
From notation to semantics:
there and back again

Luca Padovani1 and Stefano Zacchiroli2

1 Information Science and Technology Institute, University of Urbino
padovani@sti.uniurb.it

2 Department of Computer Science, University of Bologna
zacchiro@cs.unibo.it

Abstract. Mathematical notation is a structured, open, and ambiguous
language. In order to support mathematical notation in MKM applica-
tions one must necessarily take into account presentational as well as
semantic aspects. The former are required to create a familiar, comfort-
able, and usable interface to interact with. The latter are necessary in
order to process the information meaningfully.

In this paper we investigate a framework for dealing with mathemati-
cal notation in a meaningful, extensible way, and we show an effective
instantiation of its architecture to the field of interactive theorem prov-
ing. The framework builds upon well-known concepts and widely-used
technologies and it can be easily adopted by other MKM applications.

1 Introduction

Mathematical formulae can be encoded at different levels of human and machine
understandability [1]. Formulae at the notational level are encoded on the basis
of their rendering, in the same spirit of the MathML Presentation markup lan-
guage [8]. Interaction with the user happens on formulae at this level: the user
feeds the application with formulae in some notation, the system renders the
formulae in some notation.

Formulae at the semantic level are those which the application has the deep-
est understanding of and on which it can better perform computations. In the
fields of Computer Algebra Systems and theorem provers, examples of such com-
putations include evaluation, simplification, automatic (dis-)proving, and type-
checking. This level is intrinsically application-specific.

In between is an intermediate level, which we call content level, whose aim
is to encode the structure and, to a limited extent, the semantics of mathemat-
ical formulae. MathML Content and OpenMath [14] are examples of markup
languages that encode formulae at this level. The content level is the most ef-
fective vehicle of interoperability across MKM applications not sharing semantic
foundations.

A framework that deals with meaningful mathematical notation has a nat-
urally layered architecture where the same mathematical object is encoded in

2 Luca Padovani and Stefano Zacchiroli

different ways according to the activities it is subjected to. The layers are con-
nected with each other, and the encodings must be kept synchronized accord-
ingly. In this sense we distinguish notation, which is a purely presentational tool,
from meaningful notation that blends together both presentational and semantic
aspects. From the perspective of the framework’s designer, the fact that nota-
tion is extensible is a source of considerable additional complexity. It means that
the layers cannot be fully described a priori, and that their connections must
be updated dynamically as the system is enriched with new notation and new
mathematical objects. It should be noted that a system supporting extensible
notation in an exclusively presentational fashion is much simpler but also of
limited use.

We consider the following features as characterizing such framework:

Extensibility: the framework must permit its users to define their own notation
in an incremental way, using a basic set of primitive constructs along with
all the notation has been defined earlier.

Remote control: notation should provide handles for enabling indirect ma-
nipulation of the (possibly hidden) information encoded at the content and
semantic levels.

Ambiguity: the framework must tolerate (and encourage) ambiguity, which is
common practice in traditional mathematical artifacts.

Interoperability: the framework must not hinder communication with other
software.

Fig. 1. Architecture of the notational framework.

From notation to semantics: there and back again 3

In this paper we show how a framework supporting extensible, meaningful
notation can be designed, and we demonstrate the effectiveness of our approach
in the context of a theorem proving application. Figure 1 depicts the framework’s
architecture at work, where a first order logic formula is encoded at the three
levels, the classical notational level on the left and the corresponding semantic
encoding in the Calculus of (Co)Inductive Constructions [15] on the right. In the
figure we use Helm [2] URIs as object references.

Transformations among the levels (horizontal solid arrows) are initiated by
the need of interaction between the user and the application. When the need
is to input a formula, abstraction brings the formula to the content level and
disambiguation recovers a fully semantic encoding of the formula. When the
need is to output a formula, ambiguation strips the formula of any application-
specific semantic information and rendering creates a familiar representation.
The transformations are driven by sets of bidirectional rules: a set of notational
equations drives abstraction and rendering, while a set of interpretations drives
disambiguation and ambiguation. The extensibility is pictorially represented as
changes to these sets.

Cross references and hyperlinks account for remote control. Cross references
relate corresponding pieces of information across the different encodings, so that
the rendering engine can feature semantically driven forms of selection, cut and
paste, and editing. Hyperlinks are one-to-many mappings from atomic objects
to resources. Typically they link objects to their definitions.

Relevance to MKM and contribution. This paper complements [13] by investi-
gating the technical issues related to the design of a user-extensible, interactive
environment for the development and the management of mathematical knowl-
edge in a semantically driven way. In particular, it proposes an architecture that
has proven effective in mixing presentational as well as semantic aspect of the
processed information. This is an improvement with respect to the currently
available tools related to MKM which typically focus on one, but not both, of
these equally important aspects.

Previous work [2] describing a similar architecture to that discussed in this
paper did not address the issues related to extensible input support, and it only
described informally how hyperlinks and cross references were propagated from
the semantic to the presentation level. In this paper we describe these important
features in a more abstract, but also more formal way, hoping to provide useful
guidelines for future implementations.

Paper organization. The rest of the paper is organized as follows: in Section 2 we
give a definition of notation by showing the relevant pieces of information that are
affected by the notational equations. We do so by modelling levels with terms
and transformations with functions on these terms. In Section 3 we complete
the architecture by instantiating the semantic level in the particular case of a
theorem proving application. Section 4 shows all the aspects of the framework at
work on a concrete example. Section 5 discusses some related work and Section 6

4 Luca Padovani and Stefano Zacchiroli

concludes with some considerations about our implementation of the framework
and some possible extensions.

2 Syntax and semantics of notation

In order to define precisely what notation is and how the information it con-
veys is processed during abstraction and rendering, we need a description of the
languages encoding formulae at the notational and content levels.

Table 1. Syntax of presentation (Ep) and content (Ec) expressions.

Ep ::=
x (identifier)

| l@H (literal)
| A{Ep} (annotation)
| L[Ep

1, . . . , E
p
n] (layout)

| B[Ep
1 · · ·Ep

n] (box)
| α (variable)

Ec ::=
x (identifier)

| s@H (symbol)
| A{Ec} (references)
| C[Ec

1, . . . , E
c
n] (constructor)

| α (variable)

Table 1 shows the grammars for two streamlines languages of presentation
and content expressions capturing the essence of notation. The two grammars
are parametric in the following sets: a set of layout schemata L representing basic
constructs of mathematical notation such as fractions, square roots, vectors, and
so on; a set of box schemata B for annotating presentation expressions with line-
breaking hints; a set of identifiers x, a set of literals l representing characters,
numbers; a set of symbols s representing the basic elements in the ontology
language of the content level (in MathML Content this set is predefined, in
OpenMath it is completely unspecified, in either case it is open-ended and can
be extended at will); a set of constructors C of the content level for building
compound objects such as sets, lists, functions, relations. Literals and symbols
are annotated with sets of hyperlinks H. We write l and s for l@∅ and s@∅
respectively. Both presentation and content expressions may be annotated with
sets of cross references A. We omit the annotations p and c when it is clear that
we are talking about presentation and content expressions, respectively.

A well-formed presentation pattern is a presentation expression E without
identifiers, hyperlinks and cross references and such that any variable in E occurs
exactly once. A presentation term is a presentation expression without variables.
Content patterns and terms are defined similarly from content expressions.

A notational equation is a pair of well-formed patterns

P p ⇐⇒ P c

that simultaneously defines (1) an abstraction from the notational level to the
content level, and (2) a rendering from the content level to the notational level.

From notation to semantics: there and back again 5

Example 1. The notational equation

α = β ⇐⇒ apply[eq, α, β]

defines a notation for the infix, binary operator = which is represented at the
content level as an apply constructor whose first child is the eq symbol followed
by the two operands in order. ut

2.1 Abstraction

Abstraction is the process of instantiating the content term corresponding to a
presentation term. Conceptually this is done in two steps: first, the presenta-
tion term is parsed according to the notation that is available where the term
occurs and its parsing tree is determined. Then, the tree is navigated and a
corresponding content tree is instantiated in a bottom-up fashion.

Let us discuss parsing first. Let G0 be the grammar that defines the built-
in notation of the framework and let T be the grammar nonterminal symbol
producing terms. The definition of new notation causes G0 to be extended incre-
mentally as follows:

G0
P p

0 ⇐⇒ P c
0−−−−−−−→ G1

P p
1 ⇐⇒ P c

1−−−−−−−→ G2
P p

2 ⇐⇒ P c
2−−−−−−−→ · · ·

P p
k ⇐⇒ P c

k−−−−−−−→ Gk

where each grammar Gi+1 results from Gi by the addition of a the production for
T derived from P p

i ⇐⇒ P c
i and P c

i is a content pattern parsed with Gi (this way
notation can be defined incrementally on top of previously defined notation). In
particular, the added production is T → exp(P p) where the function exp(P)
converts a presentation pattern into a sequence of terminal and nonterminal
grammar symbols as follows:

exp(l) = l
exp(α) = T

exp(B[P1 · · ·Pn]) = exp(P1) · · · exp(Pn)
exp(L[P1, . . . , Pn]) = L[exp(P1), . . . , exp(Pn)]

Note that boxes are discarded in the expansion process as they play no role
in the parsing phase and their content is juxtaposed.

A delicate technical problem related to grammars is ambiguity. An ambiguous
grammar is one such that there may be multiple parse trees for the same term.
In the most common cases ambiguity can be resolved by declaring precedence
and associativity of productions. Thus, the language may provide additional
constructs (see Section 4) so that the user can specify, for instance, that the
symbol * has precedence over + and that * is left-associative. The remaining
cases of ambiguity can be treated as errors (and the notation causing the am-
biguity could be rejected or ignored), or they may be admitted provided that
the implementation accommodates a form of content validation that can dis-
criminate, among the various content terms that can be built starting from the

6 Luca Padovani and Stefano Zacchiroli

very same presentation term, which ones are semantically meaningful. This val-
idation phase usually entails a deeper understanding of content terms than it
is available at the content level, thus some cooperation with the semantic level
becomes fundamental for settling structural ambiguities.

Now we take care of the instantiation step. Given a presentation term t,
the parser yields a parsing tree for t which we denote with t̂. In particular, it
determines a pattern P p

i and a substitution σ that associates variables occurring
in P p

i with subterms of t̂ such that P p
i σ = t̂ (equality here is considered up to

cross references and hyperlinks). We abbreviate this writing t ∈ P p
i ; σ.

Example 2. assuming that the + operator has precedence over =, we have that

1 + 2 = 3 ∈ (α = β) ; [α 7→ (1 + 2), β 7→ 3]

where we use parentheses to indicate a generic box schema. ut

Abstraction is a function A(·) defined as follows:

A(t) = P c
i σ′ where t ∈ P p

i ; σ and σ′(α) =
{
A(σ(α)) if α ∈ dom(σ)
undefined otherwise

The function A(t) is well-defined as long as the terms in the image of σ are all
proper subterms of t̂.

2.2 Rendering

Rendering creates a presentation term from a content term. Like abstraction,
we can think of this as a two-step transformation: during the first phase the
structure of the content term t is inspected for finding those parts of the term
matching the right-hand side of a notation P p

i ⇐⇒ P c
i . Then, the left-hand

side is instantiated accordingly. Unlike abstraction annotations and hyperlinks
must be propagated to the presentation term and this is what makes rendering
tricky. Table 2 shows the pattern matching of a content term t against a content
pattern P as a system of inference rules. We use the notation

t ∈ P ;A σ,A′,H

meaning that given an initial set of cross references A, the matching of the term
t against a pattern P yields a substitution σ, a final set of cross references A′,
and a set H of hyperlinks harvested from the symbols in t.

We define the rendering function R(·) as

R(t) = A{IH
σ (P p

i)} where t ∈ P c
i ;∅ σ,A, H

and the instantiation function IH
σ (·) as

IH
σ (l) = l@H

IH
σ (L[P1, . . . , Pn]) = L[IH

σ (P1), . . . , IH
σ (Pn)]

IH
σ (B[P1, . . . , Pn]) = B[IH

σ (P1), . . . , IH
σ (Pn)]

IH
σ (α) = R(σ(α))

From notation to semantics: there and back again 7

Table 2. Pattern matching of content terms.

(Symbol)

s@H ∈ s ;A ε, A, H

(Variable)

t ∈ α ;A [α 7→ A{t}], ∅, ∅

(Annotation)

t ∈ P ;A∪A′ σ, A′′, H

A{t} ∈ P ;A′ σ, A′′, H

(Constructor)

(ti ∈ Pi ;∅ σi, A
′
i, Hi)

i∈1..n

C[t1, . . . , tn] ∈ C[P1, . . . , Pn] ;A σ1 · · ·σn, A, H1 ∪ · · · ∪ Hn

In the process rendering a content term t annotations of subterms of t are
preserved only in two occasions: either when they are found at the top level of
t, in which case they become annotations for the resulting presentation term, or
when they wrap proper subterms of t that have been bound by variables, in which
case they will wrap the rendered subterms. As there is no obvious way of relating
the other annotations, they are simply discarded (see the (Constructor) rule
in Table 2). Hyperlinks, on the other hand, are handled pattern-wise. All the
hyperlinks found in the part of a term matched by a content pattern are gath-
ered together and sprinkled over the literals of the corresponding presentation
pattern. That is to say, any visible part of the term is considered the concrete
rendering of its symbols and should thus be linked to their definitions.

The definition of R(·) omits two secondary details: (1) the function R(·)
must provide appropriate rendering for all the built-in notation defined in G0;
(2) precedence and associativity of the productions are used to spot the subterms
that must be protected by fences, in order to guarantee a presentation term that
is consistent with the structure of the content term.

Example 3. Consider the notational equation

α ≠ β ⇐⇒ apply[not, α = β]

where we assume that the notation for the equality = has been given as in
Example 1. The content term

t = i1{apply[i2{not@h1}, i3{apply[i4{eq@h2}, i5{1@h3}, i6{2@h4}]}}

represents the inequality 1 6= 2 where the two constants 1 and 2 are located at h3

and h4 and are identified by i5 and i6 respectively. The whole term has reference
i1, the symbol not has reference i2 and is located at h1, while the symbol eq has
reference i4 and is located at h2. The term t would be rendered as

i1{i5{1@h3} ≠@{h1, h2} i6{2@h4}}

where we note that the reference of the whole term is preserved, whereas the
references of the not and eq symbols have been lost (there is no natural rendered
subterm corresponding to them). There are two links associated with the ≠ literal

8 Luca Padovani and Stefano Zacchiroli

corresponding to the locations of the not and eq symbols. Finally, the symbols
1 and 2 have been rendered with all the information preserved (in the rendering
we have omitted explicit box schemata for simplicity). ut

3 Handling ambiguity in matita

Since disambiguation and ambiguation (the transformations from content to
semantics and back) inherit the quality of being application-specific from the
semantic level, we cannot give a fully general recipe for handling them. We will
therefore present their instantiation in the context of matita,1 a document-
centric proof assistant being developed at the University of Bologna. Never-
theless, as we will see shortly, we only require the semantic language to be
compositional, as most structured languages are.

In matita the semantic language is the Calculus of (Co)Inductive Construc-
tions [15] (CIC for short), a typed λ-calculus enriched with inductive data types.
In this setting, an interpretation is a pair

s α1 · · ·αn ⇐⇒ t[α1, . . . , αn]

where s is a content symbol of arity n ≥ 0 and t[α1, . . . , αn] is a CIC term with n
holes labelled α1, . . . , αn. The intention is to give one of the possible meanings
for the symbol s when applied to n content terms t1, . . . , tn, in terms of the CIC
term t in which the hole αi has been replaced by the meaning of ti. The “one
of” is to remark that there can be multiple interpretations for the same symbol
s, not necessarily having the same arity.

3.1 Disambiguation

Of the two transformations dealing with the semantic level, disambiguation is
the most challenging, since it has to resolve the ambiguity of content terms with
respect to semantic terms.

When the semantic level is CIC, the ambiguity is induced by the one-to-many
mapping of symbols to CIC term, which in turn is induced by overloading of
operators and missing information at the notational level.2 Consider the content
level expression obtained after the abstraction of Example 2. Its ambiguity with
respect to CIC derives from the overloading of + (two different plus do exists
in the standard library of matita), and from the missing type argument of =,
which is needed by the CIC encoding of Leibniz’s equality.

Example 4. The following interpretations taken from the matita standard li-
brary show this ambiguity:

1 http://matita.cs.unibo.it/
2 Numbers and unbound identifiers also induce ambiguity. For the sake of brevity in

this paper we treat them as 0-ary symbols for which the appropriate interpretations
have been given.

http://matita.cs.unibo.it/

From notation to semantics: there and back again 9

interpretation "natural plus" ’plus x y =

(cic:/matita/nat/plus/plus.con x y).

interpretation "integer plus" ’plus x y =

(cic:/matita/Z/plus/Zplus.con x y).

interpretation "Leibniz’s equality" ’eq x y =

(cic:/matita/logic/equality/eq.ind#xpointer(1/1) _ x y).

The first two provide for overloading of +, the last uses an implicit CIC term ()
to represent the missing argument. ut

Intuitively, disambiguation is a two phase process. In the first phase all pos-
sible CIC terms corresponding to a content term, according to the current set of
interpretations, are built. In the second phase they are filtered by means of an
oracle able to decide whether a term is valid or not. Such an oracle for CIC is the
refiner described in [12]. The actual disambiguation algorithm implemented in
matita exploits the type inference capabilities of the refiner and is far more ef-
ficient than the naive algorithm entailed by this intuition. The interested reader
can find a detailed description of the disambiguation algorithm, as well as a
discussion on its computational complexity, in [13].

3.2 Ambiguation

We call ambiguation the reverse transformation that creates a content term
from a CIC term. It is simpler than disambiguation since the mappings from
CIC to content are not ambiguous (they may be non-injective though). This
step resembles rendering in many ways: ambiguation works by pattern match-
ing on CIC terms, and it instantiates content terms according to the matching
interpretations. As usual, the system provides a finite set of built-in mappings
for transforming uninterpreted CIC terms to the corresponding content terms.
Propagation of cross references and hyperlinks can be implemented in exactly
the same way as described in Section 2.2, the URIs appearing in interpretations
are the original sources of hyperlinks.

4 A full-scale example

In this section we provide a complete example of notation in use in the matita
proof assistant: existential quantification. The purpose of the example is twofold.
On one hand it presents all together the aspects of notation from presentation
to semantics. On the other hand, it allows us to glance at some features of the
notational framework offered to the user for describing notational equations and
interpretations that we had to omit from Sections 2 and 3 due to lack of space.

The existential quantifier is not built-in in CIC, but it is defined as an in-
ductive data type in the logic/connectives module of the matita standard
library. Its notation is given thus:

10 Luca Padovani and Stefano Zacchiroli

notation "hvbox(\exists ident i opt (: ty) break . p)"

right associative with precedence 20

for @{ ’exists ${ default

@{ \lambda ${ident i} : $ty. $p }

@{ \lambda ${ident i} . $p }

}}.

The presentation pattern is enclosed in double quotes. It consists of variables
(i, p, and ty) that stand for arbitrary CIC sub-terms, and literals (\exists, :,
and .) assembled together in a box schema. The special keyword break indicates
the breaking point and the box schema hvbox indicates a horizontal or vertical
layout, according to the available space for the rendering. The opt indicates
a meta-operator that surrounds an optional part in the presentation pattern.
Given this presentation pattern, matita’s input syntax is extended so that, for
example, \exists x:nat. x \le y is a valid presentation term. Because of the
opt meta-operator, the type annotation :nat can be omitted, the resulting term
still being syntactically valid.

The line beginning with right associative. . . is self explicative: it speci-
fies associativity and precedence of the notation, thus determining the binding
strength of the existential quantifier during parsing and giving the renderer ap-
propriate information for inserting parentheses when needed.

The content pattern begins right after the for keyword and extends to the
end of the declaration. Parts of the pattern surrounded by @{. . . } denote verba-
tim content fragments, those surrounded by ${. . . } denote meta-operators and
meta-variables (for example $ty) referring to the meta-variables occurring in
the presentation pattern. The content pattern of the example defines the appli-
cation of the content symbol exists to a λ-abstraction. In this case there are
two possibilities according to the presence or absence of the type annotation
in the presentation term that matched the pattern. For this reason there is a
corresponding meta-operator at the content level, named default, that has two
branches which are chosen depending on the matching of the optional subexpres-
sion. In the example this is used to account for the optionality of type annotation
on the quantified name, since its type can be inferred during disambiguation.
Thus, if the type is given, the content term created after parsing has the form
’exists (\lambda x:nat.(x \le y)). Otherwise, the resulting content term
has the form ’exists (\lambda x.(x \le y)).

Our notational language supports additional meta-operators for dealing with
variable-size terms having a regular structure: the list operator, which can be
used for describing sequences of presentation terms and literals, has a corre-
sponding fold operator, which describes trees at the content level. Like for opt
and default, list and fold together express a bi-directional relationship be-
tween the presentation and the content level.

In matita, the interpretation of the exists symbol is as follows:

interpretation "exists" ’exists \eta.x =

(cic:/matita/logic/connectives/ex.ind#xpointer(1/1) _ x).

From notation to semantics: there and back again 11

where the word "exists" enclosed in double quotes is an informal comment
that can be used for keyword-based searching. In this interpretation the exists
symbol has arity 1 and its only argument is required to be a function. This is
expressed by the variable x being annotated with \eta.. Indeed, the content
pattern shown previously regarding the exists symbol matches only when the
symbol’s argument is a function. Since this is not guaranteed at the CIC level,
an η-abstraction is performed when necessary: if the CIC term matching x is not
a λ-abstraction, a content term will be created for λfresh.(x fresh) instead.

The following statement can now be used to start a new proof

theorem increasing_to_le:

\forall f:nat \to nat. increasing f \to

\forall m:nat. \exists i. m \le f i.

and the initial sequent of the proof is rendered as shown on the left of Figure 2.
Notice that when entering a formula in the system the user is allowed to use
a TEX-like concrete syntax, and the system can render the formula both on
a textual terminal in the same concrete syntax, or in a graphical canvas like
that of Figure 2 where the layout schemata of the formula have been properly
encoded using MathML Presentation markup. This second view offers a more
familiar rendering and it also enables point-and-click functionalities, like those
for remote control. In this particular example the system figures that i must
have type nat. In case more than one interpretation for the entered formula is
feasible, the system lists them in a dialog box and asks the user to pick the
desired one.

Remote control is exploited in matita in two ways: the first is hypertextual
browsing of objects in the library. As can be seen on the left of Figure 2, the URI
of the "exists" interpretation flowed through the levels reaching the literal ∃ as
an hyperlink, which can be recognized at the bottom of the figure, in the status
bar of the application. By clicking on the literal, the corresponding object from
the library is shown to the user. If multiple hyperlinks are associated with the
same symbol, a pop-up window appears and the user decides which one to follow.
Incidentally, this gives the user some information about how a mathematical
construct is encoded at the CIC level.

The second form of remote control, semantic selection, exploits cross refer-
ences to constraint the selection on the presentation markup to CIC subterms.
On the right of Figure 2 for instance, the GUI inhibits the selection of ∀m : nat
despite it corresponds to a proper subterm at the presentation level, since it has
no corresponding subterm at the semantic level. Contextual semantic actions
can then be safely offered to the user: the pop up menu in the figure shows
actions for type-checking, reducing, and using the term as a parameter for the
next reasoning step. A classical copy operation to copy the subterm into the
clipboard is also available.

12 Luca Padovani and Stefano Zacchiroli

Fig. 2. Remote control in action: hyperlinks on the left hand side, semantic
selection and contextual actions on the right hand side.

5 Related work

The layered architecture that we have proposed is similar in structure to that
of previous projects in which notation played a major role. In [2,9] ambiguation
and rendering are implemented by XSLT stylesheets [16] and they can only
be extended by adding XSLT templates. Support for further notation is thus
limited to the system designers. From the point of view of maintenance of the
transformations, an improvement is the introduction of meta-stylesheet [7] that
generate XSLT templates starting from a slightly higher-level specification. A
somehow similar approach is proposed by Naylor and Watt [10] for supporting
alternative notations. In any case, all the solutions mentioned are one-way only
and cannot be inverted, both because XSLT is a very general transformation
language, and also because the reverse path must reconstruct information that
is not always available.

Our transformation language is not as general as XSLT but has been care-
fully designed so as to guarantee invertibility (the meta-operators mentioned in
Section 4 are all invertible). Furthermore, it has a purely declarative style and
is thus more appropriate for users who do not have any programming experi-
ence. The notational level consists of a finite set of layout schemata, basically
those that are found in MathML Presentation [8] and TEX, box schemata for
line-breaking inspired by previous work on pretty-printers [5], and a few meta-
operators (like opt and list) inspired to the constructs of BNF grammars. The
content level is an internal version of MathML Content and OpenMath [14], with
the addition of meta-operators corresponding to those of the notational level.

The Coq proof assistant [4] provides a similar language for extending nota-
tion, with two main differences: it does not supply a content level and it does
not deal directly with remote control. Our language represents a more open
and interoperable solution, and the implementation shows that remote control
can be achieved effectively even when notation is extensible, limiting built-in
transformations to a bare minimum.

From notation to semantics: there and back again 13

6 Conclusions and future work

In this paper we have characterized meaningful mathematical notation as a tool
that necessarily mixes presentational as well as semantic aspects. We have iden-
tified a set of requirements that any MKM application supporting meaningful
notation should fulfill and we have proposed an adequate architecture that builds
upon the three well-known levels of formulae encoding: notation, content, and
semantics. As an assessment of the generality of the architecture, we have given
a formal dressing to the concept of notation which makes a minimum set of
assumptions, and we have described an instantiation of its application-specific
parts to the matita proof assistant.

The described architecture has been fully implemented in matita. The actual
code has been written in OCaml3 reusing components of the matita code base,
most notably the code for disambiguation [13] and transformation from CIC to
content and from content to MathML Presentation. Ambiguation and render-
ing have been implemented efficiently using a variant of the pattern matching
algorithm in functional languages [3,6], which has been enriched with more ex-
pressive backtracking capabilities for dealing with meta-operators. Abstraction
has been implemented using Camlp4, an extensible top-down parser with lim-
ited support for ambiguous grammars. This choice does not allow us to deal with
structural ambiguity, that is with presentation terms admitting more than one
corresponding content term. We plan to relax this constraint by implementing
one of the several extensible parser generators that can be found in the literature
(see [11] for an example).

Remarkably the proposed architecture does not deal with numbers in a prac-
tically useful way, since it assumes that there exists an infinite set of interpre-
tations for them. In the Coq proof assistant, which basically shares the same
semantic language used in matita, support for numbers is hard-coded in the
application and thus it cannot be easily extended. We are currently investigat-
ing a declarative, finite interpretation scheme for numbers in matita, exploiting
the regularity of their encoding in CIC, but it is still not clear whether this
scheme is sufficiently general to make sense in different settings as well.

A major extension that we are considering is support for local notation, that is
notation associated with content level binders that is in effect only in their scope.
Local notation is a frequently asked feature in the formalization of algebraic
theories, where quantification over notational symbols (as in “let � be a binary
operation over. . . ”) is a common mathematical practice. Since local notation
requires an even tighter cooperation between the notational and the content
levels, this could be a challenging test bench for verifying the scalability of our
framework.

References

1. A. A. Adams. Digitisation, representation and formalisation: Digital libraries of
mathematics. In J.H. Davenport A. Asperti, B. Buchberger, editor, Proceedings

3 http://caml.inria.fr/

http://caml.inria.fr/

14 Luca Padovani and Stefano Zacchiroli

of Mathematical Knowledge Management 2003, volume LNCS, 2594, pages 1–16.
Springer-Verlag, 2003.

2. Andrea Asperti, Ferruccio Guidi, Luca Padovani, Claudio Sacerdoti Coen, and
Irene Schena. Mathematical knowledge management in HELM. Annals of Mathe-
matics and Artificial Intelligence, 38(1-3):27–46, May 2003.

3. Lennart Augustsson. Compiling pattern matching. In Jean-Pierre Jouannaud, edi-
tor, FPCA 1985: Functional Programming Languages and Computer Architecture,
Proceedings, volume 201 of LNCS, pages 368–381. Springer-Verlag, 1985.

4. The Coq proof-assistant.
http://coq.inria.fr.

5. M. de Jonge. A pretty-printer for every occasion. In Ian Ferguson, Jonathan
Gray, and Louise Scott, editors, Proceedings of the 2nd International Symposium on
Constructing Software Engineering Tools (CoSET2000), pages 68–77. University
of Wollongong, Australia, June 2000.

6. Fabrice Le Fessant and Luc Maranget. Optimizing pattern-matching. In Pro-
ceedings of the 2001 International Conference on Functional Programming. ACM
Press, 2001.

7. Pietro Di Lena. Generazione automatica di stylesheet per notazione matematica.
Master’s thesis, University of Bologna, 2003.

8. Mathematical Markup Language (MathML) Version 2.0. W3C Recommendation
21 February 2001, http://www.w3.org/TR/MathML2, 2003.

9. The MoWGLI Proposal, HTML version.
http://mowgli.cs.unibo.it/html no frames/project.html.

10. Bill Naylor and Stephen Watt. Meta-stylesheets for the conversion of mathematical
documents into multiple forms. Annals of Mathematics and Artificial Intelligence,
38(1-3):3–25, May 2003.

11. Jan Rekers. Parser Generation for Interactive Environments. PhD thesis, Univer-
sity of Amsterdam, 1992.

12. Claudio Sacerdoti Coen. Mathematical Knowledge Management and Interactive
Theorem Proving. PhD thesis, University of Bologna, 2004. Technical Report
UBLCS 2004-5.

13. Claudio Sacerdoti Coen and Stefano Zacchiroli. Efficient ambiguous parsing of
mathematical formulae. In Andrzej Trybulec Andrea Asperti, Grzegorz Bancerek,
editor, Proceedings of Mathematical Knowledge Management 2004, volume 3119 of
LNCS, pages 347–362. Springer-Verlag, 2004.

14. The OpenMath Society. The OpenMath Standard 2.0.
http://www.openmath.org/standard/om20/omstd20html-0.xml, June 2004.

15. Benjamin Werner. Une Théorie des Constructions Inductives. PhD thesis, Uni-
versité Paris VII, May 1994.

16. XSL Transformations (XSLT). Version 1.0. W3C Recommendation, 16 November
1999, http://www.w3.org/TR/xslt.

http://coq.inria.fr
http://www.w3.org/TR/MathML2
http://mowgli.cs.unibo.it/html_no_frames/project.html
http://www.openmath.org/standard/om20/omstd20html-0.xml
http://www.w3.org/TR/xslt

	From notation to semantics: there and back again

