
Why Do Software Packages Conflict?

Cyrille Artho, Kuniyasu Suzaki
Research Center for Information Security

AIST
Umezono 1-1-1, Tsukuba,
Ibaraki 305-8568, Japan

{c.artho,k.suzaki}@aist.go.jp

Roberto Di Cosmo, Ralf Treinen, Stefano Zacchiroli
Univ Paris Diderot, Sorbonne Paris Cité

PPS, UMR 7126, CNRS, F-75205
Paris, France

roberto@dicosmo.org, treinen@pps.jussieu.fr
zack@pps.univ-paris-diderot.fr

Abstract—Determining whether two or more packages can-
not be installed together is an important issue in the quality
assurance process of package-based distributions. Unfortu-
nately, the sheer number of different configurations to test
makes this task particularly challenging, and hundreds of
such incompatibilities go undetected by the normal testingand
distribution process until they are later reported by a user as
bugs that we call “conflict defects”.

We performed an extensive case study of conflict defects
extracted from the bug tracking systems of Debian and Red
Hat. According to our results, conflict defects can be grouped
into five main categories. We show that with more detailed
package meta-data, about 30 % of all conflict defects could
be prevented relatively easily, while another 30 % could be
found by targeted testing of packages that share common
resources or characteristics. These results allow us to make
precise suggestions on how to prevent and detect conflict defects
in the future.

I. I NTRODUCTION

A. Package-based software distributions

Modern software distributions are organized into pack-
ages. A software package is a self-contained unit that can
be installed or removed independently of other packages,
as long as dependencies are met. A package manager
controls such administrative tasks; compared to unmanaged
installations, the benefits of a package-based approach are
the ability to automatically install, upgrade, and remove
packages without the need to remember installation locations
or which files are affected by a change.

In real software, this ideal state is not easy to achieve, due
to dependencies between software packages, and interactions
between software belonging to different packages. Depen-
dencies arise because some packages provide functionality
used by others. Interactions occur on shared resources, such
as files, and because packages may provide components that
can be combined into a larger system (such as client and
server packages communicating together).

Dependencies restrict the ability to freely install, remove,
or upgrade packages. If a packagea depends on another
packageb, a package manager automatically requiresb to
be installed whena is requested to be installed. Furthermore,

packageb cannot be removed as long asa is still in use. Fi-
nally, upgrades of one package often require a simultaneous
upgrade of related packages. In addition to this, there is a
notion of conflicting packages: two packages may use the
same resource or provide the same service in a way that is
incompatible, so only one of these two packages may reside
on a system at any given time.

In package-based software distributions, so-calledpack-
age meta-datadescribes dependencies and relations between
packages. Most Free and Open Source Software (FOSS)
systems are managed in that way. Meta-data contains in-
formation about dependencies of packages, and conflicts
between them. At the time of writing, meta-data covers
relations among packages at the package level; dependencies
and conflicts are indicated by package, not by the actual
resources a package provides or depends on. Different
packaging mechanisms have different ways of giving more
fine-grained information on packages.Features(as used by
the Red Hat package manager) may represent individual
libraries. So-calledvirtual packagesare sometimes used as
placeholders for actual resources or services provided by a
package.

Unlike fully fledged packages, such placeholders do not
include any actual installation of programs. Both mecha-
nisms leverage the package dependency system, representing
resource dependencies as package dependencies. However,
neither mechanism constitutes a generic way of describing
resources, such as files, network ports, or system services,
in an accurate and fine-grained way. There is no formal
definition linking virtual packages to actual resources (or
vice versa); definitions are made by package maintainers
instead of automated tools.

An abridged example of the meta-data of the Debian
package for themutt mail user agent is given in Figure1.
This package depends on a long list of library packages only
partially shown in the figure. It also has a recommendation
(that is a weak form of dependency) on a virtual package
mail-transport-agent, which in turn is provided
by several other packages like for instanceexim4 or
sendmail, and it provides itself two virtual packages
imap-client andmail-reader. Furthermore, it con-

Package: mutt
Arch i t ec tu re : amd64
Version: 1.5.21-5
Replaces: mutt-utf8
Prov ides: imap-client, mail-reader
Depends: libc6 (>= 2.3.4),
libcomerr2 (>= 1.01), ...

Recommends: mail-transport-agent, ...
C o n f l i c t s: mutt-utf8

Figure 1: Excerpt of Debian meta-data

flicts and replaces a package namedmutt-utf8, a package
which was useful in the past but is now obsolete (since
superseded bymutt) and which has been removed from the
Debian archives. However, one has to assure smooth upgrade
from situations where that old package is still installed.
This smooth upgrade is achieved through a combination of
Conflicts and Replaces as shown in the example.

B. Conflict defects

Conflict defects occur if the combination of multiple
packages results in a defect that is absent otherwise. Package
meta-data—and in particular explicit conflict declarations—
may indicate such defects, which prevents conflicting combi-
nations of packages from being installed. However, conflict
defects may still arise in practice. The reasons for such
defects are manifold: packages are not just bundles of
files, but include pre-installation and post-installationscripts.
These scripts are unrestricted, Turing-complete programs
running with full system (root/administrator) access. It is
impossible in general to capture the full side effects of these
scripts with a formal description. Actual conflict defects
might simply go unnoticed through a testing phase or might
be impossible to describe properly. The same problem arises
when executing the software provided by these packages.
Therefore, a complete logical analysis of package behavior
is not possible. Nonetheless, as this paper shows, steps can
be taken towards covering certain types of common conflict
defects that are not automatically verifiable with current
tools.

Another problem arises from the fact that a significant
part of package meta-data is provided manually, by package
maintainers. It is therefore a challenge to keep such meta-
data up to date and accurate. This challenge becomes espe-
cially daunting in the presence of a huge number of software
packages in distributions such as Debian, where the number
of packages available currently exceeds 30,000 [14].

As a consequence of this, bug reports referring to conflict
defects between packages are becoming frequent. This paper
investigates the origin of such defects and tries to answer the
following questions:

1) What are the main reasons why conflict defects arise?
2) Are there common categories of conflict defects?

3) Can these problems be addressed by using existing
tools, or is there a need to improve them, or create
new ones?

4) Is package meta-data currently being used, accurate
and sufficient? Is there a need to automatically verify
such meta-data for accuracy, or is there a need to
use additional meta-data for a more accurate notion
of package conflicts? In other words, are most or all
possible conflict defects covered by meta-data?

This paper is organized as follows: SectionII describes
related work. SectionIII shows two case studies on conflict
defects in Debian and Red Hat, with a detailed evaluation
of different kinds of conflict defects. SectionIV discusses
the results and proposes possible strategies for remedying
problems found, and SectionV concludes and outlines future
work.

II. RELATED WORK

A. Software packaging

Software packages are a well-known example of the
component models that have originated from the field of
component-based software engineering (CBSE) [19], [3].
Packages fit within common component definitions, but
the raise in their popularity—started with the advent of
FOSS package managers such as the FreeBSD porting
system [17], APT [10], Yum, etc.—has highlighted very
specific challenges related to their deployment [6]. Some
of those challenges are being addressed relying on package
meta-data and their formalization.

Seminal work [9] has shown how to encode the instal-
lability problem for software packages as a SAT problem,
established the (NP-Hard) complexity of the problem, and
shown applications of the encoding to improve the quality of
package repositories by avoiding non-installable packages.
Based on the same formalization, various quality metrics
have been established, such as strong dependency and sen-
sitivity [1] (to evaluate the “importance” of a package in
a given repository) and strong conflicts [5] (to pinpoint
packages which might hinder the installation of several other
packages). In the same vein, package meta-data has also
been used to predict future (non-)installability of software
packages [2]. The abundance of studies that rely on package
meta-data testifies the importance of the correctness of meta-
data.

On the other hand, studies on package meta-data correct-
ness like this one, seem to be scarce. At the same time,
a few testing tools can be found in the realm of Quality
Assurance (QA) of FOSS distributions to discoversymptoms
that might then lead, a human, to discover errors in package
meta-data. To name one, the “file overwrite” [20] initiative
helps in discovering undeclared conflicts among packages in
the Debian distribution.

B. Alternatives to globally managed software packaging

As an alternative to globally managed software packages
that are organized in a fine-grained hierarchy, self-contained
packages including all sub-components, sometimes called
bundles, are sometimes used. Such bundles include the ap-
plication and all libraries it depends on, linked statically [12].
This contrasts to FOSS distributions where libraries are
shared, and generally required to be shipped as separate
packages—see for instance [8], “convenience copies of
code”—in order to ease the deployment of (security) up-
grades. In a system using bundled software, all applications
using the library in question need to be updated separately.
This usually entails a longer period during which a system is
vulnerable, because some software bundles may be provided
by third parties.

An advantage of self-contained software bundles is the
ease of testing and deployment, as system-specific con-
figurations and libraries have only limited impact on the
software bundle. However, statically linking all libraries used
by a bundle requires much disk space. If many applications
include the same statically-linked libraries, these libraries are
duplicated within the same system. Deduplication addresses
this problem [4], [18]. Memory and storage deduplication
merge same-contents chunks on block level, and reduce
the consumption of physical memory. By sharing identical
chunks of storage, logical-level redundancies caused by
static linking are resolved on the physical level.

III. E VALUATION OF CONFLICT DEFECTS

A. Repositories used in the case study

The evaluation of existing conflict defects was carried out
on two publicly accessible bug repositories: The Debian bug
repository [13] and Red Hat’s bugzilla [16]. These represent
the two of the most widely used FOSS distributions for
the past 10 years. Red Hat’s repository also contains bugs
related to Fedora, a community distribution on which Red
Hat Enterprise Linux is based.

To get a summary of the Debian bug repository, a snapshot
of the Ultimate Debian Database (UDD) [11] was taken.
This database contains key data of allopen bugs at that
time, such as bug ID, title, and the affected package. The
snapshot, taken on January 23rd 2011, contains 79,936 bugs.

For Red Hat, no such summary snapshot is available; how-
ever, bugzilla offers a web-based search that returns all data
in XML format. Like in the Debian case study, the search
returns matches on all open bugs. The searches on Red Hat’s
database were carried out on February 4th, 2011. While the
exact total number of open bugs at that time is not known
(because a search with no filter is not possible), the highest
number (bug ID) returned by the search, roughly matches
Debian’s; furthermore, the number of search results is also
comparable. This leads us to believe that the samples in both
case studies are taken from repositories of comparable size.

Keyword Matches Refined matches
break 575 161
conflict 252 85
overwrite 102 44
total 929 290

Table I: Number of matches per keyword in Debian bug
database.

Keyword Matches Refined matches
break 166 111
conflict 119 106
overwrite 19 9
total 304 226

Table II: Number of matches per keyword in Red Hat bug
database.

B. Methodology

1) Automated search:As the bug database is too large to
be analyzed manually, the selection of bugs is first narrowed
down by a keyword search. We chose three keywords to
search for: “break”, “conflict”, “overwrite”. The first two
words are generic descriptions of conflict defects and often
appear in the form “a breaksb” or “ a conflicts with “b”.
The last keyword describes one of the most common inter-
package problems, where one package overwrite a resource
needed by another package.

TablesI and II give an overview of all the matches in
the search. A total of 929 bugs match the initial search
on the Debian repository, and 304 bugs match on Red
Hat’s bugzilla. Some of the matches contain more than one
keyword and are therefore duplicates. Our aim is not to get
an exact number of how many conflict defects there are in
total. Rather, we want to know what types of conflicts occur
more often than others, relative to the total number.

We then narrow the search to eliminate bug reports that
describe problems that relate to one package alone, rather
than a conflict between two packages. For example, “over-
write” could appear in a bug report related to overwriting
text in a text editor. Indeed, an initial manual evaluation
on Debian shows that about half of all bug reports found
in the initial search are not related to conflict defects. To
make the results more accurate, the search is refined to
include only bug reports out of the initial selection, where
the title contains the name of another package. This may
filter out more bug reports than necessary (decreasing recall,
in search terms), but makes the results much more precise.
To avoid excluding too many packages, (version) numbers of
packages are not included in this filter, even if the package
name itself contains a version number. A manual check
shows that this filter is good approximation of a manual
selection of true conflict defects.

As shown in TableI, the refined selection on Debian
contains 290 matches. Some of these matches contain mul-
tiple keywords in the title; 241 of them are distinct bug

Debian Red Hat
Bugs after initial search 929 304
Having package name in title 290 226
Manual filtering of title contents 190 226
Bugs that are not conflict defects 51 43
Actual conflict defects 139 183

Table III: Bugs evaluated in detail.

reports. On Red Hat, all 226 refined matches are distinct
bug reports. On Debian, further manual post-processing of
that list removes another 51 items, where the title indicates
clearly that those are not conflict defects. This leaves 190
bug reports where, judging from the title of the report, a
possible conflict defect is reported.

At this early stage, checking the bug description filters
out a much smaller number of bugs on the Red Hat case
study. We think that this is partly because more professional
developers and proportionally fewer volunteers contribute to
Red Hat’s bug database. This may lead to the language on
Red Hat’s database being more uniform, making a keyword
search more precise. Another reason is that a particular
category of bugs, a conflict between 32-bit and 64-bit
packages (see below), occurs often in Red Hat; this improves
search precision. The second stage of the the evaluation on
Red Hat’s bugzilla is performed on the remaining 226 bugs.

Table III summarizes the search and selection stages:
An initial keyword search yields a large number of bugs;
these matches are refined by keeping bug reports where the
title includes a package name, hinting at the existence of a
conflict defect. In the case of Debian, the number of bugs
is further reduced by a manual analysis of the bug title. For
Red Hat, the full bug text is analyzed in all remaining cases,
because the remaining number was smaller after accounting
for conflicts between 32-bit and 64-bit packages.

2) Manual evaluation:The final stage of analysis is done
manually, requiring the full information on each bug. In
the initial web-based searches, these detailed results are
not returned. Both the Debian summary database (UDD)
and Red Hat’s search return only summary data. The bug
IDs returned in the summary link it to the detailed bug
description.

The actual bug reports are obtained by downloading
them from the web page representing the corresponding
bug repository [13], [16]. Manual study and categorization
of the bugs rules out a number of possible candidates as
being problems related to a single package rather than a
combination of packages, as shown in TableIII . Bugs that
are not counted include the following:

• bugs that are clearly not reproducible,
• bugs of which the description is unclear,
• bug reports which are later retracted as incorrect, and,
• in Red Hat, two bugs where access to details is denied

to the public.
This leaves 139 and 183 genuine conflict defects, respec-

 0

 50

 100

 150

 200

 1998
 1999

 2000
 2001

 2002
 2003

 2004
 2005

 2006
 2007

 2008
 2009

 2010
 2011

Frequency of bug reports by year

Debian (submitted)
Debian (last modified)

RedHat (submitted)
RedHat (last modified)

Figure 2: Characteristics of both bug repositories.

tively. A subset of these bug reports is evaluated in a first
sample, to come up with a categorization of bug reports that
would not be too coarse (giving only a few rough classes
of bugs) and not be overly fine-grained either (putting most
bugs into a category of their own). After that, all bug reports
are classified according to these criteria, or eliminated asnot
being conflict defects. The categorization is refined during
the process, to merge similar categories where one category
has few elements. This is similar to a clustering algorithm,
except that the measure of similarity between categories is
subjective, as the semantics of natural language cannot be
easily quantified with today’s technology.

3) Possible sources of bias:Our study was designed with-
out any personal bias towards existing software distributions
or packages. The packages in question mentioned in the
bug reports are not developed by us. Nonetheless, our study
contains sources of possible bias.

Our first step is based on filtering the title (or summary) of
each bug report against given keywords and package names.
We are aware that this initial filter may be too strict in
some cases, and filter out some reports that indeed pertain to
conflict defects. As mentioned earlier, though, the objective
of our study is to know the relative characteristics of bug
reports concerning conflict defects, so the overall prevalence
of conflict defectswithin all bug reports is not the focus.

Our second step is a manual evaluation, which is by defini-
tion imperfect because it is done by a human. We have made
our best efforts to classify the data consistently into distinct
categories, but we are aware that these categories are not
formally defined and therefore not completely unambiguous.
However, as shown in SectionsIII-D and IV, the overall
trends found by our study are quite clear, and do not depend
on each single classification being accurate.

C. Repository characteristics

With respect to the recentness and lifetimes of bug re-
ports, the repositories are similar but also show interesting
differences. Figure2 shows a histogram of the frequency of
bug reports per year, for the final 190 and 226 cases.1 The
number of bugs is shown by the year in which they were
submitted, and the year in which they were last modified.
This information is taken from the detailed description, and
it is not directly available for the entire repository. However,
we think that our sample illustrates an overall trend.

Both repositories contain open bug reports going back
several years, with most of the bug reports being very recent
(from the last two years). Debian has a markedly higher
number of bug reports going back more than a few years,
while older bugs are almost absent in Red Hat’s repository.
Furthermore, all bug reports in Red Hat’s database are
modified frequently, and most of them have been modified
in the last 12 months.

For the year of the case study itself (2011), the dotted box
in Figure2 shows the projected number of bugs in that year,
based on an extrapolation of the number of bugs during the
days of 2011 before the snapshot was taken. This estimate,
116 and 257 bugs, respectively, shows that the exponential
growth of open bugs towards recent years continues. This
is due to a “half-life” of bug reports, which indicates a
probability for any bug to be closed at a given time. For the
time of the last update, such an extrapolation cannot be done
well, because updates of older bugs cause the timestamps of
these bugs to move within the histogram.

This overview may suggest that Red Hat frequently fixes
old bugs, or at least updates them. It turns out that the latter
is indeed the case, via automated updates of bugs concerning
packages that are no longer supported. However, it does not
seem to be the case that Red Hat fixes old bugs at a higher
rate than Debian. Rather, old bug reports are often obsoleted:
If a bug report relates to software that is no longer in today’s
Red Hat distributions, they are first updated with an end-of-
life warning, and later closed automatically. This process
contains a standardized message and is probably at least
partially automated.

Debian has no practice of automatically closing bug
reports related to outdated or obsolete packages, with the
notable exception of bugs belonging to packages that get
removed from the Debian archive.

D. Categorization of conflict defects

As described above and shown by TableIII , 190 (Debian)
and 226 (Red Hat) bug candidates are subject to manual
classification. The manual evaluation categorizes bugs into a
hierarchy of categories. The categories for both repositories

1The choice of this sample arose from the need to download the detailed
bug reports for these cases.

are identical, except for one specific type of bug that does
not occur in Debian.

On Red Hat’s bug repository, a large number of bug
reports refers to conflicts between 32-bit and 64-bit versions
of the same package. These packages can be installed in par-
allel but doing so may lead to a corrupt system, as described
below. These cases can be counted by matching the bug
description against one of the following keywords/phrases:
“multiarch conflict”, “multilib conflict”, or “i386/x64”. 57
bugs on Red Hat’s side fit into this category.

Several CPUs are nowadays able to run programs that use
different register and pointer sizes; a common example is a
64-bit capable x86 CPU that can also run 32-bit executables
in legacy mode. To properly run an executable in legacy
mode, all the shared libraries it needs must also be available
as 32-bit libraries. Distributions have therefore deployed
support to install—side by side and under different pathsto
avoid file conflicts—32-bit and 64-bit versions of the same
library packages on the same machine.

As it happens, not all files that from a library pack-
age are objects that need to be differentiated according
to their mode; for instance, documentation files and other
architecture-independent data can be shared across different
modes of the same library package. To resolve conflicts on
files that are common to both versions, a possible solution is
to move these files into a separate architecture-independent
package depended upon by architecture-dependent libraries.
This is the solution chosen by Red Hat-based distributions,
and it requires adapting all library packages across the whole
distribution. An alternative solution (chosen by Debian-
based distributions) is to amend the packaging system to
allow sharing of identical files across different modes of the
same package.

The different solutions chosen and the different state in
adoption of multi-arch explain the differences among the
occurrences of multi-arch bugs in Red Hat and Debian. As
this is a transient adaptation phase, we elide this category
for the remainder of this section.

The remaining bugs are classified into five categories:
1) Unavailability or inaccessiblity of shared resources:

Shared resources are often files, but also include other
unique system resources such as network ports or C library
function names. Whenever a conflict occurs directly on a
file, the conflict is caught at installation time by the package
manager (see Figure3 for an example). This handling is safe,
but unsatisfactory: if a list of files used were provided be-
forehand, then an enhanced package manager could prevent
an installation attempt that is bound to fail. On the other
hand, other conflicts, such as name clashes in libraries, may
not be detected until an application is used at run-time.

To summarize, bugs in this category are caused by the
unavailabilityor inaccessibilityof shared resources (e.g. due
to mutual exclusion of the resource and ownership by
“others”).

Unpacking gcc-avr (from .../gcc-avr_1%3a4.3.0-1_amd64.deb) ...
dpkg: error processing /var/cache/apt/archives/gcc-avr_1%3a4.3.0-1_amd64.deb
(--unpack):
trying to overwrite ‘/usr/lib64/libiberty.a’, which is also in package binutils

dpkg-deb: subprocess paste killed by signal (Broken pipe)
Errors were encountered while processing:
/var/cache/apt/archives/gcc-avr_1%3a4.3.0-1_amd64.deb

E: Sub-process /usr/bin/dpkg returned an error code (1)

Figure 3: File conflict found when trying to install a package

Red Hat Bugzilla - Bug 593402
Package: Spacewalk
Version: 1.0
Severity: medium
Cobbler-web breaks /rpc/api over http (which breaks taskomatic)
This is caused by the fact that both the cobblerweb.conf and zz-
spacewalk-server.conf contain a<VirtualHost> section. The
cobbler web.conf specifies one for port 80 (<VirtualHost
*:80> while the zz-spacewalk-server.conf defines one for the
default (it’s just<VirtualHost>).
As the VirtualHost for port 80 (as defined in the cobblerweb.conf)
has preference over the default VirtualHost (as defined in zz-
spacewalk-server.conf) the rewrite engine doesn’t get enabled for
port 80. This results in breakage of the spacewalk rewrite rules
which are mentioned in zz-spacewalk-www.conf.

Figure 4: Report on conflicting configuration data.

2) Conflicts on shared data, configuration information,
or the information flow between programs:Configuration
information is often found in/etc, while shared data may
be located elsewhere. Information flow refers to function
calls or communication via pipes or a network. There are two
basic cases where conflicts occur on data or communication:

1) An installation action of a package changes the config-
uration such that either the syntax of a configuration
file is broken (made unreadable for the parser used by
another tool), or its semantics changes in an incom-
patible way with respect to previous expectations.

2) A change in the data format between versions of
an application, which requires updating other com-
ponents; the lack of an appropriate newer version of
other components, or the lack of a declaration of such,
causes a conflict.

In both cases1 and 2, the conflict usually only becomes
evident at run-time. Often, the problem can be avoided
by having an installation script leave a configuration file
unchanged if it has been modified by a user. Figure4 shows
a typical case of a semantic conflict in configuration entries
generated by two different packages.

Bugs in this category are caused byincorrect data in
shared resources or interfaces.

3) Interactions between packages:In some cases, a pack-
agea using another packageb makes a previously undetected
fault in b evident; it is possible that other use cases forb

could produce the same problem, so the failure can (at least

Red Hat Bugzilla - Bug 606243
Package: canorus
Version: 0.7.6
Severity: medium
Installation of canorus breaks operation of prelink
Description of problem:
If canorus is installed prelink fails.
I get daily cron mails with the following content:
/etc/cron.daily/prelink:
/etc/cron.daily/prelink: line 47: 32734
Aborted /usr/sbin/prelink -av $PRELINK_OPTS
>> /var/log/prelink/prelink.log 2>&1

Figure 5: Report of a conflict arising from the interaction
between packages.

in theory) be reproduced usingb alone. In other cases, the
combination ofa and b is necessary for those packages
to fail, and either package would work fine without the
conflicting package being present (see Figure5).

The bugs have in common that they are observed as a
conflict arising from theinteraction between packages.

4) Package evolution issues:When a software distribu-
tion evolves, packages may be renamed or split up into
multiple packages, or several packages may be merged into
one. This may require updating meta-data in other pack-
ages for the distribution to remain consistent. Furthermore,
version changes with a package may also require meta-data
changes due to possible incompatibilities mentioned above.
Unfortunately, meta-data changes are not automated, and
are primarily the responsibility of the maintainer of a given
package. This causes a potential for meta-data to be outdated
and not reflect a correct state anymore. The bug shown in
Figure 6, for example, was due to an attempt to imple-
ment a transition from packagettf-telugu-fonts to
fonts-telu but where the maintainer got the package
relations wrong.

Problems in this category arise due to incorrect or out-
datedmeta-data.

5) Spurious conflicts:The last category represents cases
where two packages are incorrectly classified as conflicting,
although there is no conflict, at least not for the current
version of these packages. An example report of a spurious
conflict is shown in Figure7.

TableIV and Figure8 show an overview of the classifica-
tion into these five categories. Larger categories are splitup

of conflicts Conflict type
Debian Red Hat
0 57 32-bit/64-bit binary conflict

43 38 access to/names of files and similar shared resources
22 22 package provides same file as other package
8 6 package (de-)installers modifies file or file permission, or deletes file used by other package
3 5 file/directory name conflict (for names including versionnumber etc.)

10 5 clashing library symbols/function names/device names
48 34 file/API/data/configuration format/resource management

20 12 update/installation script breaks configuration, fileformat, or resource management
14 8 package breaks on uncommon or user-defined configuration/setting
4 6 package use (post-install) overwrites/breaks configuration files

10 8 API/file format change between different package version breaks other package
21 41 rare (previously untested) combination of packages

13 22 defect in one package made visible by failure of other package/functionality
8 19 uncommon combination of packages makes one or more packages always fail

19 12 package evolution (split/merge/change) or faulty meta-data results in conflict
10 6 incorrect/outdated dependency meta-data (requires/conflicts)
9 6 package renaming/split/merge results in incorrect meta-data of other package

8 1 spurious conflict declaration prevents compatible packages from being used
139 183 (126) total (in parentheses: total excluding 32/64-bit binary conflicts)

Table IV: Overview of all conflict defects found in the two bugdatabases.

Debian bug number: #662988
Package: ttf-telugu-fonts
Version: 2:1.0
Severity: serious
Hi, ttf-telugu-fonts is not installable in sid: (...)
The problem is that ttf-telugu-fonts depends on fonts-teluwhich
in turn Breaks: ttf-telugu-fonts. This probably should be ttf-telugu-
fonts (<<2:1.0).

Figure 6: Report of incorrect meta-data

Debian bug number: #559161
Package: libopenmpi-dev
Version: 1.3.3-2
Severity: serious
The libopal-dev and libopenmpi-dev packages were marked as
conflicting to resolve bug #404003; the problem was file ’/usr/lib/li-
bopal.so’ contained in both packages.
Since at least lenny this library was renamed to ’/usr/lib/libopen-
pal.so’ in libopenmpi-dev package, so the conflict does not exist
any longer.
There are no other conflicting files in these packages, so the
conflicts tag should be removed.

Figure 7: Report of a spurious conflict

into smaller groups to get a more detailed picture. Conflicts
between binaries for different architectures (on Red Hat)
are excluded in Figure8b. While human error in individual
classifications is possible, the results are overall quite clear
for larger categories. Some trends are evident:

1) Resource conflicts represent about 30 % of all conflicts
(43 and 38 cases in total). About half of these conflicts
are on files and caught by the package manager at
installation time; other similar conflicts may not be
caught until a package is actually used.

2) Conflicts on configuration, and to a lesser degree,
the format of shared data, are equally common. In

many cases, syntactic problems cause a conflict be-
tween packages; the most common reason is the
automatic modification of configuration files by in-
stallation scripts (20 cases in Debian, 12 in Red Hat).
These installation scripts are likely tested for common
configurations, but may not behave as expected for
less common settings. While syntactic problems are
prevalent, unintended semantic changes are also a
significant problem, both during and after installation.
It is compounded by the fact that many configuration
files have to be customized by the user before a pack-
age can be used, and the formatting of a configuration
file may see subtle changes that are correctly dealt
with by the packaged software itself, but not by the
installation scripts that manage the package.

3) Other problems between packages that are usually not
installed together represent another significant share.
The huge number of available packages makes it
impossible to test all combinations (or even just all
pairwise possible combinations) of packages together,
so a conflict often goes undetected until reported by
a user. In Red Hat, the number is fairly large be-
cause many problems are reported for specific laptop
hardware configurations where kernel modules (driver
packages) did not behave well. It seems that the use
of Debian in such cases is less common, accounting
for a lower percentage of such bug reports.

4) Conflicts on meta-data level, often caused by package
evolution, contribute about 10 %.

5) Incorrect (or outdated) information on conflicting
packages sometimes occurs as well, which does not
create a conflict defect per se, but instead prevents
two packages from being used together even if this is
possible in principle.

File/resource name/
access 31 %

File format/API/
configuration 35 %

Rare combination 15 %

Package evolution/
meta−data 14 %

Spurious
conflict 6 %

(a) Debian

File/resource name/
access 30 %

File format/API/
configuration 27 %

Rare combination 33 %

Package evolution/
meta−data 10 %

Spurious
conflict 1 %

(b) Red Hat

Figure 8: Categorization of conflict defects in our case study.

IV. D ISCUSSION

A. Adressing each type of conflict defect

The previous section has given a categorization of conflict
defects based on empirical data. We now propose possible
solutions that can potentially cover some or all instances of
each class of conflicts.

1) Conflicts on files and similar shared resources:Con-
flicts on shared resources are not directly covered by existing
meta-data, although they may be implied by package-level
conflicts. Work is in progress to systematically test package
installations against overwriting files provided by another
package [20], at least in Debian. As an alternative to this,
file diversionsenable a package to install files at a different
location; work is in progress to automate this.2

This case study shows that while the majority of such
conflicts occurs at file level, filepermissions(and owner-
ship) rather than just file names, and possible file/directory
renaming actions during package upgrades, should also be
considered. Finally, coverage of similar resources such as
network ports and function or library names would further
augment the ability of such tools to detect conflicts proac-
tively.

More detailed meta-data will require much more space
than existing (rather compact) package meta-data. We pro-
pose that some extra meta-data is generated and used only
by developers and package maintainers. As it covers possible
conflicts proactively, at development time, not all fine-
grained meta-data needs be included in the final distribution.
We think that most or all of such resource-related meta-
data can be extracted automatically by static analysis or run-
time analysis. Automation would eliminate extra effort from
package maintainers.

This proposition distinguishes itself from existing mech-
anisms such as features or virtual packages in that extra

2http://wiki.debian.org/SummerOfCode2011/DeclarativeDiversions,
retrieved June 2011

meta-data is directly linked to underlying resources, in a for-
mally defined way. This makes it possible to generate such
meta-data automatically if dependencies on the underlying
resources are known.

2) Conflicts on shared data:Conflicts on configuration
files, file formats and API versions are also common, and
clearly demonstrate the need for systematic testing against
such conflicts. In the light of testing against overwriting
files [20], inter-package tests should also be automatically
run against conflicts on shared data. This is much more
difficult to automate, and only feasible for packages that
include automated regression tests.

The problem is that regression tests are primarily used
by developers, and less often by package maintainers, not
to mention end users. Because of this, combined with the
fact that a unit test failure does not automatically imply
that a package is unusable, regression tests are currently
not covered by package meta-data. This makes them inac-
cessible to today’s package management tools, and pretty
much precludes the automated discovery of such intricate
conflicts. However, at a lower level, many source-level
distributions have a “make test” or “make check” build target
that automatically performs such tests. In the future, such
information could be provided in package meta-data, for
package maintainers. Furthermore, on a basic level, certain
problems may be found just by executing a program and
checking whether its return value indicates an error, or by
attempting to start and stop a system service cleanly.

3) Interactions between uncommon packages:The fact
that rare combinations of packages may cause problems is
not surprising, given the large number of packages avail-
able. An exhaustive testing of package combinations is not
feasible, but heuristic-based testing of sets of packages may
be. A possible approach may be to install larger subsets of
packages, and to narrow down the set of conflicting packages
by a systematic search such as delta debugging [21].

http://wiki.debian.org/SummerOfCode2011/DeclarativeDiversions

4) Package evolution:Package evolution often brings
with it an invalidation of package meta-data. About one
tenth of conflict defects in our study is caused directly due
to invalid meta-data after larger package modifications (such
as splitting a package into two packages). This shows that
meta-data needs to be verified for consistency and accuracy.
Especially when given a situation with “known good” meta-
data (before the modification), automatic verification of
the new meta-data is feasible if packages can be tested
automatically.

As with other issues described above, meta-data does not
cover the requirements of packages in enough detail. For
example, take a packagea that is split up intoa′ and a

′′,
because some parts ofa are not used by many packages.
If a packageb depends ona in the old configuration, it
is possible thatb depends ona′, a′′, or both packages, in
the new configuration. If some of the resources provided
by these packages are loaded dynamically byb (at run-
time), then verification of the actual software is required
to determine the correct new dependency.

5) Spurious conflicts:Spurious (or outdated) declarations
of conflict defects can be responded to, by automated testing
of packages that supposedly conflict. This would detect cases
where a conflict is resolved in a newer version of a package.

B. Summary

To summarize, we think that bugs in these five categories
can be discovered more effectively through the following
means:

• Identification of potentially conflicting packages
through analysis of existing meta-data or package be-
havior. Such an analysis yields candidates for auto-
mated testing, covering bug categories 1–3. We expect
that such testing may partially use recent virtualization
technologies (e.g. [15], among many others). Virtual-
ization technology may provide both a “sandbox” for
executing tests and automated inspection of test execu-
tions, to determine the usage of shared resources such
as files or network ports. As of recently, distributions
seem indeed be interested in proceeding along this
direction [7].

• More detailed and accurate meta-data, generated or
verified by automated tools. This primarily covers bugs
related to the availability of shared resources, and the
correctness of meta-data itself (categories 1, 4, and 5).

Extended meta-data should cover files including file meta-
data in particular, and as a next step, other system resources
such as network ports, shared (global) configuration data,
and communication between components. Another aspect
currently omitted in meta-data is information about regres-
sion tests that already exist in many packages, but are
inaccessible on a package level because they are not declared
or available in a uniform way. An enhanced set of meta-

data for testers and distribution maintainers could cover such
testing-related information.

V. CONCLUSIONS ANDFUTURE WORK

Conflicts between software packages occur due to a
variety of reasons. Conflict defects on shared resources and
configuration files are particularly common. The underlying
problem is that package behavior at installation, use, and
de-installation time is unrestricted, so a complete formalde-
scription of package behavior cannot be achieved. However,
steps can be taken towards increasing the expressiveness and
accuracy of package meta-data, by adding meta-data that is
intended for package developers and maintainers.

In our case study, we categorize a large number of
conflict defects, and propose possible solutions to common
categories of conflicts. Our study uses two snapshots of bugs
between packages reported in Debian GNU/Linux and Red
Hat Linux (including derivatives such as Fedora). We found
that on a broad level, over 80 % of all conflict defects are
made up by three categories: conflicts on resource access,
conflicts on (configuration or application) data, and interac-
tions between uncommon combinations of packages. Future
work includes studying the evolution of packages, and bugs
reported, over time by investigating multiple snapshots taken
over time.

As a conclusion from our case study, we found that
ongoing and future projects can reduce conflict defects
most efficiently by (a) identifying and testing combinations
of packages that may conflict, (b) generating and using
extra meta-data, and (c) checking the validity of (manually
provided) meta-data.

REFERENCES

[1] Pietro Abate, Jaap Boender, Roberto Di Cosmo & Stefano
Zacchiroli (2009): Strong Dependencies between Software
Components. In: ESEM 2009, IEEE, pp. 89–99.

[2] Pietro Abate & Roberto Di Cosmo (2011):Predicting up-
grade failures using dependency analysis. In: 27th Interna-
tional Conference on Data Engineering, IEEE, pp. 145–150.

[3] Alan W. Brown & Kurt C. Wallnau (1998):The Current State
of CBSE. IEEE Software15, pp. 37–46.

[4] Christian Collberg, John H. Hartman, Sridivya Babu &
Sharath K. Udupa (2005):Slinky: Static linking reloaded. In:
Proc. USENIX 2005 Annual Technical Conference, USENIX,
Anaheim, USA, pp. 309–322.

[5] Roberto Di Cosmo & Jaap Boender (2010):Using strong
conflicts to detect quality issues in component-based complex
systems. In: 3rd India software engineering conference, ISEC
’10, ACM, pp. 163–172.

[6] Roberto Di Cosmo, Paulo Trezentos & Stefano Zacchiroli
(2008): Package Upgrades in FOSS Distributions: Details
and Challenges. In: International Workshop on Hot Topics
in Software Upgrades, HotSWUp ’08, ACM, New York, NY,
USA, pp. 7:1–7:5.

[7] Ian Jackson, Iustin Pop & Stefano Zacchiroli:autopkgtest -
automatic as-installed package testing. Debian Enhancement
Proposal 8:http://dep.debian.net/deps/dep8/.

[8] Ian Jackson & Christian Schwarz (2008):Debian Policy
Manual. http://www.debian.org/doc/debian-policy/.

[9] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jérˆome
Vouillon, Berke Durak, Xavier Leroy & Ralf Treinen (2006):
Managing the Complexity of Large Free and Open Source
Package-Based Software Distributions. In: ASE 2006, IEEE,
pp. 199–208.

[10] Gustavo Noronha Silva (2008): APT HOWTO.
http://www.debian.org/doc/manuals/apt-howto/.

[11] Lucas Nussbaum & Stefano Zacchiroli (2010):The Ulti-
mate Debian Database: Consolidating Bazaar Metadata for
Quality Assurance and Data Mining. In: 7th IEEE Working
Conference on Mining Software Repositories (MSR’2010),
Cape Town, South Africa.

[12] L. Presser & J.R. White (1972):Linkers and loaders. Com-
puting Surveys (CSUR)4(3), pp. 149–167.

[13] The Debian Project: Debian bug tracking system.
http://debian.org/Bugs/. Retrieved March 2012.

[14] The Debian Project:Software packages in [Debian] “sid”.
http://packages.debian.org/sid/allpackages. Retrieved June
2011.

[15] Red Hat, Inc.:KVM. http://www.linux-kvm.org.

[16] Red Hat, Inc.: Red Hat Bugzilla Main Page.
http://bugzilla.redhat.com. Retrieved March 2012.

[17] Murray Stokely (2004):The FreeBSD Handbook, 3 edition.
FreeBSD Mall.

[18] Kuniyasu Suzaki, Toshiki Yagi, Kengo Iijima, Nguyen Anh
Quynh, Cyrille Artho & Yoshihito Watanebe (2010):Moving
from Logical Sharing of Guest OS to Physical Sharing of
Deduplication on Virtual Machine. In: Proc. 5th USENIX
Workshop on Hot Topics in Security (HotSec 2010), USENIX,
Washington D.C., USA.

[19] Clemens Szyperski (1998):Component Software. Beyond
Object-Oriented Programming. Addison-Wesley.

[20] Ralf Treinen (2011):EDOS-Debcheck: File Overwrite Errors.
http://edos.debian.net/file-overwrites/. Retrieved June 2011.

[21] A. Zeller & R. Hildebrandt (2002):Simplifying and Isolating
Failure-Inducing Input. Software Engineering28(2), pp. 183–
200.

http://dep.debian.net/deps/dep8/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/apt-howto/
http://debian.org/Bugs/
http://packages.debian.org/sid/allpackages
http://www.linux-kvm.org
http://bugzilla.redhat.com
http://edos.debian.net/file-overwrites/

	Introduction
	Package-based software distributions
	Conflict defects

	Related Work
	Software packaging
	Alternatives to globally managed software packaging

	Evaluation of conflict defects
	Repositories used in the case study
	Methodology
	Automated search
	Manual evaluation
	Possible sources of bias

	Repository characteristics
	Categorization of conflict defects
	Unavailability or inaccessiblity of shared resources
	Conflicts on shared data, configuration information, or the information flow between programs
	Interactions between packages
	Package evolution issues
	Spurious conflicts

	Discussion
	Adressing each type of conflict defect
	Conflicts on files and similar shared resources
	Conflicts on shared data
	Interactions between uncommon packages
	Package evolution
	Spurious conflicts

	Summary

	Conclusions and Future Work
	References

