
Content Cloaking: Preserving Privacy with Google Docs
and other Web Applications

Gabriele D’Angelo
Dept. of Computer Science
University of Bologna, ITALY

gda@cs.unibo.it

Fabio Vitali
Dept. of Computer Science
University of Bologna, ITALY

fabio@cs.unibo.it

Stefano Zacchiroli
∗

PPS, Université Paris Diderot
UMR 7126, FRANCE

zack@pps.jussieu.fr

ABSTRACT
Web office suites such as Google Docs offer unparalleled
collaboration experiences in terms of low software require-
ments, ease of use, data ubiquity, and availability. When
the data holder (Google, Microsoft, etc.) is not perceived
as trusted though, those benefits are considered at stake
with important privacy requirements. Content cloaking is
a lightweight, cryptographic, client-side solution to protect
content from data holders while using web office suites and
other “Web 2.0”, AJAX-based, collaborative applications.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—World Wide Web (WWW); K.4.1 [Computers
and Society]: Public Policy Issues—Privacy

General Terms
Design, Security

Keywords
Privacy, Web 2.0, Google Docs, AJAX

1. INTRODUCTION
Online (or Web) office suites are web applications that

are becoming more and more popular. Collaboration on
common office artifacts (e.g. text documents, spreadsheets,
etc.) is at present easily available to everyone equipped with
a commodity web browser. Google Docs [18] is a peculiar
example of such web office suites and aims at providing a
full online replacement for legacy desktop applications, such
as Open Office and Microsoft Office. The number of alter-
natives to Google Docs is also growing (Office Live, IWork,
Zoho, OpenGoo, etc.), paving the way to further diffusion
of such web applications.

∗Partially supported by the European Community FP7,
MANCOOSI project, grant agreement n. 214898

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

Technically, web office suites are based on AJAX [9], the
main technical ingredient of the so called Web 2.0 [15].
AJAX provides a framework to implement rich web applica-
tions by composing together technologies readily available
in web browsers. In spite of its ground breaking effects
on web usage, AJAX is rather simple. A web page is ini-
tially loaded as with traditional web applications. Then,
user actions on visual elements (links, forms, text, etc.) are
intercepted to trigger JavaScript callback functions. The
effects of those callbacks, which usually implement the ap-
plication logic, are shown by in-place modifications of the
page, through a manipulation of the corresponding DOM
tree. When interaction with the server-side logic is needed
(e.g. to fetch additional data unpredicted by the initial page
load), the data actually transferred is limited to whatever
relevant fragment of content needs to be updated and usu-
ally the application makes use of significantly compact data
encoding, such as JSON [6]. The main advantage offered by
AJAX is its potentiality to improve the user experience by
increasing application responsiveness (a well-known require-
ment for proper usability). That alone does not justify the
relevance of web office suites over their legacy counterparts;
a few additional advantages that justify their relevance can
be summarized as follows:

• Low software requirements. Web applications are triv-
ial instances of the Software as a Service (SaaS) de-
ployment paradigm [2]. As such, they only rely on
a thin client (the browser) and delegate all software
maintenance tasks, such as upgrade management, to
the software provider (e.g. Google).

• Content ubiquity. SaaS comes with the ability to allow
content access wherever network connectivity and the
required thin client are available. For web applications
such clients, i.e. current generation browsers, are easily
available in every Internet point of the world.

• Content availability. When the web application is of-
fered by mainstream organization such as Google, the
user enjoys reasonable guarantees of content replica-
tion and fault tolerance [10] which can hardly be
matched by legacy software (and hardware).

• Collaboration. Web office suites are very well equipped
for collaboration. Not only they offer access control
mechanisms that enable to invite co-authors and dis-
tinguish among read-only and read-write authors, but
they also offer simultaneous co-authoring capabilities.
Google Docs for instance triggers AJAX updates to

the server every 30 seconds [7], achieving both an in-
triguing “live” user experience and low conflict like-
lihood (due to the small size of content chunks which
get updated). Another kind of collaboration offered by
web office suites is publishing, which consists in making
content available as public web pages. This capability
simplifies the publishing work flow of traditional office
suites by removing the extra “upload” step.

• Versioning. Given the sheer size of storage resources
available to SaaS providers, web office suites are able
to offer versioning and unlimited rollback capabilities.

What is the price to pay for all these advantages? Usually it
is not monetary, but rather it implies a fundamental loss of
control over content that users believe to own. The content
is no longer confined to the user file system and its access
control lists cannot protect it from the software provider.
The only offered guarantee is the provider privacy policy,
which is clearly no silver bullet as long as control has to
be handed over. More precisely, the problem is not the ex-
istence of a trade-off between offered features and privacy
risks, but rather that users are faced with an all-or-nothing
proposition: either they enjoy all of the above features and
accept whatever privacy policy is offered (additionally need-
ing to trust the provider not to violate it. . .) or they enjoy
no features whatsoever. The issue is exacerbated by the
practice of changing privacy policies over time—which en-
tails other all-or-nothing choices: either the user accepts the
new terms or she is “free” to renounce to the service—hereby
hindering making long term commitments to a given web
application whenever privacy issues are a concern.

This paper presents a client-side solution that enables
users to retain control over their content without renouncing
to most of the features offered by AJAX-based web applica-
tions. The solution, called content cloaking (or CoClo for
short), relies on a thin software layer running in the browser
and playing “man in the middle” for content exchanges with
the server. CoClo ensures that each content chunk con-
veyed by AJAX chats gets encrypted as soon as it leaves
the browser and symmetrically gets decrypted while flowing
back in. This way, content stored on the server is not im-
mediately accessible to the service provider and its clients.

CoClo is presented in Section 3, which is preceded by
an overview of related work. Further on, Section 4 details
a proof-of-concept implementation specific to Google Docs.
Section 5 presents several use cases that generalize CoClo
to web applications other than those discussed before.

2. RELATED WORK
Many studies have focused on the privacy risks involved

in web applications and, in general, with the storage of per-
sonal data “in the cloud” [4, 17]. The problem is only par-
tially new as it can be seen as typical of many distributed
systems. Yet, with SaaS scenarios come very new factors
such as the huge amount of data collected by service
providers and the interactive nature of the provided services.
As usual, several different approaches have been proposed to
deal with user concerns about the security retained data.

Focusing on technological solutions, new methods have
been proposed to preserve privacy in web services [16] and
build high-assurance web applications with end-to-end confi-
dentiality and integrity policies [3]. The usage of these meth-
ods in existing web applications however requires a signifi-

cant effort from application providers that are not interested
in losing any control on the data stored on their servers.
Client-side interoperability middleware solutions have been
proposed [12] to cope with untrusted Internet data storage.
While interesting, this approach is not intended to deal with
the actual web applications that provide user interfaces to
the underlying Internet data storage services (e.g. Google
Mail, Google Docs, and Flickr).

Just after our initial efforts [8], Christodorescu proposed
to use opportunistic cryptography to enhance the privacy
of data sent to web servers [5]. That solution shares with
ours the very general idea of encrypting the data stored
on servers; despite that, the two approaches are different.
First of all [5] claims to generically addresses untrusted web
servers without considering specific challenges posed by
AJAX-like scenarios. Furthermore, it proposes to split
“client-side web application display code” from “client-side
web application communication code”without detailing how
to do that: those details can be very specific to the under-
lying technology. In our case, the proposed method is vali-
dated by an implementation that assesses its feasibility for
AJAX applications. Moreover, the goal of [5] is to minimize
the impact of the solution on already-deployed web appli-
cations, in our case the applications are not modified at all.
Finally, we consider different perspectives and applicability.

3. CONTENT CLOAKING
Web office suites, as well as many other web applications,

make users face a binary choice: either using the apps and
hand-over any control on their content, or avoiding using
it entirely. In practice, users have to compare the bene-
fits offered by the application with the risks derived from
the spreading of their information on a cloud architecture
outside their control. The main goal of Content Cloaking
(CoClo) is to weigh in on this trade-off, giving users more
control on their data, while reducing to the bare minimum
the amount of functionalities they need to renounce to. In
particular, the user interface and authoring features should
remain unchanged. It is now appropriate to define more
in detail the terms of the confidentiality problem faced by
users, the main risks can be summarized as follows:

• Unauthorized data retention and aggregation
performed by service providers and data holders. Note
that, in many cases, the privacy policy of online ser-
vices is unable to protect users from these practices,
which constitute the core business of most providers.

• Leak of private data to unauthorized persons or third
parties. The leak could be the resulting effect of delib-
erate commercial activities, managing faults, or even
software bugs (e.g. [11]).

• Third party sniffing of browser-server communications.

• The concrete possibility of unwanted data acquisition
and collection mandated by governments or other au-
thorities (e.g. dictatorships or otherwise non demo-
cratic governments, limitations on civil rights, etc.).

Design.
The above risks are the starting point for the design of

content cloaking. Necessarily, the solution should be client-
side, due to the inherent architecture of web applications:

the storage cloud is user transparent and obviously the pro-
vided services can not be modified. With that in mind, the
choice of user interface is more or less forced as well. While
many web applications provide some Application Program-
ming Interfaces (APIs) to programmatically access and ma-
nipulate data, implementing content cloaking on top of them
would necessitate a change in the user interface and the in-
ability to get the feature improvements that SaaS softwares
frequently release. Hence content cloaking should rely on
existing web interfaces.

The usage of some kind of cryptography is the obvious re-
sponse to the confidentiality request. The standard behav-
ior of web applications is to transfer and store data in clear.
Conversely, for CoClo, as much data as possible should be
transmitted and stored in encrypted form. The generation
of encrypted data on the client implies not only that eaves-
dropping during client-server communication is prevented,
but also that data is actually stored on the server in en-
crypted form, so that not even the service provider can ac-
cess it. Referring again to the previously described risks,
secure protocols (such as Secure Sockets Layer, SSL) could
be used to prevent sniffing. Yet, this solution is only possi-
ble if supported by the AJAX application itself and, in any
case, it would be unable to reduce other risks. Therefore, a
wider use of encryption is necessary: a cryptographic mech-
anism that works with the payload of application messages
and that does not breaks client and server compatibility.

Synthesizing the above design principles and consider-
ing the characteristics of AJAX-based applications, content
cloaking results in an additional thin software layer to be
deployed within the browser. This layer plays a man-in-
the-middle role between client and server, and needs to un-
derstand the application-specific protocol used by the web
application. In detail, it has to detect and recognize the pro-
tocol messages to implement the confidentially mechanism,
and its requirements. From an implementation viewpoint,
this can be accomplished in many ways, the most straight-
forward choice being a browser extension (i.e. a plugin that
allows developers to add functionalities to a web browser).
Let’s consider a realistic scenario in which a user is edit-
ing a document in a web office suite. Each modification
conveyed by a protocol message gets intercepted by the ex-
tension. The payload of the intercepted message is then
encrypted by the extension, and delivered to server side as
a new message. Conversely, during document visualization,
the extension intercepts all messages coming from the server
and decrypts them before client side elaboration (usually in-
volving its rendering on screen). The overall result is that
users use the web application as before, the data holder is
unable to snoop into the stored information and, in case of
data leaks, only encrypted content is released into the wild.

Cryptography.
Focusing on cryptography, many solutions can be used but

a very simple approach is enough to satisfy the anticipated
requirements. In CoClo, a symmetric-key algorithm is used
to encrypt and decrypt all the transmitted data and hence
server storage. In case of single-user editing of documents,
the user defines a new password (i.e. key) each time a new
document is created. Later on, the password can be eas-
ily changed using a specific feature provided by the browser
extension that, in fact, will transparently create a new doc-
ument, encrypt it with the new key, while deleting the old

one. In this single-user case, the key of each document can
be maintained in client local storage.

Multi-user collaboration adds some complications: the key
has to be shared among all users that are allowed to edit or
view the document. Key distribution is a very well known
problem in cryptography, in CoClo it can be effectively
solved using a public-key cryptography scheme. Similarly
to the single-user case, the secret key is defined at docu-
ment creation time, but now it has to be communicated to
all participants. In CoClo, this is done by using the pub-
lic key of each of them, that is by encrypting the password
using the public key of each receiver and storing the result
in a specific online document that is no further encrypted.
This way, each legitimate receiver will be able to obtain the
encrypted password and to decrypt it using her private key.
An alternative approach is to require the usage of an of-
fline delivery mechanism (for example emails). Using this
scheme, the secret password used for the symmetric encryp-
tion algorithm is never transmitted or stored in clear (on
the server). In practice, the described procedure has to be
repeated each time a participant decides to change the docu-
ment password. Moreover, it is worth noting that read-only
users are unable to change the password, given that this
access mechanism provided by the web application remains
unchanged. A final design note is about the usage of public
key cryptography, for our purposes it is possible to use one
of the many available public key infrastructures (such as the
web of trust implemented by the OpenPGP key servers).

Analysis.
Content cloaking satisfies all imposed requirements: con-

tent is protected from unauthorized accesses, from both the
service provider and third parties. The transmission of clear-
text content is avoided also when the web application does
not support secure transmission protocols, and the data ac-
quisition by governments or external authorities is made
much harder. All of this is accomplished while the original
user interface of the web application remains unchanged.
Yet, server-side services that are based on the document
data content are no longer available, since with CoClo the
server has access to encrypted data only. In practice, this
limitation is much less severe than expected. For exam-
ple, with current generation online word processor the main
missing feature is full-text search through multiple docu-
ments. On the other hand, in spreadsheets the situation is
a little worse, given that the most part of the computation
is server-side. In this case, it is not possible to encrypt nu-
merical values, since computation would become impossible
or unreliable, but only the data labels. More precisely, cells
appearing as arguments in other cell functions cannot be en-
crypted while other cells can. On that regard, we observe
that a spreadsheet without text labels is hardly intelligible
by both humans and machines. An alternative, but more
complex and intrusive solution requires to move some part
of the computation on the client.

To conclude the analysis, the success of web office suites
is also due to their very low software requirements (e.g. a
web browser). In CoClo, the software requirements are
higher by little: an extension has to be installed in the
browser. Given the ease of web browser deployment in mod-
ern browsers (a hyperlink to a single file is enough), in our
opinion, this requirement is rather reasonable. From the
computer security viewpoint, CoClo is unable to prevent

Figure 1: SeGoDoc user interface and examples

data leaks due to compromised clients, i.e. clients where lo-
cal vulnerability or social engineering have been exploited
to install back-doors, Trojan horses, or in general to affect
the local security of the system (for example a key-logger).
In the real world, this security problem can not be ignored
but it is neither connected to nor introduced by content
cloaking: the security of web clients (of all clients, in case
of collaborative editing) is a common assumption of most
online applications (e.g. online banking).

4. IMPLEMENTATION
A prototype implementation of CoClo has been devel-

oped as an extension for the Firefox browser. The prototype
is called SeGoDoc (for “Secure Google Docs”) as it imple-
ments content cloaking specifically for Google Docs, and in
particular for its word processor. SeGoDoc’s main interface
is a sidebar, developed as an extension of gDocsBar.1 The
main functionality of gDocsBar, i.e. document browsing, is
left unchanged and login to Google Docs can be performed
directly from the sidebar. The user interface is shown in the
upper part of Figure 1.

Just after login SeGoDoc registers, using the extension
API, two observers to monitor HTTP activity. The ob-
servers know the Google Docs AJAX protocol and recognize
both the request parameters used to send content to the
server (docContents and delta) and the AJAX callbacks
that receive new content for the browser. When receiving
content, the content is first decrypted and then delivered
to the original receiver (the Gecko engine), thus not hin-
dering usual markup rendering. Currently, SeGoDoc only
implements AES [14] (in pure JavaScript), and stores some
meta information about it (such as key length) in mangled
file names to enable content access from different browsers.
Passwords are requested when creating or opening a docu-
ment for the first time, and stored only temporarily in mem-

1http://www.gdocsbar.com

ory. Users missing SeGoDoc, or providing the wrong pass-
word, will simply see (ASCII-armored) garbage, as shown
in the lower part of Figure 1. While in theory encryption-
unaware users can mess up encrypted content, Google Docs
versioning effectively protects against similar problems.

Currently public/private secret sharing (discussed in Sec-
tion 3) is not implemented, but it can be easily achieved
by coupling SeGoDoc with third party extensions such as
FirePGP.2 SeGoDoc is free software (GPL license); its source
code is at http://segodoc.trac.cs.unibo.it/browser/.

5. USE CASES
The presented content cloaking implementation is specific

to Google Docs and gives privacy guarantees during common
word processing tasks. Content cloaking however is more
generic than that: it unleashes potentialities of AJAX-based
collaborative applications and can also be applied to other
kinds of web applications. The use cases presented here
account for both aspects of content cloaking generality.

Slide delivery. A frequent need with teaching material is
to make it available to students without releasing it publicly
on the web (e.g. because the material is meant to become
part of a commercial book). While this need is addressed by
web presentation tools like the Google Docs presenter, user
management quickly becomes cumbersome: students need
to be invited to share the document and, year after year,
accounts need to be replaced. “Old style” solutions such as
password-protected pages are not directly applicable to doc-
ument authored in, and published by, Google Docs. Content
cloaking simplifies the task: the material can be published
in encrypted form, while the key needed to decrypt it can
be announced at lectures and easily changed year after year.

Prior art management. Content cloaking can turn
Google Docs word processor in a powerful prior art regis-
tration device. Documents explaining prior art can be pub-

2http://getfiregpg.org/

http://www.gdocsbar.com
http://segodoc.trac.cs.unibo.it/browser/
http://getfiregpg.org/

lished as encrypted material; with implementations similar
to SeGoDoc titles are already left unencrypted, while other
unencrypted parts can be published in related clear text
documents. At that point, Google offers timestamped and
archivable publishing of the prior art material, also offering
indexing of all clear text. When the time comes to reveal the
full prior art material, password can be published enabling
everyone to access the full content.

Embargoed bug tracking. Vendors such as FOSS (Free
and Open Source Software) distributions collaborate in deal-
ing with sensible bug reports, such as easily exploitable secu-
rity flaws. The initial life time of such bugs is “embargoed”
and hidden from the public, de facto leaving involved teams
locked out of their usual bug tracking systems (BTSs). Con-
tent cloaking can be applied to BTSs to selectively encrypt
parts of bug logs (e.g. proof of concept exploit code, af-
fected versions, etc.). Key management is straightforward
and the loop of people having access can easily be enlarged
to, e.g. upstream authors. Once the issue is fixed, keys can
be released to the public (or bug log decrypted tout court).

Encrypted web-based IM. Privacy concerns similar to
those discussed thus far have historically been perceived by
users of IM (Instant Messaging) services which have no pro-
tection against service providers. Current solutions rely on
payload encryption (e.g. Off-The-Record (OTR) communi-
cation [1]) and are usually implemented as plugins for stand-
alone IM applications. Such solutions are not applicable in
web-based IM like Google Talk, since users cannot install
plugins there. Content cloaking can come to the rescue by
encrypting messages flowing from the browser to the service
and back: OTR can easily be implemented for Google Talk3

providing compatibility with stand-alone IM applications.
The dissident wiki. Content cloaking is not specific to

AJAX applications: it can be implemented also for legacy
web applications. For instance, specific wikis and their in-
stances can be recognized to have their content encrypted
and decrypted on the fly according to the CoClo architec-
ture. Even though that might seem at stake with the open
access design principle of wikis [13], specific real-life scenar-
ios already requires similar features, such as a hypothetical
“dissident wiki”, where the wiki provider cannot be trusted
as it can be forced to disclose content by authorities.

6. CONCLUSIONS AND FUTURE WORK
Content cloaking is a lightweight, client-side, software so-

lution to give confidentiality guarantees in Software as a
Service web applications (e.g. Google Docs), where the user
does not control the storage of data. Content cloaking relies
on on-the-fly encryption of application messages, which are
usually exchanged via AJAX. The proposed solution shields
from eavesdropping both during transfer and at destination
(e.g. at Google’s), at a minimum price of some content-based
features that should be given up. A proof-of-concept imple-
mentation for Google Docs word processor has been pre-
sented to assess the feasibility of the approach. The main
future development we envisage is the integration of secret
sharing schemes with content cloaking. That would enable
to create collaborative web environments in which a docu-
ment is accessible only in presence of a sufficient number of

3Note that this has nothing to do with Google’s“chatting off
the record” (http://www.google.com/talk/chathistory.
html#offrecord), in spite of the unfortunate name clash.

participants, each of them holding only a small slice of the
encryption key.

Acknowledgements
The authors would like to thank Edoardo Gargano for his
work on the proof-of-concept implementation, and Enrico
Tassi for his insights on the presented use cases.

7. REFERENCES
[1] N. Borisov, I. Goldberg, and E. A. Brewer.

Off-the-record communication, or, why not to use
PGP. In ACM WPES, pages 77–84, 2004.

[2] M. Campbell-Kelly. Historical reflections. the rise, fall,
and resurrection of software as a service. Commun.
ACM, 52(5):28–30, 2009.

[3] S. Chong, K. Vikram, and A. C. Myers. Sif: enforcing
confidentiality and integrity in web applications. In
USENIX Security Symposium, pages 1–16. 2007.

[4] S. Chopra and L. White. Privacy and artificial agents,
or, is google reading my email? In IJCAI, pages
1245–1250, 2007.

[5] M. Christodorescu. Private use of untrusted web
servers via opportunistic encryption. In W2SP 2008:
Web 2.0 Security and Privacy 2008. IEEE, 2008.

[6] D. Crockford. The application/json media type for
JavaScript object notation (JSON). RFC 4627. 2006.

[7] S. Dekeyser and R. Watson. Extending Google Docs
to collaborate on research papers. Technical report,
University of Southern Queensland, Australia, 2006.

[8] E. Gargano. Privacy e Web 2.0: una soluzione sicura
per utilizzare Google Documents e Mozilla Firefox.
Master’s thesis, University of Bologna, 2007.

[9] J. Garrett. AJAX: A new approach to web
applications. http://www.adaptivepath.com/ideas/
essays/archives/000385.php, 2005.

[10] S. Ghemawat, H. Gobioff, and S.T. Leung. The
Google file system. In ACM SOSP, pages 29–43, 2003.

[11] Google Docs blog. On yesterday’s email.
http://googledocs.blogspot.com/2009/03/

on-yesterdays-email.html, Mar. 2009.

[12] R. C. Jammalamadaka, R. Gamboni, S. Mehrotra,
K. Seamons, and N. Venkatasubramanian.
iDataGuard: an interoperable security middleware for
untrusted internet data storage. In ACM Middleware
Conference, pages 36–41. 2008.

[13] B. Leuf and W. Cunningham. The Wiki Way: Quick
Collaboration on the Web. Addison-Wesley. 2001.

[14] NIST. Advanced Encryption Standard (AES). Federal
Information Processing Standards 197, Nov. 2001.

[15] T. O’Reilly. What Is Web 2.0: Design Patterns and
Business Models for the Next Generation of Software.
Communications and Strategies, 65(1):17–38, 2007.

[16] A. Rezgui, M. Ouzzani, A. Bouguettaya, and
B. Medjahed. Preserving privacy in web services. In
ACM WIDM, pages 56–62. 2002.

[17] O. Tene. What Google knows: Privacy and internet
search engines. Utah Law Review, 2008. Forthcoming.
Available at http://ssrn.com/abstract=1021490.

[18] Writely and Google Inc. Google Docs.
http://docs.google.com.

http://www.google.com/talk/chathistory.html#offrecord
http://www.google.com/talk/chathistory.html#offrecord
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://googledocs.blogspot.com/2009/03/on-yesterdays-email.html
http://googledocs.blogspot.com/2009/03/on-yesterdays-email.html
http://ssrn.com/abstract=1021490
http://docs.google.com

	Introduction
	Related Work
	Content Cloaking
	Implementation
	Use Cases
	Conclusions and future work
	References

