on
the possible is-installed properties of packages, and to
calculate a score on any possible choice of is-installed

properties of the packages.

Once the constraint and criteria expressions are fully re-
duced, there are enough information both to known whether
or not the solution should be discarded (constraint evaluated
to false). If it is not the case, the different criteria values
together denote a tuple that can be lexicographically com-
pared with tuples coming for other candidate solutions to
determine which of the two is to be preferred. Of course the
lexicographic order should take into account the “polarity”
of the criterion, i.e., whether it was a minimize or maximize
request.

Types are not explicitly given in the syntax of the language,
because they can be reconstructed in the style of Damas-
Milner [5], obtaining principal types. The only source of
ambiguity in the type system are record labels which, due
to the CUDF ability to declare extra properties, can be not
enough to unambiguously determine record types. While
there seems to be no obstacles in extending the type system
to account for them in the style of Remy [13], we have pre-
ferred to provide optional type ascriptions in the concrete
syntax (not shown in Figure 5) to disambiguate the rare
ambiguous cases.

4.2 Examples
MooML is expressive enough to account for all usage sce-
narios presented in Section 2, as we will show in the follow-
ing. The need of program simplicity for solver implementers
will be addressed by the partial evaluation mechanism in the
next section.

Example 1 (minimize total installation size).
The “Hello, World!” equivalent in MooML is likely to be the
widespread policy of minimizing the total installation size,
very useful for embedded or otherwise constrained systems.
It can be expressed as:

let size pl =
sum (map (fun p -> p.installed -size)) pl

minimize size
(filter (fun p -> p.is-installed) u)

where sum is a library function summing up integers. The
program simply states that the score to be minimized is the
sum of the installed-size value (an extra property with the
obvious meaning) of all packages installed in the proposed
solution.

Example 2 (maximize package “freshness”).
The scenario requiring to maximize the number of packages

installed at their most recent version can be expressed as
follows.

let is-recent p =
forall
(fun q -> (q.name != p.name)

|| (q.version <= p.version)
u

maximize cardinality
(fun p -> p.is-installed && is-recent p) u

is-recent is used as an auxiliary function to check whether
a given package—given as its record—is the most recent ver-
sion of all equally named packages; its implementation relies

on forall which check the true-ness of a boolean predicate
over a list of items (in this case, the package universe u).
Complementary, cardinality counts the number of times
a predicate is true over a list; in the given optimization
criteria, it is used to require the maximization of “recent”
packages.

Example 3 (flexible APT pinning).
APT pinning can be encoded in at least a couple of dif-

ferent ways using MooML, depending on the desired goal.
A first possibility is to encode the exact semantics of pin-
ning, so that the only acceptable solutions will be those poten-
tially returned by a pinning implementation. In essence, pin-
ning works at the package choice level, ensuring that among
all available versions of a given package, the one with the
highest pin priority is installed. While pin priority them-
selves can be assigned using MooML (see Section 5), if
we assume that each package comes with an extra property
pin-priority, we can encode pinning semantics as follows:

let max -pin p =
max (map (fun z -> z.pin -priority)

(filter (fun q -> q.name == p.name) u))
constraint forall (fun p -> p.is-installed

&& p.pin -priority = max -pin p)

Given that this strict semantics is a well-known cause of
APT incompleteness [8], a more “flexible” pinning encoded
can be obtained by requiring to maximize the number of pack-
ages at maximal pin priority:

let max -pin p = (* as above *)
maximize cardinality

(fun p -> p.is-installed
&& p.pin -priority = max -pin p)

An even more flexible metric over APT pinning can be ob-
tained by minimizing the total difference between maximal
and actual pin priorities as follows:

let max -pin p = (* as above *)
minimize sum

(map (fun p -> i f p.is-installed
then max -pin p - p.pin -priority
else 0) u)

Example 4 (priority to security updates).
The scenario which requires to prioritize security upgrades
over any other criteria can be encoded straightforwardly by
relying on MooML’s lexicographic ordering over solution
measures. In the following example it is combined with the
freshness criteria of Example 2.

let is-recent p = (* as above *)
maximize cardinality

(fun p -> p.is-installed && not p.was -installed
&& p.is-security -fix) u

maximize cardinality
(fun p -> p.is-installed && is-recent p) u

Note that we explicitly require the package to be newly in-
stalled before verifying whether it is a security fix (extra prop-
erty is-security-fix), this way we ensure the security fix
is being delivered with the proposed solution. Lexicographic

Figure 6: Partial evaluation and its properties

ordering ensures that solutions with a higher number of se-
curity fixes being delivered will be preferred, no matter the
total freshness. (How to improve the example to ensure that
no past security fixes get removed by downgrades is left as
an exercise.)

Example 5 (minimize multiple versions).
In this example we wish to minimize the number of packages

that exist in multiple versions in the final installation.

let number -versions p = length
(filter (fun q -> q.is-installed &&

p.name = q.name)
u)

minimize cardinality
(fun p -> p.is-installed &&

number -versions p > 1) u

The function number-versions applied to package p calcu-
lates the number of installed packages with the same name as
the package p. We minimize the number of installed pack-
ages for which the function installed-version returns a
value strictly greater than 1.

5. PARTIAL EVALUATION
In their full generality, MooML programs can be too com-
plex to handle for dependency solvers, or at least require
non trivial implementation efforts to develop a full MooML
evaluator. To address this shortcoming, MooML has been
designed to be a good subject for partial evaluation which
processes fully general MooML programs and returns “sim-
pler” programs, ideally more suitable for digestion by de-
pendency solvers. More precisely (see Figure 6), MooML
partial evaluation is applied to a program p, which belongs
to a CUDF document c, and returns two new entities: a new
program p′ and a CUDF transformer applicable to “c-like”
CUDF documents, intuitively documents sharing the same
extra properties of c. Once applied to c, the transformer re-
turns a new document c′, to which p′ belongs. Partial eval-
uation enjoys the property that the evaluation of p in the
context of c returns the same result (constraint and mea-
sure tuple) than the evaluation of p′ in the context of c′.

The advantage of p′ over p is that it is potentially simpler,
in the sense that it can be implemented by ignoring signifi-
cant parts of the MooML language. However, in the worst
case, the partial evaluator may not be able to do any sim-
plification.

The guiding principle of MooML’s partial evaluation is to
pre-compute all sub-expressions that depend on the upgrade
scenario, but not on the upgrade solution, and to“save”them
as fresh package properties. As a consequence, p′ is ob-
tained by substituting complex sub-expressions with access
to (fresh) properties, and c′ is obtained by adding (fresh)
properties. To characterize a little more formally, the sub-
expressions that are good partial evaluation candidates we
first define an equality relation which relates all package sta-
tuses equal up to is-installed:

Definition 1 (sibling package lists). Two package
lists l1, l2 are siblings, written l1 m l2, if Dom(l1) = Dom(l2)
(i.e., they contain the same packages), and for each (p, v) ∈
Dom(l1) we have that l1(p, v) equals l2(p, v) except possibly
the value of the is-installed property.

Then, we grasp partial-evaluable (sub-)expressions with the
notion of local expressions. In the following definition we
will make use of a mathematical semantics of the MooML
language (the formal definition of which is omitted from this
paper). When e is a MooML expression and σ an evaluation
environment mapping identifiers to semantic values, then
[[e]]σ denotes the semantic object obtained by evaluating e
in the environment σ.

Definition 2 (local expressions). An expression e
of type package→ t, and which does not have any unbound
identifiers besides r and u, is called local if for all packages
p, for all package lists l1, l2, request r0 such that l1 m l2 and
p ∈ l1, p ∈ l2 we have that

[[e]][u 7→ l1, r 7→ r0](p) = [[e]][u 7→ l2, r 7→ r0](p)

Intuitively, local expressions are all those expressions whose
evaluation does not depend on the is-installed values of
packages coming from the package universe; note that ex-
pressions accessing the is-installed property of their ar-
gument can be local nevertheless. As stated in Definition 2,
the expression e must not refer to any previously defined
function, but this is not really a restriction as we can always
inline all function definitions (since the language does not
allow for recursive definitions).

We extend the MooML type system in order to determine
a set of expressions that are local in the sense of Defini-
tion 2. The extension is straightforward and in the style of
Volpano [18]. The record type gets split into safe and unsafe
records, with type instantiation that enables to “cast-down”
safe to unsafe; complementary, record projection typing gets
changed to type as unsafe record projections explicitly ac-
cessing the is-installed property. The intuition is that
functional expressions having principal type with safe record
argument are guaranteed not to access its is-installed

property.

Equipped with the above typing machinery, each MooML
sub-expression—no matter where it appears—that have type
package → t, for some t, can be tested for locality as fol-
lows:

1. if it can be typed under the premise that u is a list of
safe packages, then the expression is local

(a) if, moreover, its principal type is an arrow from
safe packages to something, the expression is fully
determined without the candidate solution

(b) otherwise, the expression depends on the property
is-installed of its sole argument

2. otherwise the expression is not local

Case (1a) is the luckiest: the sub-expression can be pre-
computed on all packages of the universe, its value stored
in a fresh property name (to be declared in the preamble),
and replaced by a field access the fresh property. Case (1b)
requires the additional efforts of (statically) computing two
possible values of the sub-expression, according to the possi-
ble values of is-installed, and of tweaking the program to
lookup one or another fresh property according to the actual
is-installed value at runtime. Case (2) is the worst case,
where no partial evaluation is possible due to non locality.

Example 6. To demonstrate partial evaluation in prac-
tice we reconsider Example 2. It contains two expressions
having types package → t for some t. The first one, sub-
expression of the is-recent definition body, belong to case
(1a) (unrelated to solution), while the second need the prop-
erty is-installed of its argument, still being local. Par-
tial evaluation will rewrite the MooML program leading to
something like:

let is-recent p = forall (fun q -> q.fresh0) u
maximize cardinality

(fun p -> i f p.is-installed
then q.fresh1
else q.fresh2)

where fresh0, fresh1, fresh2 are fresh properties defined
as follows. fresh0 will be true for all “most recent pack-
ages”, fresh1 will inherit from fresh0, and fresh2 will be
the constant false.

The limits of the partial evaluation approach are demon-
strated by the example of minimizing multiple installed ver-
sions of packages (Example 5). In that case the partial evalu-
ator does not bring any advantage since everything depends
on the final installation status of the packages, and there is
no additional information that can be pre-computed inde-
pendently of the installation status of the other packages in
the universe. A similar case is the maximization of the num-
ber of installed packages that have their recommends (which
is a weak, non-mandatory form of package dependency) sat-
isfied.

A concluding noteworthy scenario is a reprisal of APT pin-
ning handling (see Example 3). No matter how “strictly”

pinning gets implemented in MooML, partial evaluation
enables to relax the requirement that pin priorities reach
MooML pre-computed, without neither implementation
burden, nor performance loss for dependency solvers. The
idea is to store in MooML the rules to assign pin priorities
to packages on the usual basis (origin suite, package name,
package version, . . .) relying on apposite extra properties
and suitable standard library functions (like regular expres-
sion matching). If pinning assignment is encoded as func-
tions from packages to integers (and hardly will be other-
wise), there is no reason for the implementing expression to
access the is-installed property, given that pinning rules
are static. Hence, the resulting sub-expressions are local—
case (1a)—and will be completely removed during partial
evaluation, returning a CUDF document such as those as-
sumed by Example 3.

6. CONCLUSION
The request to alter the installation of component based
software collections as large as FOSS distributions can have
a daunting number of satisfying answers. To choose the
“best” solution among them, state of the art package man-
agers implement ad-hoc heuristics and offer preference mech-
anisms of limited expressiveness. In this paper we presented
an architecture to specify user preferences about FOSS pack-
ages which is both independent from specific package man-
agers or distributions and expressive enough to encode sev-
eral preference scenarios. The architecture is composed by a
format to encode upgrade scenarios (CUDF) and by a func-
tional language to encode user preferences (MooML).

Future work is planned on several directions. First of all,
while syntax and formal semantics of CUDF have been stud-
ied already, various properties of MooML still need to be
investigated in more detail. In particular we plan to charac-
terize various subsets of MooML that correspond, after par-
tial evaluation, to language fragments which are best suited
for different encodings of package upgrade problems (SAT,
PBO, constraint programming, etc.).

We also plan to carry partial evaluation further in the direc-
tion of getting rid of data types at partial evaluation stage,
so that only integers (which are the preferred data type for
the optimization community) remain after that.

Finally, the mentioned corpus of upgrade scenarios coming
from different distributions is actually being collected with
the final goal of organizing a recurrent dependency solving
competition. Ideally, such a that forum will become a venue
where the package manager developer community meets the
research community on constraint solving. Both communi-
ties could profit from this: package managers can use com-
plete and more powerful dependency solving tools, and it
gives the research community access to a large corpus of
real-life optimization problems of non-trivial size.

7. REFERENCES
[1] P. Abate, J. Boender, R. Di Cosmo, and S. Zacchiroli.

Strong dependencies between software components. In
Empirical Software Engineering and Measurement
2009, 2009. To appear.

[2] L. Augustsson. Compiling pattern matching.

In Functional Programming Languages and Computer
Architecture, volume 201 of LNCS, pages 368–381.
Springer-Verlag, 1985.

[3] D. L. Berre and P. Rapicault. Dependency
management for the Eclipse ecosystem. In R. D.
Cosmo and P. Inverardi, editors, IWOCE 2009 (this
volume), Aug. 2009.

[4] D. Clément, T. Despeyroux, G. Kahn, and
J. Despeyroux. A simple applicative language:
mini-ml. In Conference on LISP and functional
programming, pages 13–27, New York, 1986. ACM.

[5] L. Damas and R. Milner. Principal type-schemes for
functional programs. In ACM Symposium on
Principles of Programming Languages (POPL), pages
207–212, USA, 1982. ACM.

[6] R. Di Cosmo and S. Cousin. Project presentation.
Deliverable D1.1, The Mancoosi project, Jan. 2008.
http://www.mancoosi.org/deliverables/d1.1.pdf.

[7] R. Di Cosmo, P. Trezentos, and S. Zacchiroli. Package
upgrades in FOSS distributions: details and
challenges. In HotSWUp’08, pages 1–5. ACM, 2008.

[8] EDOS Project. Report on formal management of
software dependencies. EDOS Project Deliverable
D2.1 and D2.2, Mar. 2006.

[9] F. Mancinelli, J. Boender, R. D. Cosmo, J. Vouillon,
B. Durak, X. Leroy, and R. Treinen. Managing the
complexity of large free and open source package-based
software distributions. In ASE 2006, pages 199–208,
Tokyo, Japan, Sept. 2006. IEEE CS Press.

[10] G. Niemeyer. Smart package manager.
http://labix.org/smart, 2008.

[11] G. Noronha Silva. APT howto.
http://www.debian.org/doc/manuals/apt-howto/,
2008.

[12] E. S. Raymond. The Art of UNIX Programming.
Addison-Wesley Professional, 1st edition, Oct. 2003.

[13] D. Rémy. Type inference for records in natural
extension of ml. In C. A. Gunter and J. C. Mitchell,
editors, Theoretical aspects of object-oriented
programming, pages 67–95. MIT Press, Cambridge,
MA, USA, 1994.

[14] R. Treinen and S. Zacchiroli. Description of the CUDF
format. Deliverable D5.1, The Mancoosi project, Nov.
2008.
http://www.mancoosi.org/deliverables/d5.1.pdf.

[15] R. Treinen and S. Zacchiroli. Solving package
dependencies. In DebConf8 Proceedings Team, editor,
DebConf 8, pages 18–42, Mar del Plata, Argentina,
Aug. 2008. https://media.debconf.org/dc8/
proceedings/proceedings.pdf.

[16] P. Trezentos, R. Di Cosmo, S. Lauriere, M. Morgado,
J. Abecasis, F. Mancinelli, and A. Oliveira. New
Generation of Linux Meta-installers. Research Track of
FOSDEM 2007, 2007.

[17] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner.
OPIUM: Optimal package install/uninstall manager.
In ICSE ’07, pages 178–188. IEEE Computer Society,
2007.

[18] D. Volpano, C. Irvine, and G. Smith. A sound type
system for secure flow analysis. J. Comput. Secur.,
4(2-3):167–187, 1996.

http://www.mancoosi.org/deliverables/d1.1.pdf
http://labix.org/smart
http://www.debian.org/doc/manuals/apt-howto/
http://www.mancoosi.org/deliverables/d5.1.pdf
https://media.debconf.org/dc8/proceedings/proceedings.pdf
https://media.debconf.org/dc8/proceedings/proceedings.pdf

	Introduction
	FOSS Package Upgrade Generalities

	User preference scenarios
	Describing Upgrade Scenarios
	CUDF Syntax
	CUDF Semantics
	CUDF Implementations

	Expressing User Preferences
	MooML Programs
	Examples

	Partial evaluation
	Conclusion
	References

