Where are your Manners?
Sharing Best Community Practices in the Web 2.0

Angelo Di lorio Davide Rossi
Department of Computer Department of Computer
Science Science

University of Bologna
Mura Anteo Zamboni 7
40127 Bologna, ITALY

+390512094871

diiorio@cs.unibo.it

University of Bologna
Mura Anteo Zamboni 7
40127 Bologna, ITALY

+390512094978

rossi@cs.unibo.it

ABSTRACT

The Web 2.0 fosters the creation of communitiesoffgring
users a wide array of social software tools. Wtiike success of
these tools is based on their ability to supporffedint
interaction patterns among users by imposing adifeitations
as possible, the communities they support are neet éf rules
(just think about the posting rules in a commufigisum or the
editing rules in a thematic wiki).

In this paper we propose a framework for the slgadh best
community practices in the form of a (potentiallylerbased)
annotation layer that can be integrated with existiVeb 2.0
community tools (with specific focus on wikis).

This solution is characterized by minimal intrusiess and
plays nicely within the open spirit of the Web 2y providing
users with behavioral hints rather than by enfaydine strict
adherence to a set of rules.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and
Software - World Wide Web (WWW)J.4 [BSocial and
behavioral sciences] — Sociology.

General Terms
Languages

Keywords
Web personalization,
validation.

web annotations, best-pragtice

Permission to make digital or hardpies of all or part of this work f
personal or classroom use is granted without feeiged that copie
are not made or distributed for profit or commdreidvantage and tt
copies bear this notice and the full citation oa finst page. To cof
otherwise, or republish, to post on servers or tostetiute to lists
requires prior specific permission and/or a fee.

SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.

Copyright 2009 ACM 978-1-60558-166-8/09/03...$5.00.

Fabio Vitali Stefano Zacchiroli
Department of Computer Laboratoire PPS
Science

Université Paris Diderot
UMR 7126

175 Rue du Chevaleret,

75013 Paris, FRANCE

University of Bologna
Mura Anteo Zamboni 7
40127 Bologna, ITALY

+390512094872

fabio@cs.unibo.it zack@pps.jussieu.fr

1. INTRODUCTION

The social software tools of the Web 2.0 [4B]ogs, wikis,
forums, folksonomies, ...) have fostered the cosatf many
web-based organizations by offering groups of uadbssic set
of community-building tools. Since those tools ta®geting the
wider possible audience, they do not assume anyifgpe
organizational structure, thus promoting “emergent
coordination”, i.e., the dynamic shaping of an migational
structure out of the usual practices of a community

As time passes, these tools, originally conceivedstipport
bazaar-like organizations (wikis, for example, habeen
originally designed to support software developnteatns), are
drawing more and more interest from cathedral-like
organizations (as is the case of Enterprise 2.6), Af course,

of anything in the between.

In this context we see the rise of new requiremegitged to the
rules of the specific organizations. After all, eveon-structured
organizations have rules (possibly “soft” rulesclsias best
practices). A community forum may have posting sula
thematic wiki may have formatting rules, and so Of.course
most of the times, these rules are checked by aahueviewer
(or moderator, or editor) since they are contelated rules
(e.g., “avoid political content”, “do not post camhted

material”, etc.), but other times the rules aratesl to structure
("do not post images larger than X”, “always incudhe

abstract at the beginning of the document”, etn.}his second
case it would be beneficial to use some automatai for

checking the adherence of the published contentstheo
organization's rules.

The obvious solution to this problem is extendihg existing
tools to enforce the adherence to the organizatités. But, in
a Web 2.0 context, this solution has several drakdaFirst of
all, even when the tools' sources are availablecfwis often the
case since most social software tools are operce@aftware)
it makes little sense to create an organizatiomifipebranch
enforcing the local rules, as this would mean logghe chance
to integrate all future fixes and updates of thdtvsre.
Moreover, most Web 2.0 tools are not run by theapization
itself but are often made available as servicesnfrother

providers (such as yahoo groups, Google docs an@dn3p
following the software-as-a-service approach (whglintegral
part of the Web 2.0 philosophy). In all these casesdifying
the tools' code is not an option.

But, asmashups(i.e., mixing existing services to create new
ones) andayered servicegi.e., services that make use of other
available services, like a meta-search engine) smaodifying
the code is not the only way to personalize theabie of social
software tools.

In this paper we present a framework for supportthg
application of the best practices of an organizaty layering
on top of existing social software tools a ruledtieg service
that can help the members of the community. Thiistiem does
not enforce the users to meet the rules but raitherway that is
consistent with the “open approach” of the Web &.%; based
on dynamic annotations that highlight the suspisicantent,
allowing the user to fix it at a later time.

Since best practices can be shared among differganizations

and actors engaged in different roles within themesa
organization can have interest in a different setrues, a

relevant feature of this framework is the ability ach single
user to activate a specific set of rules amonghay different

ones that can be shared across different orgamizati

This paper is structured as follows: Section 2 #tigates
scenarios where users would benefit from automaincl
customized annotations of web content, focusing vokis;
Section 3 introduces our rule-based solution anspeoes it
with similar approaches; Section 4 discusses imetgations
issues, while Section 5 presents some related works

2. THE NEED FOR EXTERNALIZED AND
PERSONALIZED CONTENT

While some community-specific best practices cannbigher
enforced nor checked automatically, many others. Cere
framework we are proposing focuses on the latt@ssds, and
deliberately avoids to enforce them, rather enagbtim verify
them, pointing out where they have been violataat. fOcus are
wikis, the ingredient of Web 2.0 representing theren
communitarian evolution of content management syste
(CMSs), even though our framework can be extendedther
CMSs, including blogs. With wikis however, yet amet reason
for not enforcing community best practices existing so
would sensibly diminish the editing freedom andeeafaccess
of contributors, which is one of the key ingrediefthe success
of wikis. In many communities, members would prefentent
contributions violating the best practices (whidmde made
compliant in a second moment, possibly by a differe
contributor), than no contribution at all. The ioptsuggested
and embraced in this paper, is to give the contmiball the
appropriate feedback related to best-practice titia, so that
they are easily spotted and are more likely toroenptly fixed.

Note that strict enforcement of best-practicestii$ gossible,
with few modifications, in our approach (basicalle would
need to change the wiki workflow preventing uservssave
invalid pages; the same verification would be penfed by the
same components, called validators, we envisionedthie
current architecture). On the other hand, we styobglieve

suchlight enforcement must be preserved. Any strong enfgrcin
process, although useful in many contexts, wouktodi the
nature itself of a wiki. In that case, if we realyeedhard-
constraints we prefer to use a “traditional” and more corigol
CMS.

Several use cases of automatically checkable bastiges on
wiki content can be made. One of the simplest rifyieg that

pages representing conceptually similar entities.,(instances
of the same class in an ontology) have similarcstine, such as
verifying whether all pages in Wikipedia about ctrigs, or

music records, or animal species, conform to a comgiven

structure. Frequently, small software-oriented wikshow
similar situations: pages describing software dea bug
reports, feature requests, plugins, may be bettsd uif

conforming to a common structure. Manually checkiitg
quickly becomes tedious and benefit from automation

Large wiki deployments such as Wikipedia have stengnical
solutions to these kind of problems by the mearfunttional
templates [4]. Such a solution is on the one haod t
constraining for users (it is quite a task to corapthe actual
page markup with the rendered page), and on trex ¢tis only
offers a mitigation of the problem, since therents way, for
example, to force all users to use the same templatto
properly set all the fields of a template.

The analogy with templates brings to a generabratf the
above use case, in which (at least parts) of theretk best
practices can be encoded as templates (pages imikh#self)
with editing holes to be filled when instantiatititte template.
What is desirable in such cases is that templastanmces,
usually created by copying and pasting the raw tat@ago new
pages, do not diverge “too much” from the origingttemplate.
“Too much” is usually defined as only allowing iastes to
provide content for the editing holes, without nfgidig other
parts of the markup. Such checks, not possiblé¢site ©f the art
wikis, can be externalized and implemented using ou
framework, where users visiting instances can bgfiemd of
excessive dissimilarities between the page theylaoking at
and its original purpose (embodied by its template)

A more complex use case is even more interestitigarcontext
of this paper: the handling of source code snipjpetschnical
wikis. While at first glance it can seem a narrose €ase, there
are several reason to reason about it. The firasom is
historical, since the first wiki was in fact medntshare code
shippets for software enginering/design purpos8$; [@e want
to show how the initial wiki purposes can be immdvby
automatically checking best-practice applications.

The second reason is an observation about thentutiféusion

of wikis, which is almost ubiquitous in support atadk sites
about software and software projects. The third famal reason

is that also large, non-technical, general-purpeiés such as
Wikipedia have some support for source code snippeost of
the time in the form of syntax highlighting. Codeippets are
often tagged as such, with also a declaration oé th
implementation language, to benefit of ad-hoc layupport.

Currently, support for source code snippets is Bimp
presentational: we find syntax highlight, and feypeset, and

no additional checks on their quality or uniformitjth other
shippets of the very same wiki. Our framework woethdble:

¢ Coding guidelinesMost languages have style guidelines that

ease basic reading (indentation, naming conventignwhich

are not enforced by compilers, but considered geigle by

competent programmers. Using our framework the conity

can provide checkers for adherence to styling dimes, both
for language-wide guidelines and for community-$iec
guidelines (e.g., for the community of developefs single
big open source project)

« Syntactic correctnessUsage examples for libraries are a
common use case of code snippets on the web amdkin
Usually there is no guarantee that a given snipiset
syntactically correct, as at best wiki engines qrenf syntax
highlighting which is usually based on coarse-gedin
language grammars. With our framework, user comtiami
can define their own syntactic checkers (possilyipligging
into real-life compilers) and have on-the-fly synta
verification of code snippets as soon as the pagead. Even
though this kind of checks would mark as invalig asample
of code shorthand and placeholders (such as “.hi§ would
be a minor issue in the handling of correct chegkiand
special code would be implementable to skip them.

code checking even further. Knowing for examplet ttiee
snippets are meant to be used with a given langaage
library, the external checker can actually commled run
snippets (of course in a sandbox, for obvious sgcur
reasons), pointing out directly on the page anpseti that is
somehow broken. This would not only help the caseatier
in avoiding losses of time with non-functional tesises, but
also help the page maintainer to spot which codgkss have
been recently broken (e.g., due to software re®amsd need
to be fixed.

Strong analogies can be found between this specifse and
any other scenario where users are interested @étkoig
multiple and heterogeneous requirements over acuiktent. A
point is crucial: the verification process is notant to be
embedded and shared by all the wiki users, butiregjto be
personalized and computed on-the-fy when a givagepis
accessed.

3.RU ANNOTATIONS: EXTERNALIZED
PERSONALIZATION FOR WEB 20
CONTENT

It is not difficult to implement a wiki supportingultiple access
policies to the same content. In fact, some toltsady provide
such feature (such as Twiki [16]) or plan to supjitorery soon.
That kind of personalization is hard-coded in thiiitself:

users have to be registered and associated toea giwfile for
accessing the personalized content, wiki pages havée
properly marked-up and obviously the

personalization has to be part of the wiki engiogec

On the other hand, our goal is to help users getemo
functionality on the content they generate withinterfering
with the original wiki workflow. The wiki remains gassive”
content management system, whose users are unaivahe

Testing.Specific development communities can push snippet

support for

external personalization proce&xternalized personalizatiois
then a first keyword to describe our approach.

Different types of externalized personalizationcan be
envisioned: personalized content can be a compleiéferent
resource obtained by transforming the original aea filtered
record of information items derived by removing frefevant
data; or even a version of the original contentosaiied with
some extra data.

We are particularly interested in the last categtivgt of adding
new data asnnotationson the original content of the resource.
Before going into details of our approach, let lmrify the
meaning of the word “content” in this setting. Heteneous
“content” in fact exists in the Web 2.0 era, delac through
heterogeneous platforms (from text to images, fesrimations
to videos). Although we focus on “textual conterfitaowiki
page”, considering wikis as the most representatiw flexible
authoring systems in the Web 2.0 panorama, ouysisatan be
directly extended to blogs or similar systems. Eh&gstems are
in fact characterized by an open editing approahlthvallows
users to freely and easily edit textual contentve¥ineless, it is
not difficult to extend our ideas to systems danliwith
“structured textual content” like address books Andkmarks.
In that case, it would be even easier to add atinos since the
automatic annotation process would run on wellrofi data
structures. An interesting difference exist betwedert and
multimedia: annotating multimedia content wouldjuie to
use specific tools and techniques dealing with imeldia
metadata and encoding. Nevertheless the archieectue
propose, based on decoupling the verification amdotation
processes, can be generalized to manage such tdoten
However, annotations on multimedia content areenily out of
the scope of our research.

3.1 Rule-based, User-defined Annotations

We are instead interested in adding new da@nastationson
the textual content of a web page. In particularm, goal is to
provide users the support fautomatically annotated content
The basic idea is to let users to “declare” a $graperties they
want to verify on some content or a set of filtdiey want to
apply. The annotated page is the result of a cemmprocess,
where annotations are not created manually by atugerather,
by an automatic agent processing the user’s déidasaon the
input page. Such declarations do not have to bedddd in the
source code of a page but can be retrieved an@égsed on-the-
fly when accessing that page. Moreover annotaticers be
strictly personal, or shared by a group or by thbeole
community.

These considerations lead us to design an ideadbrcontent
annotations we calle®RU Annotations expanded in “Rule-
based, User-defined Annotations”.

In the scenario we envision, each user defines toleerify and
filter wiki pages and dynamically associates thades to the
accessed pages. Whenever a page is displayedssbeiated
rules are processed over its content by invokisgexific agent.
The result of this process is merged with the oaficontent
and displayed in the browser. Note that the origitentent
remains unmodified in the origin server, while gsaccess a
personalized and automatically annotated view aff pfage.

It is evident that technical issues have to be esk#d to
implement such a solution. The most important wik
investigated in Section 4. Here we want to higtligome
additional advantages &U Annotationseyond the use cases
discussed before:

» Content filters nowadays work on full pages (or revall
sites), and pretty legitimate documents, postoarments are
not accessed because of the unfortunate use ofjke svord
within it. RU Annotations could prevent the singlfending
string to be displayed, while the full message \ostill be
readable.

Disabled users trying to read through non-accessiages
often discover their impossibility to read throutjleir content
halfway through the page. RU Annotations could mev
immediate feedback on the accessibility level efitidividual

resource, leaving the user decide whether to coatieading
or not.

Automatic reputation evaluators could be constdiaia top
of web resources without changing a single bytethair
content. As such, unreliable, badly-reputed orgkircontent
could be therefore correctly annotated by usersintetested
in fringe communities or unverified assertions.

3.2 From annotated view to RU annotated
view

RU Annotationsare strongly connected with the analysis of the

wiki editing process and in particular of the winnotations
presented in [1]. Authors first introduced the ogpicof wiki
ANNOTATED VIEW to indicate the possibility of disgying a
wiki page enriched with some extra-information whigre not
directly written by the author but dynamically addsy the wiki
engine when rendering that page. These annotationd not
prevent the wiki users to create the resources, vbould
constitute a continuous feedback with regard topireeived or
computable “correctness” of the content accordiagatcally
specified rules. These extra information were dalféight
Constraints” (olLC Annotation¥ since they would not obstacle
any wiki-specific activity, but just add to the sotber
functioning of the system.

The “externalization” and “user-based customizdtiof such
operation leads us to shape the concept of “Rutedaser-
defined Annotations”. Let us briefly compare RU Atations
with LC Annotations.

The operation of ANNOTATED VIEW (and the
CONDITIONAL SAVE, i.e., saving content only afteenfying
some of its properties) came with the idea of LiGnstraint
Wikis. A Light-Constraint wiki is an enhanced wikianaging
constraints over the wiki content and allowing sger (i) define
rules and constraints which should be verified loat tontent,
(i) view annotated pages with detailed report ouchs
verification process, and (iii) verify content befesaving it.

Explicit and implicit constraints exist in the wikiontext too,
although wikis seem to be completely free and opeor

instance, wiki authors frequently need to creats s¢ pages
with the same structure (like pages for coursefépemrs in a
university wiki), or need to write correct in-lifeagments in a
non-wiki language (like MathML or LaTeX formulas,high

must be correct), or need to keep consistent datatsres in

multiple wiki pages (like in the lists used in cected
Wikipedia pages) and so on. On the other hand,swikive to
keep their completely open and free editing modélus, an
interesting question arises: is it possible tograée some form
of constraints in the free wiki editing process?

The ‘light-constraint§ approach relies on encoding these
requirements as soft constraints that can be ¢teaify or not)
violated, without inhibiting proper wiki runtime bavior. The
idea is to let authors to declare constraints ain gege and to
provide users a detailed report on the constrawesification
process, when displaying or saving that page. ®yegoint is
the lightness of such constraints, which can \edifbut also
ignored by users: light-constraints do not distartveaken the
wiki workflow. A general architecture, adaptable ddferent
wiki implementations, can be instantiated to mandght-
constraints. It relies on a strong distinction kesw the actual
wiki engine and a set of modules, in charge offyierg the
respect of light constraints associated to the gadéese
modules are calledvalidators and envisioned as internal
processes or external services or pluggable sulpapents.
The introduction of Light-constraints and validatdransforms
the basic VIEW operation into an ANNOTATED VIEW.

The validation report is clearly visible and sepedafrom the
original content. This is a first important featdhat makes LC
and RU annotations very similar: both these apgres@dd an
extra-layer to the original content. This layernet directly

created while authoring the page, rather it is ptiooal and
separated resource added on-the-fly. It does nainntaat
annotations are necessarily appended at the etiek gfage. On
the contrary, reports can be “localized”, i.e., posed of
textual messages bounded to particular charaatethe wiki

markup in order to be easier to spot and fix.

The second important point is that both these agres only
manage “light” constraints: in fact annotations calso be
deactivated and ignored by the users. The presefncthe
aforementioned extra-layer does not interfere witie wiki
workflow and, more importantly, does coexist witte tfree and
open wiki editing model. Wiki authors keep on begige to
fully modify the wiki content, without taking caxd validation
and rule-based filtering. These operations willgeeformeda
posterioriin a complete transparent manner.

On the other hand, important differences can béneuat First,
LC and RU annotations differ for the intrusiveneasd
interaction with the wiki workflow. In the LC ardeiture, rules
and constraints are definedpriori during the editing process
and each page directly contains references to #isecated
validators. In the RU scenario, on the contrarjesuand
constraints are applieal posterioriwhen a user accesses a given

page.

Second, LC annotations are displayed wheneverengiage is
accessed and all users view the same annotationtheélother
hand, RU annotations are personalized and displagdwhen
a given user accesses that page. Different viedsaanotations
can be applied to the same page, and differentsusam be
unaware of the constraints and rules of others.

These differences derive from the nature and sodgeC and
RU annotations. The first ones are meant to encodstraints

shared by the whole community and implicitly deysdd during
the authoring process. They are particularly uskfulerifying
the intrinsic quality of the wiki content and ligrtenforce the
fulfillment of community-based and content-baseglireements.
On the other side, RU annotations are particulasigful when
the validation process does not involve all theiwigers, or
needs to encode some specific sub-community bastipes.

Moreover RU annotations do not require users to ezimb
validation information within the code of a pagedaallows
users to also annotate wiki site they are notledtito modify.

As happened for early hypermedia systems [5] or web

annotation projects [6] even read-only resources te
annotated since the annotations are stored exterral
computed on-the-fly.

The possibility of sharing annotations is anothemp worth
being discussed. It is easy to envision policigsréalucing the
visibility of some LC annotations to subgroups: ls@pproach
requires important modifications to the code of thki

platform. On the other hand, RU annotations carstzred by
simply sharing the rules generating them, and gimaged
policies can be supported without impacting thei wilde.

Finally, LC or RU differ from the implementation ngpective.
LC annotations require implementers to modify thierinals of
the wiki while RU annotations are not intrusiveadit On the
other hand, the first approach is a bit easieretdntplemented
having full control on the internal modules of thiki.

4. FROM DESIGN TO IMPLEMENTATION
Several alternative possibilities exist to impleinére proposed
framework. In this section we analyze these altéres,
outlining the technical solutions to support themgd present a
proof-of-concept implementation based on a proxhigecture.

4.1 Global architecture, validators, and rules:
basic design issues

One of the first choices that have to be made lstae to the
overall architecture of the system. Regardless hef actual
implementation of each component, our architecttaa be
generalized as in fig. 1.

The *Net
I I
J
The Web

A
0

FE T
’
7

/ -
’ "Firing”
’ selection
1
1
!

[

I

]

|

|

\ Annotator
I

A
\

i Request Request [h
Browser B

p' = p + annotation

il

Fig 1: Theoverall architecturefor RU Annotations

The user interacts with a common web browser arrthalty
requests a page, by typing a URL or following & lifhat page

is retrieved (unmodified from its origin server)daannotated by
an intermediate component we call “Annotator”. Brenotator

includes a module firing rules (associated with tHeL) and a
validation agent checking the content against thrakes. Once
annotations are merged into the original pagefitia result is

returned to the user.

Many architectural issues arise from this scendficst of all,
we need to clarify the position of the Annotatdre(dashed line
in the picture indicates the fact that such comporis not
strictly required to be in the browser). Two sabag are
possible: a man-in-the-middle approach, and a th&te
approach. The man-in-the-middle approach can bé&mgnted
by using a filtering proxy (possibly a personalrohosted in
the client's machine) or with a special web apgiicaacting as
a reverse proxy. Obviously the first solution isrsntransparent
(users behave like they are connecting directhy wlite origin
server) but is more intrusive (users have to chatiye
preferences of their browsers in order to use ttoxy). The
client-processing approach can also be implemeniéud two
main techniques: bookmarklets and browser extession
Bookmarklets are the least intrusive solution. Tlieljow a
distinct opt-in approach, in which users have tliekly
activate the bookmarklet in order to add the artiona to the
presented document. Browser extensions are motiblée they
can run either transparently or on-demand and Hawer
limitations with respect to bookmarklets. Obviougigy require
a supported browser and have to be installed (bstcan be a
matter of just few clicks).

Another relevant question is related to the valatatagent:
where is it hosted? Also in this case we have wiffe possible
solutions: is the agent remote or is it runningttie client's
machine? Furthermore: a local agent, in a cliet-girocessing
scenario, can be integrated inside the bookmaextethsion or
can run as a separate software component. Cortigtetin any
case, the agent has to access the shared rulétoeposhich is
an essential requirement in our approach. It mighta public
repository or an intranet resource. Also consideat tan
implementation could support several validationragie

A last issue is related to the validation agentw hdoes it
operate? Users subscribe some of the rules fromshiaeed
repository. A rule is characterized by a firing tpéused to
decide if the rule applies to the current documang an active
part (in which the document is analyzed and pogstbe
annotations are produced). The rule-checking abastto fire
all the relevant subscribed rules and return thmtations to the
caller, which is responsible for alayering themtloa page.

Several techniques can be used to implement betfirthg part
and the active part. A simple approach is to usettfe firing
part, regular expressions that match the URL ofdbeument
and/or XPath expressions that match its contenBL.TXs the
more straightforward solution for the active pats stated
above it is well possible that several agents, dasedifferent
technologies, exist in the same implementationidgathat the
ability to express complex, semantic rules witts thpproach is
strongly dependent on the semantic annotationsidied in the
document. Our solution, in fact, operates on thspldiyed
document, not on an intermediate format (the oneaged by
the wiki engine, that is later transformed in HTML) is then
essential that the semantic information availatwenfwithin the

system emerges also in the HTML page; this is noasible
with the adoption of techniques like microforma2$ ¢r RDFa

[3].

An orthogonal aspect is the language used to exphesactive
part, which has to check the document and anndtatith the

outcome. While several interesting trade-off, e.ghout

usability, have been previously discussed regarttindanguage
choice [1], we observe that such a choice is indéeet from
the overall framework architecture. We plan to eipent with

a wide range of languages (from the implementdtdoguage of
the wiki engines themselves, to ontological langsagvhere
semantic wikis can be assumed), the actual chsioatside the
scope of the present work.

4.2 A proof-of concept-implementation

It is clear that several options exist for the iempéntation of the
proposed framework. All have pros and cons, theyeha be
evaluated with respect to the specific context ihiclw the
solution has to be deployed (Is it possible to emsthat all the
members of the community use a specific browser? @a ask
them to install a software package in their computeo we
prefer an opt-in approach?). We experimentally engnted a
proxy-based solution (modifying an existing filtegi proxy we
developed for another project) in which the chegkament is
integrated with the proxy and accesses a simplad-oaly,

remote shared rules repository (with rules basedherregular
expressions/XPath and XSLT approach hinted abdve.rules
are used to check a wiki page with respect to fiigiral

template (similarly to the example given in sectidn This

proof-of-concept implementation showed that oumteavork

can be easily instantiated. The full potential bé tsystem,
however, can be reached only by defining mechantsnshare
the rules in the repository (or repositories).

5. RELATED WORKS

The external annotations of web content are not irevihe
literature. A lot of systems have been presenteti@arhypertexts
and hypermedia community since the early days efMhWW.
The very first browser NCSA Mosaic [15] allowed rsseo
created personal and locally stored annotationedéb pages.
Later, researchers focused on the possibility afiragl external
annotations too: personal notes were stored onrrefte
linkbases and added on the fly to any web page. Arlagne
framework [5], for instance, provided users a pdwednterface
to add annotations and links to any web page.

Standard languages have also been proposed iffietliis The
Annotea project [6] is a W3C effort to standardize process of
creation, retrieving and dissemination of exteraamhotations
based on RDF but easily extensible. Although powekhnotea
implementations exist, the protocol did not succag@xpected.
Similary, XLink is a very powerful W3C standard fadvanced
XML linking which also allows users to express emgtd
annotations and comments. As example, XLinkProxyig7a
proxy-based application which support users in @iy
external XLink annotations and dynamically adds séhe
annotations to web pages.

More recently, annotations are gaining great ingrareé in the
Web 2.0 scenario. For instance, Diigo [8] is a pdul
knowledge platform allowing users to share theimow@nt on

any web page. Users are required to join the Digomunity, a
toolbar can easily be installed to their browsed @upports
them during the annotations authoring, searchircatliecting
process. A similar approach is implemented by Stogoe [12],
whose website allows users to download a multi-lsesvtoolbar
for external annotations. Thousands of other welsb6ial
annotation tools could have been listed here, akeld on
Javascript and DOM manipulations. Most of them are
specialized for specific purposes like WizLite [1@]lored for
text-fragment highlighting, or Trailfire [18] fornmotating and
sharing customized path among different web pages o
GoogleNotebook [19] to collect data while surfinige tweb
using a powerful tool in the Google framework.

All these systems support users in ti@nualannotation of web
content and allowing surfers to highlight fragmearsd add
localized and sticky notes. On the other hand, Rbotations
are generated by a verification process: users olelglare
properties and constraints to be satisfied anduéonzatic agent
produces the final output.

The automatic extraction of information from webgpa has
also been widely researched. In [13] authors pregas exploit
visual clues and similarities among different pagesrder to
re-build the logical structure of a web page. Samilayout-
based approaches are opposed to the DOM-basedsianaly
techniques, which exploits the automatic recognitié patterns
in the HTML organization of a web page. In [14] faurts
presented a tool which highlights the role of ealgment in a
web page through a pre-filtering phase in chargeebécting
images, objects, links, logos and a post-filteagds in charge
of interpreting chunks of text and structured data.

Tools for automatic analysis of web content haveo abeen
developed by the researchers interested in craveleds RSS
harvesters and aggregators. They are mainly baséeuaristics
and statistical analysis but cannot be fully désaihere due to
the space limits of this paper. All these solutionplement very
powerful and general techniques working on differeontent.

On the other hand, RU annotations are targeted speaific

context so that more precise results can be adhi@vethe

automatic analysis phase.

All these efforts share a common background with RU
annotations: the need of integrating multiple artefogeneous
sources of information through a post-processingr@geh. In
[20] authors propose to automatically create arfdn of Web
2.0 websites by exploiting multiple tagging and the-fly
analysis of content. Similarly [21] presented a |tdo
automatically extract annotations from web pages antline
semantic relations between content-related padédsough their
approaches are mainly focused on metadata, thdeetsef
showed how very heterogeneous web resources cahdoied
and unified by a transparent aratposteriori process as
proposed by RU annotations.

6. CONCLUSIONS

In this paper we have presented a framework toratidbased
annotations to resources that would allow web sites
organizations, users or third party to add autcoratinotations

to wiki resources without interfering with the nahworkflow

of the origin application but that can be used dorthe-fly

decisions about the content or the validity orappropriateness
of the page before displaying it.

We envision scenarios in which communities sharewtedge

about their best practices in the form of a sethaifred rules that
each user can independently decide to subscribeabe of
their personal interests or because of the rolg piay in the

organization since it is well possible that useithwdifferent

roles are interested in checking different bestciizas). By

setting an option in their browser (when using esiens or a
filtering proxy) or by clicking a button (to actite a

bookmarklet) the users can ask the system to chbek
subscribed rules and annotations are layered onh®gurrent
document when violations occur.

7. REFERENCES

[1] Di lorio, A., Zacchiroli, S. “Constrained wiki: an
oxymoron?” In WikiSym '06: Proceedings of the 2006
international symposium on Wikislew York, NY, USA.
ACM Press, pp. 89-98.

[2] Khare, R. “Microformats: The next (small) thing ¢ime
semantic web?1EEE Internet Computingl0 (1), 68-75,
2006.

[3] Adida, B. and Birbeck, M. “RDFa primer: embedding
structured data in web pages”. W3C Working Draft 17
March 2008, http://www.w3.org/TR/xhtml-rdfa-primer/

[4] Di lorio, A., Vitali, F., and Zacchiroli, S. “Wikicontent
templating”. In WWW2008: Proceedings of the 17th
International World Wide Web Conferen®&eijing, China,
pp. 615-624.

[5] Bouvin N. O. Unifying strategies for Web augmerdati
Proceedings of ACM Hypertext'9p 91-100, 1999.

[6] Kahan J., Koivunen M., Prud'Hommeaux E., and SWck
“Annotea: An open RDF infrastructure for shared Web
annotations”.Proceedings of the WWW10, International
ConferenceHong Kong, 2001.

[7] Ciancarini P., Folli F., Rossi D. and Vitali F. "XikProxy:
external linkbases with XLink". IRroceedings of the 2002
ACM symposium on Document Engineeriadited by
ACM Press, 2002, p. 57-65.

[8] Tsai, M. “Diigo - Highlight and Share the Web”,
http://www.diigo.com

[9] Di lorio A., Montemari G., Vitali F. "Beyond proxe
XLink support in the browser". In theroceedings of ITA
05, Wrexham, North Wales (UK), 2005.

[10] Shanks, B. 2006. WikiGateway: a toolbox for making
software that reads and writes Wikis.Rroceedings of the
2006 international Symposium on Wiki¢Odense,
Denmark, August 21 - 23, 2006). WikiSym '06. ACMVeW
York, NY, 139-140.

[11] Markus Krotzsch, Denny Vrandecic, Max Volkel, Heiko
Haller, Rudi Studer, “Semantic Wikipedia”, fournal of
Web Semantics 5/200@p. 251-261. Elsevier 2007.

[12] Weigend AS., Canter M.,
annotate&collaborate on any
http://sharedcopy.com/

“Sharedcopy:
webpage”

[13] Burget, R. 2007. Layout Based Information Extrattio
from HTML Documents. InProceedings of the Ninth
international Conference on Document Analysis and
Recognition (ICDAR 2007) Vol 2 - Volume (Bptember
23 - 26, 2007). ICDAR. IEEE Computer Society,
Washington, DC, 624-628.

[14] Gupta, S., Kaiser, G., Neistadt, D., and Grimm2603.
DOM-based content extraction of HTML documents. In
Proceedings of the 12th international Conferencé\orld
Wide Wel{Budapest, Hungary, May 20 - 24, 2003). WWW
'03.

[15] Andreessen M., Bina E. “NCSA Mosaic: A Global
Hypermedia System”. Internet Research: Electronic
Networking Applications and Policyol. 4(1), pp. 7-17,
1994.

[16] Thoeny, P. “TWiki: Enterprise Colaboration Platfdrm
http://twiki.org

[17] Kirk, A. “Collaborative Page Highlighting”,
http://wizlite.com/

[18] O'Halloran J., Ferrel, P. “Trailfire”,
http://www.trailfire.com/

[19] Google, “Google Notebook”,

http://www.google.com/notebook

[20] lturrioz J., Diaz O., and Arellano C.. “Towards éedted
web2.0 sites: The tagmas approach”. Tagging and
Metadata for Social Information Organization Workgh
WWWO07 2007.

[21] Chirita, P., Costache, S., Nejdl, W., and Handsclsih
2007. P-TAG: large scale automatic generation of
personalized annotation tags for the welPtaceedings of
the 16th international Conference on World Wide Web
(Banff, Alberta, Canada, May 08 - 12, 2007). WWW.'0
ACM, New York, NY, 845-854.

[22] O'Reilly, T. (2007). What is web 2.0: Design patiernd
business models for the next generation of software
Communications and Strategjeb(1), 17-38.

[23] B. Leuf and W. CunninghamThe Wiki Way: Quick
Collaboration on the WebAddison-Wesley Professional,
pap/cdr edition, Apr. 2001.

