Why Do Software Packages Conflict?

Cyrille Artho, Kuniyasu Suzaki Roberto Di Cosmo, Ralf Treinen, Stefano Zacchiroli
Research Center for Information Security Univ Paris Diderot, Sorbonne Paris @it
AIST PPS, UMR 7126, CNRS, F-75205
Umezono 1-1-1, Tsukuba, Paris, France
Ibaraki 305-8568, Japan roberto@dicosmo.org, treinen@pps.jussieu.fr
{c.artho,k.suzaki@aist.go.jp zack@pps.univ-paris-diderot.fr

Abstract—Determining whether two or more packages can- packageb cannot be removed as long ass still in use. Fi-
not be installed together is an important issue in the qualy nally, upgrades of one package often require a simultaneous
assurance process of package-based distributions. Unfort —\rade of related packages. In addition to this, there is a
nately, the sheer number of different configurations to test . -)
makes this task particularly challenging, and hundreds of notion of conflicting pagkages. two packages_ may use the.
such incompatibilities go undetected by the normal testinggnd ~ S@me resource or provide the same service in a way that is
distribution process until they are later reported by a useras incompatible, so only one of these two packages may reside
bugs that we call “conflict defects”. on a system at any given time.

We pgn;ormedh a8 extensli(_/e case StUdnyg %‘?”f“Ct glelf?ec(;s In package-based software distributions, so-cafladk-
E)g{.ag\t&or:i(i)r?g; Eoeou:J?etsrjl(t:s,mc%:%ittegsfezts cir:al?eznroup; age meta-dataescribes dependencies and relations between
into five main categories. We show that with more detailed ~Packages. Most Free and Open Source Software (FOSS)
package meta-data, about 30 % of all conflict defects could Systems are managed in that way. Meta-data contains in-
be prevented relatively easily, while another 30 % could be formation about dependencies of packages, and conflicts
found by targeged tteesrtii;?CSOfTﬁZ‘;Ea?::uliga;”zcvafs igmmm:k” between them. At the time of writing, meta-data covers
resources or cnarac . . .
precise suggestions on how to prevent and detect conflict aefts relations a_lmong p?‘CK?‘ges at the package level, dependencie
in the future. and conflicts are indicated by package, not by the actual

resources a package provides or depends on. Different
packaging mechanisms have different ways of giving more
|. INTRODUCTION fine-grained information on packagd®atures(as used by
the Red Hat package manager) may represent individual
libraries. So-calledrirtual packagesare sometimes used as

Modern software distributions are organized into pack-placeholders for actual resources or services provided by a
ages. A software package is a self-contained unit that capackage.
be installed or removed independently of other packages, Unlike fully fledged packages, such placeholders do not
as long as dependencies are met. A package manageklude any actual installation of programs. Both mecha-
controls such administrative tasks; compared to unmanageaglsms leverage the package dependency system, representin
installations, the benefits of a package-based approach afesource dependencies as package dependencies. However,
the ability to automatically install, upgrade, and removeneither mechanism constitutes a generic way of describing
packages without the need to remember installation loeatio resources, such as files, network ports, or system services,
or which files are affected by a change. in an accurate and fine-grained way. There is no formal

In real software, this ideal state is not easy to achieve, dudefinition linking virtual packages to actual resources (or
to dependencies between software packages, and intesictiovice versa); definitions are made by package maintainers
between software belonging to different packages. Depennstead of automated tools.
dencies arise because some packages provide functionality An abridged example of the meta-data of the Debian
used by others. Interactions occur on shared resourcds, supackage for therut t mail user agent is given in Figure
as files, and because packages may provide components thetis package depends on a long list of library packages only
can be combined into a larger system (such as client angartially shown in the figure. It also has a recommendation
server packages communicating together). (that is a weak form of dependency) on a virtual package

Dependencies restrict the ability to freely install, remov nai | -t ransport - agent, which in turn is provided
or upgrade packages. If a packagedepends on another by several other packages like for instanegi md or
packageb, a package manager automatically requiset®® sendmai |, and it provides itself two virtual packages
be installed whem is requested to be installed. Furthermore,i map- cl i ent andnai | - r eader . Furthermore, it con-

A. Package-based software distributions

Package mutt 3) Can these problems be addressed by using existing

Architecture: and64 tools, or is there a need to improve them, or create

Version: 1.5.21-5 new ones?

Replaces nutt-utf8) ;

Provides inmmp-client, mail-reader 4) Is packag_e rr;eta data currently being usgd, accurate

Depends |ibc6 (>= 2.3.4), and sufficient? Is there a need to a_lutomatlcally verify
l'i bcomerr2 (>= 1.01), ... such meta-data for accuracy, or is there a need to

Recommends il -transport-agent, ... use additional meta-data for a more accurate notion

Conflicts: mutt-utf8 of package conflicts? In other words, are most or all

)) possible conflict defects covered by meta-data?
Figure 1: Excerpt of Debian meta-data i i ,) i
This paper is organized as follows: Sectidin describes

related work. Sectiofil shows two case studies on conflict

. i defects in Debian and Red Hat, with a detailed evaluation
flicts and replaces a package na t-utfs, apackage of different kinds of conflict defects. SectidiY discusses

which was useful in the past but is now obsolete (since .) .
superseded byut t) and which has been removed from thethe results and proposes possible strategies f_or remedying
Debian archives. However, one has to assure smooth upgraﬂéo?(lems found, and Sectiahconcludes and outlines future
from situations where that old package is still installed. V"

This smooth upgrade is achieved through a combination of

Conflicts and Replaces as shown in the example. Il. RELATED WORK

B. Conflict defects A. Software packaging

Conflict defects occur if the combination of multiple Software packages are a well-known example of the
packages results in a defect that is absent otherwise. §ackacomponent models that have originated from the field of
meta-data—and in particular explicit conflict declaraten component-based software engineering (CBSH), [[3].
may indicate such defects, which prevents conflicting cembiPackages fit within common component definitions, but
nations of packages from being installed. However, conflicthe raise in their popularity—started with the advent of
defects may still arise in practice. The reasons for suclFOSS package managers such as the FreeBSD porting
defects are manifold: packages are not just bundles ofystem 7], APT [10], Yum, etc.—has highlighted very
files, but include pre-installation and post-installatsmnipts. specific challenges related to their deploymesit [Some
These scripts are unrestricted, Turing-complete programsf those challenges are being addressed relying on package
running with full system (root/administrator) access. dt i meta-data and their formalization.
impossible in general to capture the full side effects oféhe Seminal work §] has shown how to encode the instal-
scripts with a formal description. Actual conflict defects lability problem for software packages as a SAT problem,
might simply go unnoticed through a testing phase or mighkstablished the (NP-Hard) complexity of the problem, and
be impossible to describe properly. The same problem ariseshown applications of the encoding to improve the quality of
when executing the software provided by these packagepackage repositories by avoiding non-installable package
Therefore, a complete logical analysis of package behavioBased on the same formalization, various quality metrics
is not possible. Nonetheless, as this paper shows, steps cRve been established, such as strong dependency and sen-
be taken towards covering certain types of common conflic;—,itivity [1] (to evaluate the “importance” of a package in
defects that are not automatically verifiable with currenty given repository) and strong conflict§] [(to pinpoint
tools. packages which might hinder the installation of severa¢oth

Another problem arises from the fact that a significantpackages). In the same vein, package meta-data has also
part of package meta-data is provided manually, by packaggeen used to predict future (non-)installability of softeva
maintainers. It is therefore a challenge to keep such metgyackagesd]. The abundance of studies that rely on package
data up to date and accurate. This challenge becomes espfieta-data testifies the importance of the correctness af-met
cially daunting in the presence of a huge number of softwargjata.
packages in distributions such as Debian, where the number On the other hand, studies on package meta-data correct-
of packages available currently exceeds 30,000. [ness like this one, seem to be scarce. At the same time,

As a consequence of this, bug reports referring to conflich few testing tools can be found in the realm of Quality
defects between packages are becoming frequent. This pap&ssurance (QA) of FOSS distributions to discosgmptoms
investigates the origin of such defects and tries to answeer t that might then lead, a human, to discover errors in package
following questions: meta-data. To name one, the “file overwrit@0J initiative

1) What are the main reasons why conflict defects arisefelps in discovering undeclared conflicts among packages in

2) Are there common categories of conflict defects? the Debian distribution.

. . K d Match Refined match
B. Alternatives to globally managed software packaging bfey;/;'(m ac;; eine malcef s

; conflict 252 85
As an alternative to globally managed software packages overwrite o a1

that are organized in a fine-grained hierarchy, self-coetii total 559 590
packages including all sub-components, sometimes called _ . .
bundles are sometimes used. Such bundles include the ap@P!e I: Number of matches per keyword in Debian bug
plication and all libraries it depends on, linked statigéllg], ~ database.

This contrasts to FOSS distributions where libraries are

Keyword Matches Refined matches

shared, and generally required to be shipped as separate braak 166 111
packages—see for instancé],[“convenience copies of conflict 119 106
code”—in order to ease the deployment of (security) up- overwrite 19 9

grades. In a system using bundled software, all application total 304 226

using the library in question need to be updated separatelfable 11: Number of matches per keyword in Red Hat bug
This usually entails a longer period during which a system isjatabase.
vulnerable, because some software bundles may be provided
by third parties.
An advantage of self-contained software bundles is the, Methodology
ease of testing and deployment, as system-specific con-

figurations and libraries have only limited impact on thebe analyzed manually, the selection of bugs is first narrowed

software bundle. However, statically linking all librasiased

. . .. down by a keyword search. We chose three keywords to
by a bundle requires much disk space. If many apphcauongearch for: “break”, “conflict”, “overwrite”. The first two
include the same statically-linked libraries, these litasnare ' ' ' ’

duplicated within the same system. Deduplication adollsesseWords are generic descriptions of conflict defects and often

this problem #], [18. Memory and storage deduplication appear in the form d br.eaksb or "a conflicts with ‘b "
The last keyword describes one of the most common inter-
merge same-contents chunks on block level, and reduce

the consumption of physical memory. By sharing identicalpaCkage problems, where one package overwrite a resource

) . needed by another package.
chunks of storage, logical-level redundancies caused by Tables| and Il ai . £ all th tches i
static linking are resolved on the physical level. avles! an give an overview of all the matches in

the search. A total of 929 bugs match the initial search

1) Automated searchAs the bug database is too large to

o) Hat’s bugzilla. Some of the matches contain more than one
A. Repositories used in the case study keyword and are therefore duplicates. Our aim is not to get

The evaluation of existing conflict defects was carried outan exact number of how many conflict defects there are in
on two publicly accessible bug repositories: The Debian bugdotal. Rather, we want to know what types of conflicts occur
repository [L3] and Red Hat’s bugzillal§]. These represent more often than others, relative to the total number.
the two of the most widely used FOSS distributions for We then narrow the search to eliminate bug reports that
the past 10 years. Red Hat's repository also contains bugdescribe problems that relate to one package alone, rather
related to Fedora, a community distribution on which Redthan a conflict between two packages. For example, “over-
Hat Enterprise Linux is based. write” could appear in a bug report related to overwriting

To get a summary of the Debian bug repository, a snapshdéxt in a text editor. Indeed, an initial manual evaluation
of the Ultimate Debian Database (UDD)1] was taken. on Debian shows that about half of all bug reports found
This database contains key data of afien bugs at that in the initial search are not related to conflict defects. To
time, such as bug ID, title, and the affected package. Thenake the results more accurate, the search is refined to
shapshot, taken on January 23rd 2011, contains 79,936 bugsclude only bug reports out of the initial selection, where

For Red Hat, no such summary snapshot is available; howthe title contains the name of another package. This may
ever, bugzilla offers a web-based search that returns &l dafilter out more bug reports than necessary (decreasing recal
in XML format. Like in the Debian case study, the searchin search terms), but makes the results much more precise.
returns matches on all open bugs. The searches on Red HaTe avoid excluding too many packages, (version) numbers of
database were carried out on February 4th, 2011. While thpackages are not included in this filter, even if the package
exact total number of open bugs at that time is not knowmame itself contains a version number. A manual check
(because a search with no filter is not possible), the highesthows that this filter is good approximation of a manual
number (bug ID) returned by the search, roughly matcheselection of true conflict defects.

Debian’s; furthermore, the number of search results is also As shown in Tablel, the refined selection on Debian
comparable. This leads us to believe that the samples in bottontains 290 matches. Some of these matches contain mul-
case studies are taken from repositories of comparable sizéple keywords in the title; 241 of them are distinct bug

Debian Red Hat

Bugs after initial search 929 304 Frequency of bug reports by year
Having package name in title 290 226 200 Sobi ——

Manual filtering of title contents 190 226 Debign'?.';s(f ﬁngﬁ}ﬂidg e—

Bugs that are not conflict defects 51 43 RedHat (submitted) E——

Actual confiict defects 139 183 RedHat (last modified) ==

150

Table 1lI: Bugs evaluated in detail.

100

reports. On Red Hat, all 226 refined matches are distinct
bug reports. On Debian, further manual post-processing of

that list removes another 51 items, where the title indgate %
clearly that those are not conflict defects. This leaves 190 i
bug reports where, judging from the title of the report, a . |

ossible conflict defect is reported. o e D D D D D D D D D D D O

i At this early stage, checkﬁng the bug description filters %% D% %% %% %% % %%

out a much smaller number of bugs on the Red Hat case . o o

study. We think that this is partly because more professiona Figure 2: Characteristics of both bug repositories.

developers and proportionally fewer volunteers contghot

Red Hat's bug database. This may lead to the language on

Red Hat's database being more uniform, making a keyword

search more precise. Another reason is that a particuldively. A subset of these bug reports is evaluated in a first

category of bugs, a conflict between 32-bit and 64-bitsample, to come up with a categorization of bug reports that

packages (see below), occurs often in Red Hat; this improvegould not be too coarse (giving only a few rough classes

search precision. The second stage of the the evaluation ¢ bugs) and not be overly fine-grained either (putting most

Red Hat's bugzilla is performed on the remaining 226 bugsbugs into a category of their own). After that, all bug report
Table Il summarizes the search and selection stagedire classified according to these criteria, or eliminatecicds

An initial keyword search yields a large number of bugs;being conflict defects. The categorization is refined during

these matches are refined by keeping bug reports where tfiée process, to merge similar categories where one category

title includes a package name, hinting at the existence of Bas few elements. This is similar to a clustering algorithm,

conflict defect. In the case of Debian, the number of bug&xcept that the measure of similarity between categories is

is further reduced by a manual analysis of the bug title. Fosubjective, as the semantics of natural language cannot be

Red Hat, the full bug text is analyzed in all remaining cases€asily quantified with today’s technology.

because the remaining number was smaller after accounting

for conflicts between 32-bit and 64-bit packages. . - L
2) Manual evaluation:The final stage of analysis is done out any personal bias towards existing software distringi
ual evaiuation. ! 9 ysiS| or packages. The packages in question mentioned in the

manually, requiring the full information on each bug. In
the initial web-based searches, these detailed results atr:)éJg reports are not developed by us. Nonetheless, our study

not returned. Both the Debian summary database (UDDS:OméunS sources of possible bias.
and Red Hat's search return only summary data. The bug Our first step is based on filtering the title (or summary) of
IDs returned in the summary link it to the detailed bugeach bug report against given keywords and package names.
description. We are aware that this initial filter may be too strict in
The actual bug reports are obtained by downloadinggome cases, and filter out some reports that indeed pertain to
them from the web page representing the correspondingonﬂict defects. As mentioned earlier, though, the objecti
bug repository 13, [16]. Manual study and categorization of our study is to know the relative characteristics of bug
of the bugs rules out a number of possible candidates agports concerning conflict defects, so the overall prexade
being problems related to a single package rather than af conflict defectswithin all bug reports is not the focus.
combination of packages, as shown in Table Bugs that Our second step is a manual evaluation, which is by defini-
are not counted include the following: tion imperfect because it is done by a human. We have made
« bugs that are clearly not reproducible, our best efforts to classify the data consistently intoiist
« bugs of which the description is unclear, categories, but we are aware that these categories are not
« bug reports which are later retracted as incorrect, andiormally defined and therefore not completely unambiguous.
« in Red Hat, two bugs where access to details is denie@jowever, as shown in Sectiorif-D and IV, the overall
to the public. trends found by our study are quite clear, and do not depend
This leaves 139 and 183 genuine conflict defects, respe@n each single classification being accurate.

3) Possible sources of bia®ur study was designed with-

C. Repository characteristics are identical, except for one specific type of bug that does
With respect to the recentness and lifetimes of bug re-nOt occur in De,b|an. .
o - . .~ On Red Hat's bug repository, a large number of bug
ports, the repositories are similar but also show intemgsti reports refers to conflicts between 32-bit and 64-bit i
differences. Figur@ shows a histogram of the frequency of P : ! DIt VeTS
of the same package. These packages can be installed in par-

bug reports per year, for the final 190 and 226 casgle . :
number of bugs is shown by the year in which they werea”el but doing so may lead to a corrupt system, as described

. : . .. _below. These cases can be counted by matching the bug
submitted, and the year in which they were last mod|f|ed.d ot st f the followina k ds/oh
This information is taken from the detailed descriptiond an escription against one ot the 1olowing kKeyworas/phrases

o : . : . “multiarch conflict”, “multilib conflict”, or “i386/x64”". 57
it is not directly available for the entire repository. Hoxee, L .
. : bugs on Red Hat's side fit into this category.
we think that our sample illustrates an overall trend.
o . . Several CPUs are nowadays able to run programs that use
Both repositories contain open bug reports going back

several vears. with most of the bud reports being Very rece ifferent register and pointer sizes; a common example is a
y ! ug rep g very T 4-bit capable x86 CPU that can also run 32-bit executables
(from the last two years). Debian has a markedly highet

. in legacy modeTo properly run an executable in legacy
number of bug reports going back more than a few years . o .
. . , . “ode, all the shared libraries it needs must also be availabl
while older bugs are almost absent in Red Hat's repository. - . o
) , as 32-bit libraries. Distributions have therefore deptbye

Furthermore, all bug reports in Red Hat's database ar

e
o ... support to install—side by side and under different paths
modified frequently, and most of them have been I”nOdmed:woid file conflicts-32-bit and 64-bit versions of the same
in the last 12 months.

. library packages on the same machine.
For the year of the case study itself (2011), the dotted box As it happens, not all files that from a library pack-

itl)‘lFigdureZ shows thelprpject]?dhnumbetr) of bfutg);s in :jhat_ year:age are objects that need to be differentiated according
ased on an extrapolation of the number o ugs- urln.gt fo their mode; for instance, documentation files and other
days of 2011 before the sngpshot was taken. This estlma_t chitecture-independent data can be shared acrossediffer

116 and 257 bugs, respeciively, shows that the exponenti odes of the same library package. To resolve conflicts on

growth of open bugs towards recent years continues. Th'ﬁles that are common to both versions, a possible solution is

s due foa ‘half-life” of bug reports, Wh'Ch |.nd|cates a to move these files into a separate architecture-indepénden
probability for any bug to be closed at a given time. For the

ackage depended upon by architecture-dependent librarie
time of the last update, such an extrapolation cannot be dorPFh g P P y P

b dat ¢ older b the fi h is is the solution chosen by Red Hat-based distributions,
Well, because upaates of olderbugs cause the imestamps :9|I1d it requires adapting all library packages across thdevho
these bugs to move within the histogram.

i ; . distribution. An alternative solution (chosen by Debian-
This overview may suggest that Red Hat frequently fixeSy,qeq gistributions) is to amend the packaging system to

,Ol(_j bugs, or at least .updates them. It turns out that the”att‘_aallow sharing of identical files across different modes @ th
is indeed the case, via automated updates of bugs concernigg,,a package.

packages that are no longer supported. However, it does not 1 giterent solutions chosen and the different state in
seem to be the case that Red Hat fixes old bugs at a highghgniion of multi-arch explain the differences among the
rate than Debian. Rather, old bug repo_rts are often_obs;JbIeteoccurrences of multi-arch bugs in Red Hat and Debian. As
If a bug report rel_ates to softwarg that is no Ionger in toslay” i s a transient adaptation phase, we elide this category
Red Hat distributions, they are first updated with an end-0f3, the remainder of this section.
life wgrning, and Iat_er closed automatic_ally. This process The remaining bugs are classified into five categories:
contains a standardized message and is probably at leasty) ynavailability or inaccessiblity of shared resources:
part|a||y automated.)]] Shared resources are often files, but also include other
Debian has no practice of automatically closing bugynigue system resources such as network ports or C library
reports related to outdated or obsolete packages, with th@nciion names. Whenever a conflict occurs directly on a
notable exception of bugs belonging to packages that gfie, the conflict is caught at installation time by the padkag

removed from the Debian archive. manager (see FiguBfor an example). This handling is safe,
o _ but unsatisfactory: if a list of files used were provided be-
D. Categorization of conflict defects forehand, then an enhanced package manager could prevent

As described above and shown by Table 190 (Debian) @n installation attempt that is bound to fail. On the other
and 226 (Red Hat) bug candidates are subject to manu&@nd, other conflicts, such as name clashes in libraries, may
classification. The manual evaluation categorizes bugsant Not be detected until an application is used at run-time.

hierarchy of categories. The categories for both repasgor ~ 10 Summarize, bugs in this category are caused by the
unavailabilityor inaccessibilityof shared resources (e.g. due

1The choice of this sample arose from the need to downloadétaled to mutual exclusion of the resource and OwnerSh'p by
bug reports for these cases. “others”).

Unpacki ng gcc-avr (from.../gcc-avr_1%3a4. 3. 0-1_and64. deb) ...
dpkg: error processing /var/cachel/ apt/archives/gcc-avr_1%3a4. 3. 0-1_and64. deb
(--unpack):

trying to overwite ‘/usr/lib64/libiberty.a, which is also in package binutils
dpkg- deb: subprocess paste killed by signal (Broken pipe)

Errors were encountered while processing:

[var/ cache/ apt/ archi ves/ gcc-avr_1%3a4. 3. 0- 1_and64. deb

E: Sub-process /usr/bin/dpkg returned an error code (1)

Figure 3: File conflict found when trying to install a package

Red Hat Bugzilla - Bug 593402 Red Hat Bugzilla - Bug 606243
Package: Spacewal k Package: canorus

Version: 1.0 Version: 0.7.6

Severity: nedium Severity: nedium

Cobbler-web breaks /rpc/api over http (which breaks taskich Installation of canorus breaks operation of prelink

This is caused by the fact that both the cobblegb.conf and zz- Description of problem:
spacewalk-server.conf contain<Vi r t ual Host > section. The If canorus is installed prelink fails.

cobbler web.conf specifies one for port 806<\(i rt ual Host | get daily cron mails with the following content:
*: 80> while the zz-spacewalk-server.conf defines one for the/ et c/cron. daily/ prelink:
default (it's just<Vi r t ual Host >). /etc/cron.daily/prelink: line 47: 32734

As the VirtualHost for port 80 (as defined in the cobbleeb.conf) Aborted [usr/sbin/prelink -av $PRELI NK_OPTS
has preference over the default VirtualHost (as defined in zz>> /var/| og/prelink/prelink.log 2>&1

spacewalk-server.conf) the rewrite engine doesn’t gebledafor Fi 5 R t of flict arising f the int fi
port 80. This results in breakage of the spacewalk rewritesru lgureé 5: Report of a contiict anising from the interaction

which are mentioned in zz-spacewalk-www.conf. between packages.
Figure 4: Report on conflicting configuration data.

in theory) be reproduced usirigalone. In other cases, the
combination ofa and b is necessary for those packages
'to fail, and either package would work fine without the
conflicting package being present (see Figbixe

2) Conflicts on shared data, configuration information
or the information flow between program€£onfiguration

information is often found il et ¢, while shared data may The bugs have in common that they are observed as a

be located else_/vhe_re. I_nformanon flow refers to funCt'Oncoanict arising from thenteraction between packages.
calls or communication via pipes or a network. There are two 4) Package evolution issuesihen a software distribu-
basic cases where conflicts occur on data or communicatio%n evolves, packages may be renamed or split up into

1) Aninstallation action of a package changes the configmultiple packages, or several packages may be merged into
uration such that either the syntax of a Conﬁgurationone_ This may require updating meta-data in other pack-
file is broken (made unreadable for the parser used byges for the distribution to remain consistent. Furtheemor
another tool), or its semantics changes in an incomyersjon changes with a package may also require meta-data
patible way with respect to previous expectations. changes due to possible incompatibilities mentioned above

2) A change in the data format between versions ofynfortunately, meta-data changes are not automated, and
an application, which requires updating other com-are primarily the responsibility of the maintainer of a give
ponents; the lack of an appropriate newer version ofackage. This causes a potential for meta-data to be odtdate
other components, or the lack of a declaration of suchgnd not reflect a correct state anymore. The bug shown in
causes a conflict. Figure 6, for example, was due to an attempt to imple-

In both casesl and 2, the conflict usually only becomes ment a transition from packaget f -t el ugu-f ont s to
evident at run-time. Often, the problem can be avoided ont s-tel u but where the maintainer got the package
by having an installation script leave a configuration filerelations wrong.

unchanged if it has been modified by a user. Figushows Problems in this category arise due to incorrect or out-

a typical case of a semantic conflict in configuration entriesdatedmeta-data.

generated by two different packages. 5) Spurious conflictsThe last category represents cases
Bugs in this category are caused bycorrect datain where two packages are incorrectly classified as conflicting

shared resources or interfaces. although there is no conflict, at least not for the current

3) Interactions between packagds: some cases, a pack- version of these packages. An example report of a spurious
agea using another packaganakes a previously undetected conflict is shown in Figure'.
fault in b evident; it is possible that other use casesifor TablelV and Figure8 show an overview of the classifica-
could produce the same problem, so the failure can (at leasibn into these five categories. Larger categories are gplit

of conflicts Conflict type

Debian Red Hat
0 57 32-bit/64-bit binary conflict
43 38 access to/names of files and similar shared resources
22 22 package provides same file as other package
8 6 package (de-)installers modifies file or file permissiandeletes file used by other package
3 5 file/directory name conflict (for names including versimmber etc.)
10 5 clashing library symbols/function names/device names
48 34 file/API/data/configuration format/resource manag@m
20 12 update/installation script breaks configuration, fillenat, or resource management
14 8 package breaks on uncommon or user-defined configusattng
4 6 package use (post-install) overwrites/breaks configurdiles
10 8 API/file format change between different package varbieaks other package
21 41 rare (previously untested) combination of packages
13 22 defect in one package made visible by failure of othekage/functionality
8 19 uncommon combination of packages makes one or more gelkadways fail
19 12 package evolution (splitmerge/change) or faultyantktta results in conflict
10 6 incorrect/outdated dependency meta-data (requirgtitts)
9 6 package renaming/split/merge results in incorrect fdata of other package
8 1 spurious conflict declaration prevents compatible pgegdrom being used
139 183 (126) total (in parentheses: total excluding 3dBbinary conflicts)

Table 1V: Overview of all conflict defects found in the two bdgtabases.

Debi an bug nunber: #662988

Package: ttf-telugu-fonts
Version: 2:1.0
Severity: serious

Hi, ttf-telugu-fonts is not installable in sid: (...)

The problem is that ttf-telugu-fonts depends on fonts-tghich
in turn Breaks: ttf-telugu-fonts. This probably should Het¢lugu-
fonts (<<2:1.0).

Figure 6: Report of incorrect meta-data

Debi an bug nunber: #559161
Package: |ibopennpi-dev
Version: 1.3.3-2

Severity: serious

The libopal-dev and libopenmpi-dev packages were marked as

conflicting to resolve bug #404003; the problem was file /listi-
bopal.so’ contained in both packages.

Since at least lenny this library was renamed to '/usriliofhen-
pal.so’ in libopenmpi-dev package, so the conflict does natte
any longer.

There are no other conflicting files in these packages, so the

conflicts tag should be removed.

Figure 7: Report of a spurious conflict

into smaller groups to get a more detailed picture. Conflicts
between binaries for different architectures (on Red Hat)
are excluded in Figur8b. While human error in individual

classifications is possible, the results are overall quéarc
for larger categories. Some trends are evident:

1) Resource conflicts represent about 30 % of all conflicts

3)

4)

(43 and 38 cases in total). About half of these conflicts 5)

are on files and caught by the package manager at
installation time; other similar conflicts may not be

caught until a package is actually used.

2) Conflicts on configuration, and to a lesser degree,
the format of shared data, are equally common. In

many cases, syntactic problems cause a conflict be-
tween packages; the most common reason is the
automatic modification of configuration files by in-
stallation scripts (20 cases in Debian, 12 in Red Hat).
These installation scripts are likely tested for common
configurations, but may not behave as expected for
less common settings. While syntactic problems are
prevalent, unintended semantic changes are also a
significant problem, both during and after installation.
It is compounded by the fact that many configuration
files have to be customized by the user before a pack-
age can be used, and the formatting of a configuration
file may see subtle changes that are correctly dealt
with by the packaged software itself, but not by the
installation scripts that manage the package.

Other problems between packages that are usually not
installed together represent another significant share.
The huge number of available packages makes it
impossible to test all combinations (or even just all
pairwise possible combinations) of packages together,
so a conflict often goes undetected until reported by
a user. In Red Hat, the number is fairly large be-
cause many problems are reported for specific laptop
hardware configurations where kernel modules (driver
packages) did not behave well. It seems that the use
of Debian in such cases is less common, accounting
for a lower percentage of such bug reports.

Conflicts on meta-data level, often caused by package
evolution, contribute about 10 %.

Incorrect (or outdated) information on conflicting
packages sometimes occurs as well, which does not
create a conflict defect per se, but instead prevents
two packages from being used together even if this is
possible in principle.

File/resource name/
access 31 %

File/resource name/
access 30 %

File format/API/
configuration 27 %

File format/API/

configuration 35 % Spurious

Il 0,
Spurious conflict 1 %

conflict 6 % Package evolution/

meta—data 10 %

Package evolution/
meta—data 14 %

Rare combination 15 % Rare combination 33 %
(a) Debian (b) Red Hat

Figure 8: Categorization of conflict defects in our case wtud

IV. DISCUSSION meta-data is directly linked to underlying resources, iora f
A. Adressing each type of conflict defect mally defined way. This makes it possible to generate such

. . . o . Mmeta-data automatically if dependencies on the underlyin
The previous section has given a categorization of conﬂlcfg y P ying

defects based on empirical data. We now propose possible
solutions that can potentially cover some or all instandes o 2) Conflicts on shared dataConflicts on configuration
each class of conflicts. files, file formats and API versions are also common, and
1) Conflicts on files and similar shared resourcegon- clearly demonstrate the need for systematic testing agains
flicts on shared resources are not directly covered by egisti such conflicts. In the light of testing against overwriting
meta-data, although they may be implied by package-levdiles [20], inter-package tests should also be automatically
conflicts. Work is in progress to systematically test paekag 'un against conflicts on shared data. This is much more
installations against overwriting files provided by anethe difficult to automate, and only feasible for packages that
package 20], at least in Debian. As an alternative to this, include automated regression tests.
file diversionsenable a package to install files at a different The problem is that regression tests are primarily used
location; work is in progress to automate this. by developers, and less often by package maintainers, not
This case study shows that while the majority of suchto mention end users. Because of this, combined with the
conflicts occurs at file level, filpermissions(and owner- fact that a unit test failure does not automatically imply
ship) rather than just file names, and possible file/dirgctor that a package is unusable, regression tests are currently
renaming actions during package upgrades, should also bt covered by package meta-data. This makes them inac-
considered. Finally, coverage of similar resources such asessible to today’s package management tools, and pretty
network ports and function or library names would furthermuch precludes the automated discovery of such intricate
augment the ability of such tools to detect conflicts proacconflicts. However, at a lower level, many source-level
tively. distributions have a “make test” or “make check” build targe
More detailed meta-data will require much more spacehat automatically performs such tests. In the future, such
than existing (rather compact) package meta-data. We pranformation could be provided in package meta-data, for
pose that some extra meta-data is generated and used omlsickage maintainers. Furthermore, on a basic level, oertai
by developers and package maintainers. As it covers pessibproblems may be found just by executing a program and
conflicts proactively, at development time, not all fine- checking whether its return value indicates an error, or by
grained meta-data needs be included in the final distributio attempting to start and stop a system service cleanly.
We think that most or all of such resource-related meta-
data can be extracted automatically by static analysisror ru
time analysis. Automation would eliminate extra effortrfro
package maintainers.
This proposition distinguishes itself from existing mech-
anisms such as features or virtual packages in that ext

sources are known.

3) Interactions between uncommon packagébe fact
that rare combinations of packages may cause problems is
not surprising, given the large number of packages avail-
able. An exhaustive testing of package combinations is not
feasible, but heuristic-based testing of sets of packaggs m
'Be. A possible approach may be to install larger subsets of
2http://wiki.debian.org/SummerOfCode2011/Declarddiversions packages, and to narrow down the set of conflicting packages
retrieved June 2011 by a systematic search such as delta debugditj [

http://wiki.debian.org/SummerOfCode2011/DeclarativeDiversions

4) Package evolution:Package evolution often brings data for testers and distribution maintainers could couehs
with it an invalidation of package meta-data. About onetesting-related information.
tenth of conflict defects in our study is caused directly due
to invalid meta-data after larger package modificationst{su)
as splitting a package into two packages). This shows that Conflicts between software packages occur due to a
meta-data needs to be verified for consistency and accurac§griety of reasons. Conflict defects on shared resources and
Especially when given a situation with “known good” meta- conf|gura.t|on files are parucularl)_/ common. Th_e underlying
data (before the modification), automatic verification ofProblem is that package behavior at installation, use, and
the new meta-data is feasible if packages can be testdde-installation time is unrestricted, so a complete fordeal
automatically. scription of package behavior cannot be achieved. However,

As with other issues described above, meta-data does n8{€PS can be taken towards increasing the expressiveress an
cover the requirements of packages in enough detail. Fdiccuracy of package meta-data, by adding meta-data that is
example, take a packagethat is split up intoa’ and a”, intended for package developers and maintainers.
because some parts afare not used by many packages. !N Our case study, we categorize a large number of
If a packageb depends om: in the old configuration, it conflict _defects, and propose possible solutions to common
is possible that depends on/, o, or both packages, in categories of conflicts. Our stgdy uses two snapshots of bugs
the new configuration. If some of the resources provided?€tween packages reported in Debian GNU/Linux and Red

by these packages are loaded dynamicallybbgat run- Hat Linux (including derivatives such as Fedora). We found
time), then verification of the actual software is requiredthat on a broad level, over 80% of all conflict defects are

to determine the correct new dependency. mads up by threg cat(_egories: co.nflic.:ts on resource access,
conflicts on (configuration or application) data, and intera

of conflict defects can be responded to, by automated testin. ni _betlwgen unc(:jornmor? comllain_ationfs of iackages. dFl:lJJ ture
of packages that supposedly conflict. This would detectcas ork includes studying the evolution o packages, and bugs

where a conflict is resolved in a newer version of a package{.)e%?rtt,?:é over time by investigating multiple snapshdteta
ver time.

As a conclusion from our case study, we found that
ongoing and future projects can reduce conflict defects
To summarize, we think that bugs in these five categorieg,gst efficiently by (a) identifying and testing combinason
can be discovered more effectively through the followingqy packages that may conflict, (b) generating and using
means: extra meta-data, and (c) checking the validity of (manually
o ldentification of potentially conflicting packages provided) meta-data.
through analysis of existing meta-data or package be-
havior. Such an analysis yields candidates for auto-
mated testing, Covering bug Categories 1-3. We expect[l] PietrO_Ab_ate, Jaap Boender, Robertq Di Cosmo & Stefano
that such testing may partially use recent virtualization é%‘;ﬁggggnglor?:9,)5:352_58,”290(%1%?;6g;'leggf’ggveen Software
technologies (e.g.1fp], among many others). Virtual-
ization technology may provide both a “sandbox” for [2] Pietro Abate & Roberto Di Cosmo (2011Predicting up-
executing tests and automated inspection of test execu- grade failures using dependency analysis: 27th Interna-
tions, to determine the usage of shared resources such tional Conference on Data EngineeringEE, pp. 145-150.
as files or network ports. As of recently, distributions 31 ajan w. Brown & Kurt C. Wallnau (1998)The Current State
seem indeed be interested in proceeding along this = of CBSE IEEE Softwarel5, pp. 37—46.
direction [7].

« More detailed and accurate meta-data, generated of4l Christian Collberg, John H. Hartman, Sridivya Babu &
verified by automated tools. This primarily covers bugs Sharath K. Udupa (20058linky: Static linking reloadedin:

L Proc. USENIX 2005 Annual Technical ConferenteSENIX,
related to the availability of shared resources, and the Anaheim. USA. pp. 309-322.

correctness of meta-data itself (categories 1, 4, and 5).
) T : . _[5] Roberto Di Cosmo & Jaap Boender (201@)sing strong
daltzai(tiin;;rftjicmug[? gs;aasshguricej)((:tos/tz:aﬂl(e)';shle?rdsl;/(iltr;?nﬂIrisr;)Lejtr?:e conflicts Ito %et;lct C?.ualit%/ issues in' com'ponent-fbaseldfa ICEEf):mpl
' ' g . systems n: 3rd India software engineering conieren
such as network ports, shared (global) configuration data, '10, ACM, pp. 163-172.
and communication between components. Another aspect) o
currently omitted in meta-data is information about regres [6] Roberto Di Cosmo, Paulo Trezentos & Stefano Zacchiroli

. tests that alread ist i K but (2008): Package Upgrades in FOSS Distributions: Details
Sion tests thal already exist in many packages, but are 5.4 Challenges In: International Workshop on Hot Topics

inaccessible on a package level because they are not déclare jn Software UpgradesHotSWUp '08, ACM, New York, NY,
or available in a uniform way. An enhanced set of meta- USA, pp. 7:1-7:5.

V. CONCLUSIONS ANDFUTURE WORK

5) Spurious conflictsSpurious (or outdated) declarations

B. Summary

REFERENCES

[7] lan Jackson, lustin Pop & Stefano Zacchirautopkgtest -
automatic as-installed package testirigebian Enhancement
Proposal 8http://dep.debian.net/deps/dep8/

[8] lan Jackson & Christian Schwarz (2008pebian Policy
Manual http://www.debian.org/doc/debian-policy/

[9] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmopdé”
Vouillon, Berke Durak, Xavier Leroy & Ralf Treinen (2006):
Managing the Complexity of Large Free and Open Source
Package-Based Software Distributioris: ASE 2006 |IEEE,
pp. 199-208.

[10] Gustavo Noronha Silva (2008): APT HOWTO
http://www.debian.org/doc/manuals/apt-howto/

[11] Lucas Nussbaum & Stefano Zacchiroli (2010)he Ulti-
mate Debian Database: Consolidating Bazaar Metadata for
Quality Assurance and Data Miningln: 7th IEEE Working
Conference on Mining Software Repositories (MSR’2010)
Cape Town, South Africa.

[12] L. Presser & J.R. White (1972)inkers and loaders Com-
puting Surveys (CSURJ(3), pp. 149-167.

[13] The Debian Project: Debian bug tracking system
http://debian.org/Bugs/Retrieved March 2012.

[14] The Debian ProjectSoftware packages in [Debian] “sid”
http://packages.debian.org/sid/allpackagesRetrieved June
2011.

[15] Red Hat, Inc..KVM. http://www.linux-kvm.org

[16] Red Hat, Inc.: Red Hat Bugzila Main Page
http://bugzilla.redhat.comRetrieved March 2012.

[17] Murray Stokely (2004)The FreeBSD Handbool3 edition.
FreeBSD Mall.

[18] Kuniyasu Suzaki, Toshiki Yagi, Kengo lijima, Nguyen An
Quynh, Cyrille Artho & Yoshihito Watanebe (2010yloving
from Logical Sharing of Guest OS to Physical Sharing of
Deduplication on Virtual Machine In: Proc. 5th USENIX
Workshop on Hot Topics in Security (HotSec 20105ENIX,
Washington D.C., USA.

[19] Clemens Szyperski (1998)Component Software. Beyond
Object-Oriented ProgrammingAddison-Wesley.

[20] Ralf Treinen (2011)EDOS-Debcheck: File Overwrite Errars
http://edos.debian.net/file-overwritesRetrieved June 2011.

[21] A. Zeller & R. Hildebrandt (2002)Simplifying and Isolating
Failure-Inducing Input Software Engineering8(2), pp. 183—
200.

http://dep.debian.net/deps/dep8/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/apt-howto/
http://debian.org/Bugs/
http://packages.debian.org/sid/allpackages
http://www.linux-kvm.org
http://bugzilla.redhat.com
http://edos.debian.net/file-overwrites/

	Introduction
	Package-based software distributions
	Conflict defects

	Related Work
	Software packaging
	Alternatives to globally managed software packaging

	Evaluation of conflict defects
	Repositories used in the case study
	Methodology
	Automated search
	Manual evaluation
	Possible sources of bias

	Repository characteristics
	Categorization of conflict defects
	Unavailability or inaccessiblity of shared resources
	Conflicts on shared data, configuration information, or the information flow between programs
	Interactions between packages
	Package evolution issues
	Spurious conflicts

	Discussion
	Adressing each type of conflict defect
	Conflicts on files and similar shared resources
	Conflicts on shared data
	Interactions between uncommon packages
	Package evolution
	Spurious conflicts

	Summary

	Conclusions and Future Work
	References

