
Towards a Formal Component Model for the Cloud ?

Roberto Di Cosmo1, Stefano Zacchiroli1, and Gianluigi Zavattaro2

1 Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, F-75205 Paris, France
roberto@dicosmo.org,zack@pps.univ-paris-diderot.fr

2 Focus Team, Univ of Bologna/INRIA, Italy, zavattar@cs.unibo.it

Abstract. We consider the problem of deploying and (re)configuring resources
in a “cloud” setting, where interconnected software components and services can
be deployed on clusters of heterogeneous (virtual) machines that can be created
and connected on-the-fly. We introduce the Aeolus component model to capture
similar scenarii from realistic cloud deployments, and instrument automated plan-
ning of day-to-day activities such as software upgrade planning, service deploy-
ment, elastic scaling, etc. We formalize the model and characterize the feasibility
and complexity of configuration achievability in Aeolus.

1 Introduction

The expression “cloud computing” is broadly used to refer to the possibility of building
sophisticated distributed software systems that can be run, on-demand, on a virtualized
infrastructure at a fraction of the cost which was necessary just a few years ago. Reaping
all the benefits of cloud computing is not easy: while the infrastructure cost falls dra-
matically, writing a distributed software system that adapts to the demand is difficult,
and maintaining and reconfiguring it is a serious challenge.

Several recent industry initiatives strive to address this challenge. CloudFoundry [6]
provides tools that allow to select, connect, and push to a cloud well defined services
(databases, message buses, . . .), that are used as building blocks for writing applica-
tions using one of the supported frameworks. Canonical is developing Juju [8], that
shares several of CloudFoundry concepts. In the academic world, the Fractal compo-
nent model [4] focuses on expressivity and flexibility: it provides a general notion of
component assembly that can be used to describe concisely, and independently of the
programming language, a complex software system. Building on Fractal, FraSCAti [16]
provides a middleware that can be used to deploy applications in the cloud.

In all these approaches, the goal is to allow the user to assemble a working system
out of components that have been specifically designed or adapted to work together.
Component selection and interconnection are the responsibility of the user, and if some
reconfiguration needs to happen, it is either obtained by reassembling the system man-
ually, or by writing specific code that is still the responsibility of the user.

While expressivity is certainly important, solving the cloud challenge also requires
automation: when the number of components grows, or the need to reconfigure appears

? Work partially supported by Aeolus project, ANR-2010-SEGI-013-01, and performed at IRILL, center for Free Software
Research and Innovation in Paris, France, http://www.irill.org

http://www.irill.org

more frequently, it is essential to be able to specify at a certain level of abstraction a
particular configuration of the distributed software system, and to develop tools that
provide a set of possible evolution paths leading from the current system configuration
to one that corresponds to a user request.

Automated approaches have been developed for the particular case of configuring
package-based FOSS (Free and Open Source Software) distributions on a single sys-
tem, and there are generic, solver-based component managers for this task [1].

The goal of this paper is to lay the foundations of such an automated approach for
the much more complex situation that arises when one needs to: (re)configure not a
single machine, but a variety of possibly “elastic” clusters of heterogeneous machines,
living in different domains and offering interconnected services that need to be stopped,
modified, and restarted in a specific order for the reconfiguration to be successful.

To this end, we propose (in Sections 2 and 3) a novel component model, called
Aeolus and loosely inspired by Fractal, where components describe resources which
provide and require different functionalities, and may be created or destroyed. As a
major difference, though, Aeolus components are equipped with state machines that
describe declaratively how required and provided functionalities are enacted. That way
we can see Aeolus as an abstraction of Fractal, yet expressive enough to capture many
common deployment scenarii in the cloud. The declarative information is essential to
provide a planner with the input needed for exploring the possible evolution paths of
the system, and propose a reconfiguration plan, which is the key automation enabler.

In Section 4 we study formally the complexity of finding a deployment plan in Ae-
olus, a property which we call achievability. We show that achievability is decidable in
polynomial time if no capacity restriction is imposed on the provided and required func-
tionalities. This simplified model, called Aeolus−, corresponds to what current main-
stream tools can handle, and our result explains why it is still possible, in simple cases,
to manage such systems manually.

We show that achievability becomes undecidable as soon as one allows to impose
restrictions on the number of connections between required and provided functionali-
ties. This limiting result is particularly significant, as some industrial tools are starting to
incorporate such restrictions to account for capacity limitations of services in the cloud.
The model that we propose to deal with these aspects is called Aeolus flat to stress that
we do not deal yet with hierarchically nested components or location boundaries, that
we will address in future work on a comprehensive Aeolus model (Section 6).

2 Use cases

We introduce the key features of Aeolus by eliciting them, step-by-step, from the anal-
ysis of realistic scenarii. As a running example, we consider several deployment use
cases for WordPress, a popular weblog solution that requires several software services
to operate, the main ones being a Web server and a SQL database. We present the
use cases in order of increasing complexity ranging from the simplest ones, where ev-
erything runs on a single physical machine, to more complex ones where the whole
appliance runs on a cloud.

2

Package : wordpress
V e r s i o n : 3.0.5+ dfsg -0+ squeeze1
Depends: httpd, mysql -client , php5 , php5 -mysql , libphp -phpmailer (>= 1.73-4), [...]

Package : mysql -server -5.5
S o u r ce : mysql -5.5
V e r s i o n : 5.5.17 -4
P r o v i d e s : mysql -server , virtual -mysql -server
Depends: libc6 (>= 2.12), zlib1g (>= 1:1.1.4) , debconf , [...]
Pre -Depends: mysql -common (>= 5.5.17 -4) , adduser (>= 3.40) , debconf

Package : apache2
V e r s i o n : 2.4.1 -2
M a i n t a i n e r : Debian Apache Maintainers <debian -apache@...>
Depends: lsb -base , procps , perl , mime -support , apache2 -bin (= 2.4.1 -2),
apache2 -data (= 2.4.1 -2)

C o n f l i c t s : apache2.2-common
P r o v i d e s : httpd
D e s c r i p t i o n : Apache HTTP Server

Fig. 1. Debian package metadata for WordPress, Mysql and the Apache web server (excerpt)

Use case 1 — Package installation. Before considering the services that a machine is
offering to others (locally or over the network), we need to model the software instal-
lation on the machine itself, so we will see how to model the three main components
needed by WordPress, as far as their installation is concerned.

Software is often distributed according to the package paradigm [7], popularized
by FOSS distributions, where software is shipped at the granularity of bundles called
packages. Each package contains the actual software artifact, its default configuration,
as well as a bunch of package metadata.

On a given machine, a software package may exists in different states (e.g. installed
or uninstalled) and it should go through a complex sequence of states in different phases
of unpacking and configuration to get there. In each of its states, similarly to what hap-
pens in most software component models [9], a package may have context requirements
and offer some features, that we call provides. For instance in Debian, a popular FOSS
distribution, requirements come in two flavors: Depends which must be satisfied be-
fore a package can be used, and Pre-Depends which must be satisfied before a package
can be installed. This distinction is of general interest, as we will see later, so we will
distinguish between weak requirements and strong requirements.

An excerpt of the concrete description of the packages present in Debian for Word-
Press, Apache2 and MySQL are shown in Fig. 1.

To model a software package at this level of abstraction, we may use a simple state
machine, with requirements and provides associated to each state. The ingredients of
this model are very simple: a set of states Q, an initial state q0, a transition function
T from states to states, a set R of requirements, a set P of provides, and a function
that maps states to the requirements and provides that are active at that state, and
tells whether requirements are weak or strong. We call resource type any such tuple
〈Q,q0,T,P,D〉, which will be formalized in Definition 1.

A system configuration built out of a collection of resources types is given by an
instance of each resource type, with its current state, and a set of connections between
requirements and provides of the different resources, that indicate which provide is ful-

3

(a) available components, not installed

(b) installed components, bound together on the httpd port

Fig. 2. A simple graphical description of the basic model of a package

filling the need of each requirement. A configuration is correct if all the requires which
are active are satisfied by active provides; this will be made precise in Definition 3.

A natural graphical notation captures all these pieces of information: Fig. 2 presents
two correct configurations of a system built using the components from Fig. 1 (only
modeling the dependency on httpd underlined in the metadata). In Fig. 2(b) the Word-
Press package is in the installed state, and activates the requirement on httpd; Apache2
is also in the installed state, so the httpd provide is active and is used to satisfy the re-
quirement, fact which is visualized by the binding connecting the two ports.

Use case 2 — Services and packages. Installing the software on a single machine is a
process that can already be automated using package managers: on Debian for instance,
you only need to have an installed Apache server to be able to install WordPress. But
bringing it in production requires to activate the associated service, which is more tricky
and less automated: the system administrator will need to edit configuration files so that
WordPress knows the network addresses of an accessible MySQL instance.

The ingredients we have seen up to now in our model are sufficient to capture the
dependencies among services, as shown in Fig. 3. There we have added to each package
an extra state corresponding to the activation of the associated service, and the strong
requirement (graphically indicated by the double tip on the arrow) on mysql up cap-
tures the fact that WordPress cannot be started before MySQL is running. In this case,
the bindings really correspond to a piece of configuration information, i.e. where to find
a suitable MySQL instance.

Notice how this model does not impose any particular way of modeling the relations
between packages and services: instead of using a single resource with an installed and
a running state, we can also model services and packages as different resources, and
relate them through dependencies.

4

Fig. 3. A graphical description of the basic model of services and packages

Use case 3 — Redundancy, capacity planning, and conflicts. Services often need to
be deployed on different machines to reduce the risk of failure or due to the limitations
on the load they can bear. For example, system administrators might want to indicate
that a MySQL instance can only support a certain number of WordPress instances.
Symmetrically, a WordPress hosting service may want to expose a reverse web proxy /
load balancer to the public and require to have a minimum number of distinct instances
of WordPress available as its back-ends.

To model this kind of situations, we allow capacity information to be added on
provides and requires of each resource in Aeolus: a number n on a provide port indicates
that it can fulfill no more than n requirements, while a number n on a require port means
that it needs to be connected to at least n provides from n different components. This
information may then be used by a planner to find an optimal replication of the resources
to satisfy a user requirement.

As an example, Fig. 4 shows the modeling of a WordPress hosting scenario where
we want to offer high availability hosting by putting the Varnish reverse proxy / load
balancer in front of several WordPress instances, all connected to a shared replicated
MySQL database.3 For a configuration to be correct, the model requires that Varnish is
connected to at least 3 (active and distinct) WordPress back-ends, and that each MySQL
instance does not serve more than 2 clients.

As a particular case, a 0 constraint on a require means that no provide with the same
name can be active at the same time; this can be effectively used to model conflicts
between components. For instance, we can use this to model the conflict between the
apache2 and apache2.2-common packages that has been omitted in Fig. 2.

Use case 4 — Creating and destroying resources. Use cases like WordPress hosting
are commonplace in the cloud, to the point that they are often used to showcase the
capabilities of state of the art cloud deployment technologies. The features of the model
presented up to here are already expressive enough to encode these static deployment
scenarii. If one takes Juju’s (rather limiting) assumption that each service is hosted on
a separate machine, Fig. 4 may then be the representation of the current set of virtual
machines (VMs) that we have rented from a public cloud such as Amazon EC2.

To model faithfully deployment runs on the cloud, where an arbitrary number of
instances of virtual machine images can be allocated and deallocated on the fly, we also

3 All WordPress instances run within separate Apache-s, which have been omitted for simplicity.

5

Fig. 4. A graphical description of the model with redundancy and capacity constraints (internal
sate machines and activation arcs omitted for simplicity)

allow in our model creation and destruction of all kinds of resources, provided they
belong to some existing resource type. This allows to compute reconfiguration plans
that create new resources to avoid violating capacity constraints. For instance, in the
configuration of Fig. 4, to respond to an increase in traffic load one will need to spawn
2 new WordPress instances, which in turn will require to create new MySQL instances,
as the available MySQL-s are not enough to handle the load increase.

3 The Aeolus flat model

We now formalize the Aeolus flat model, that contains all the features elicited from the
use cases of the previous section. It is “flat” in the sense that all components live in a
single “global” context, are mutually visible, and can connect to each other as long as
their ports are compatible.
Notation. We consider the following disjoint sets: I for interfaces and Z for resources. We use
N to denote strictly positive natural numbers, N∞ for N plus infinity, and N0 for N plus 0.

We model components as finite state automata indicating the current state and pos-
sible transitions. When a component changes its state, it can also change the ports that
it requires from and provides to other components.

Definition 1 (Resource type). The set T f lat of resource types of the Aeolus flat model,
ranged over by T1,T2, . . . contains 5-ple 〈Q,q0,T,P,D〉 where:

– Q is a finite set of states;
– q0 ∈ Q is the initial state and T ⊆ Q×Q is the set of transitions;
– P = 〈P,R〉, with P,R ⊆I , is a pair composed of the set of provide and the set of

require ports, respectively;
– D is a function from Q to 3-ple in (P 7→ N∞)× (R 7→ N0)× (R 7→ N0).

Given a state q ∈ Q, the three partial functions in D(q) indicates respectively the pro-
vide, weak require, and strong require ports that q activates. The functions associate to
the active ports a numerical constraint indicating:

– for provide ports, the maximum number of bindings the port can satisfy,

6

– for require ports, the minimum number of required bindings to distinct resources,
• if the number is 0, that indicates a conflict, meaning that there should be no

other active port with the same name.

We assume as default constraints ∞ for provide ports (i.e. they can satisfy an unlimited
amount of requires) and 1 for require (i.e. one provide is enough to satisfy the require-
ment). We also assume that the initial state q0 has no strong demands (i.e. the third
function of D(q0) is empty).

We now define configurations that describe systems composed by components and
their bindings. A configuration, ranged over by C1,C2, . . ., is given by a set of resource
types, a set of deployed resources in some state, and a set of bindings. Formally:

Definition 2 (Configuration). A configuration C is a 4-ple 〈U,Z,S,B〉 where:

– U ⊆T f lat is the universe of the available resource types;
– Z ⊆Z is the set of the currently deployed resources;
– S is the resource state description, i.e. a function that associates to resources in Z

a pair 〈T ,q〉 where T ∈ U is a resource type 〈Q,q0,T,P,D〉, and q ∈ Q is the
current resource state;

– B ⊆I ×Z×Z is the set of bindings, namely 3-ple composed by an interface, the
resource that requires that interface, and the resource that provides it; we assume
that the two resources are distinct.

Notation. We write C [z] as a lookup operation that retrieves the pair 〈T ,q〉 = S(z), where
C = 〈U,Z,S,B〉. On such a pair we then use the postfix projection operators .type and .state to
retrieve T and q, respectively. Similarly, given a resource type 〈Q,q0,T,〈P,R〉,D〉, we use pro-
jections to (recursively) decompose it: .states, .init, and .trans return the first three elements;
.prov, .req return P and R; .Pmap(q), .Rwmap(q), and .Rsmap(q) return the three elements of the
D(q) tuple. When there is no ambiguity we take the liberty to apply the resource type projections
to 〈T ,q〉 pairs. Example: C [z].Rsmap(q) stands for the strong require ports (and their arities) of
resource z in configuration C when it is in state q.

We are now ready to formalize the notion of configuration correctness. We con-
sider two distinct notions of correctness: weak and strong. According to the former,
only weak requirements are considered, while the latter also considers strong ones. In-
tuitively, weak correctness can be temporarily violated during the deployment of a new
component configuration, but needs to be fulfilled at the end; strong correctness, on the
other hand, shall never be violated.

Definition 3 (Correctness). Let us consider the configuration C = 〈U,Z,S,B〉.
We write C |=req (z,r,n) to indicate that the require port of resource z, with interface

r, and associated number n is satisfied. Formally, if n = 0 all resources other than z
cannot have an active provide port with interface r, namely for each z′ ∈ Z \ {z} such
that C [z′] = 〈T ′,q′〉 we have that r is not in the domain of T ′.Pmap(q′). If n > 0 then
the port is bound to at least n active ports, i.e. there exist n distinct resources z1, . . . ,zn ∈
Z \{z} such that for every 1≤ i≤ n we have that 〈r,z,zi〉 ∈ B, C [zi] = 〈T i,qi〉 and r is
in the domain of T i.Pmap(qi).

Similarly for provides, we write C |=prov (z, p,n) to indicate that the provide port
of resource z, with interface p, and associated number n is not bound to more than

7

n active ports. Formally, there exist no m distinct resources z1, . . . ,zm ∈ Z \ {z}, with
m > n, such that for every 1≤ i≤ m we have that 〈p,zi,z〉 ∈ B, S(zi) = 〈T i,qi〉 and p
is in the domain of T i.Rwmap(qi) or T i.Rsmap(qi).

The configuration C is correct if for each resource z in Z, given S(z) = 〈T ,q〉 with
T = 〈Q,q0,T,P,D〉 and D(q) = 〈P,Rw,Rs〉, we have that (p 7→ np) ∈P implies
C |=prov (z, p,np), and (r 7→ nr) ∈ Rw implies C |=req (z,r,nr), and (r 7→ n′r) ∈ Rs
implies C |=req (z,r,n′r).

Analogously we say that it is strong correct if only the strong requirements are con-
sidered: namely, we require (p 7→ np)∈P implies C |=prov (z, p,np) and (r 7→ nr)∈Rs
implies C |=req (z,r,nr).

As our main interest is planning, we now formalize how configurations evolve from one
state to another, by the means of atomic actions.

Definition 4 (Actions). The set A contains the following actions:

– stateChange(z,q1,q2) where z ∈Z ;
– bind(r,z1,z2) where z1,z2 ∈Z and r ∈I ;
– unbind(r,z1,z2) where z1,z2 ∈Z and r ∈I ;
– newRsrc(z : T) where z ∈Z and T is a
– delRsrc(z) where z ∈Z .

The execution of actions can now be formalized using a labeled transition systems on
configurations, which uses actions as labels.

Definition 5 (Reconfigurations). Reconfigurations are denoted by transitions C
α−→C ′

meaning that the execution of α ∈A on the configuration C produces a new configu-
ration C ′. The transitions from a configuration C = 〈U,Z,S,B〉 are defined as follows:

C
stateChange(z,q1,q2)−−−−−−−−−−−→ 〈U,Z,S′,B〉
if C [z].state= q1
and (q1,q2) ∈ C [z].trans

and S′(z′) =
{
〈C [z].type,q2〉 if z′ = z
C [z′] otherwise

C
bind(r,z1,z2)−−−−−−−→ 〈U,Z,S,B∪〈r,z1,z2〉〉
if 〈r,z1,z2〉 6∈ B
and r ∈ C [z1].req∩C [z2].prov

C
unbind(r,z1,z2)−−−−−−−−→ 〈U,Z,S,B\ 〈r,z1,z2〉〉 if 〈r,z1,z2〉 ∈ B

C
newRsrc(z:T)−−−−−−−−→ 〈U,Z∪{z},S′,B〉
if z 6∈ Z, T ∈U

and S′(z′) =
{
〈T ,T .init〉 if z′ = z
C [z′] otherwise

C
delRsrc(z)−−−−−→ 〈U,Z \{z},S′,B′〉

if S′(z′) =
{
⊥ if z′ = z
C [z′] otherwise

and B′ = {〈r,z1,z2〉 ∈ B | z 6∈ {z1,z2}}

Notice that in the definition of the transitions there is no requirement on the reached
configuration: the correctness of these configurations will be considered at the level of
a deployment run.

Also, we observe that there are configurations that cannot be reached through se-
quences of the actions we have introduced. In Fig. 5, for instance, there is no way for

8

Fig. 5. On the need of a multiple state change action: how to install a and b?

package a and b to reach the installed state, as each package require the other to be
installed first. In practice, when confronted with such situations—that can be found
for example in FOSS distributions in the presence of Pre-Depend loops—current tools
either perform all the state changes atomically, or abort deployment.

We want our planners to be able to propose reconfigurations containing such atomic
transitions, as long as that is the only way to reach a requested configuration. To this
end, we introduce the notion of multiple state change.

Definition 6 (Multiple state change).
A multiple state change M = {stateChange(z1,q1

1,q
1
2), · · · ,stateChange(zl ,ql

1,q
l
2)} is

a set of state change actions on different resources (i.e. zi 6= z j for every 1≤ i < j ≤ l).
We use 〈U,Z,S,B〉 M−→ 〈U,Z,S′,B〉 to denote the effect of the simultaneous execution of

the state changes in M : formally, 〈U,Z,S,B〉
stateChange(z1,q1

1,q
1
2)−−−−−−−−−−−−→ . . .

stateChange(zl ,ql
1,q

l
2)−−−−−−−−−−−−→

〈U,Z,S′,B〉.

Notice that the order of execution of the state change actions does not matter as all the
actions are executed on different resources.

We can now define a deployment run, which is a sequence of actions that trans-
form an initial configuration into a final correct one without violating strong correct-
ness along the way. A deployment run is the output we expect from a planner, when it
is asked how to reach a desired target configuration.

Definition 7 (Deployment run). A deployment run is a sequence α1 . . .αm of actions

and multiple state changes such that there exist Ci such that C = C0, C j−1
α j−→ C j for

every j ∈ {1, . . . ,m}, and the following conditions hold:

configuration correctness C0 and Cm are correct while, for every i ∈ {1, . . . ,m− 1},
Ci is strong correct;

multi state change minimality if α j is a multiple state change then there exists no
proper subset M ⊂ α j, or state change action α ∈ α j, and correct configuration

C ′ such that C j−1
M−→ C ′, or C j−1

α−→ C ′.

We now have all the ingredients to define the notion of achievability, that is our main
concern: given an universe of resource types, we want to know whether it is possible to
deploy at least one resource of a given resource type T in a given state q.

Definition 8 (Achievability problem). The achievability problem has as input an uni-
verse U of resource types, a resource type T , and a target state q. It returns as output
true if there exists a deployment run α1 . . .αm such that 〈U, /0, /0, /0〉 α1−→C1

α2−→·· · αm−→Cm
and Cm[z] = 〈T ,q〉, for some resource z in Cm. Otherwise, it returns false.

9

Notice that the restriction in this decision problem to one resource in a given state is
not limiting: one can easily encode any given final configuration by adding a dummy
provide port enabled only by the required final states and a dummy component with
weak requirements on all such provides.

4 Achievability

In this section, we establish our main results concerning the difficulty of the achiev-
ability problem. The results change significantly depending on the restrictions imposed
on the numerical constraints that are allowed as co-domains of the three D(q) partial
functions. We consider here two extreme cases, which are detailed in the table below:

model co-domain(.Pmap()) co-domain(.Rwmap()) co-domain(.Rsmap())
Aeolus− {∞} {1} {1}

Aeolus flat N∞ N0 N0

Aeolus flat is the same model of Def. 1, while Aeolus− is a restriction of it where
only the default numerical constraints can be used: provide ports can always serve an
unlimited amount of bindings, and require ports cannot conflict with other active ports,
nor require a minimum number of bindings strictly higher than 1. In the following we
will show that achievability is decidable in Aeolus−, but undecidable in Aeolus flat.

Achievability is decidable in Aeolus−. We start by presenting a decision algorithm
for the achievability problem in Aeolus−. The idea is to perform an abstract forward
exploration of all reachable configurations. Before presenting the algorithm, we list the
properties of Aeolus− we exploit:

– as in Aeolus− the value 0 on require ports is forbidden, the addition to a configura-
tion of new components cannot forbid the execution of formerly possible actions;

– as in Aeolus− provide ports have capacity ∞ and require ports have numerical con-
straint 1, the correctness of a configuration can be checked simply by verifying that
the set of active require ports is a subset of the set of active provide ports.

In the light of the second observation, and knowing that the sets of active require and
provide ports are functions of the internal state of the components, we abstractly rep-
resent configurations simply as sets of pairs 〈T ,q〉 indicating the type and the state of
the components in the configuration. This way, symbolic configurations abstract away
from the exact number of instances of each kind of component, and from their current
bindings.

We consider symbolic runs representing the evolutions of abstract configurations.
Moreover, thanks to the first observation, we can restrict ourselves to consider only evo-
lutions where the set of available pairs 〈T ,q〉 does not decrease. Namely, we perform a
symbolic forward exploration starting from an abstract configuration containing all the
pairs 〈T ′,T ′.init〉 representing components in their initial state. Then we extend the
abstract configuration by adding step-by-step new pairs 〈T ′,q′〉.

Algorithm 1 checks achievability by relying on two auxiliary data structures: absConf
is the set of pairs 〈T ′,q′〉 indicating the type and state of the components in the current

10

Algorithm 1 Checking achievability in the Aeolus− model
function ACHIEVABILITY(universe of resources U , resource type T , state q)

absConf := {〈T ′,T ′.init〉 |T ′ ∈U}
provPort :=

⋃
〈T ′,q′〉∈absConf {dom(T ′.Pmap(q′))}

repeat
new := {〈T ′,q′〉 | 〈T ′,q′′〉 ∈ absConf ,(q′′,q′) ∈T ′.trans}\absConf
newPort :=

⊕
〈T ′,q′〉∈new{{dom(T ′.Pmap(q′))}}

while ∃〈T ′,q′〉 ∈ new s.t. dom(T ′.Rsmap(q′)) 6⊆ provPort∪newPort do
new := new\{〈T ′,q′〉}
newPort := newPort	{{dom(T ′.Pmap(q′))}}

end while
absConf := absConf ∪new
provPort := provPort∪newPort

until new = /0
if 〈T ,q〉 ∈ absConf and dom(T .Rwmap(q))⊆ provPort then return true
else return false
end if

end function

abstract configuration, and provPort is the set of provide ports active in such a config-
uration. The algorithm incrementally extends absConf until it is no longer possible to
add new pairs.

At each iteration, the potential new pairs are initially computed by checking the
automata transitions, and stored in the set new. Not all those states could be actually
reached as one needs to check whether their strongly require ports are included in the
available provide ports provPort or in the ports opened by the new states. This is done
by a one-by-one elimination of pairs 〈T ′,q′〉 from new when their strong requirements
are unsatisfiable. During elimination, we use newPort, a multiset of the provide ports
which are activated by the component states currently in new. We use double curly
braces for multisets, and ⊕ and 	 for multiset union and difference.

When the final sets absConf and provPort are computed, achievability for the re-
source type T and state q can be simply checked by verifying the presence of 〈T ,q〉 in
absConf , and by controlling whether its (weak) requirements are satisfied by the active
provide ports provPort. Strong requirements are satisfied by construction.

We are now ready to prove our decidability result for the Aeolus− model.

Theorem 1. Let U be a set of resource types of the Aeolus− model. Given the resource
type T and the state q, the achievability problem for U, T , and q can be checked in
polynomial time (with respect to the size of the descriptions of the resources in U).

Proof. The symbolic representation of the initial configuration 〈U, /0, /0, /0〉 is included in
the initial set absConf . It is easy to see that given the transition C

α−→C ′ of a deployment
run, if the symbolic representation of C is included in absConf at the beginning of an
iteration of the repeat, then the symbolic representation of C ′ will be surely included
in absConf at the end of such iteration. Therefore, if there exists a deployment run
able to achieve a component of type T in the state q, then the Algorithm 1 will detect
achievability. This proves that the algorithm is complete.

11

The soundness of the algorithm follows from the following argument. The symbolic
forward exploration performed by the algorithm corresponds to an actual deployment
run that initially creates sufficiently many components in order to guarantee that all
the state changes considered by the symbolic exploration can be actually executed, and
every time an action changes the state of one component of type T ′ from q′′ to q′, there
exists at least another component in the concrete system of type T ′ which remains in
state q′′.

The polynomial complexity of the algorithm follows from the fact that both the
repeat and the while cycles perform a number of iterations smaller than the number of
different pairs 〈T ′,q′〉 in the universe of resource types U . ut

Achievability is undecidable in Aeolus flat. We now show that the decision procedure
for achievability of the previous section cannot be extended to deal with the Aeolus flat
model. In fact, for this last model achievability turns out to be undecidable. The proof is
by reduction from the reachability problem in 2 Counter Machines (2CMs) [11], a well-
known Turing-complete computational model. A 2CM is a machine with two registers
R1 and R2 holding arbitrary large natural numbers and a program P consisting of a finite
sequence of numbered instructions of the following type:

– j : Inc(Ri): increments Ri and goes to the instruction j+1;
– j : DecJump(Ri, l): if the content of Ri is not zero, then decreases it by 1 and goes

to the instruction j+1, otherwise jumps to the instruction l.

A state of the machine is given by a tuple (i,v1,v2) where i indicates the next instruction
to execute (the program counter) and v1 and v2 are the contents of the two registers. It
is not restrictive to assume that the registers are initially set to zero.

We model a 2CM as follows. We use a component to simulate the execution of the
program instructions. The contents vi of the register Ri is modeled by vi components
in a particular state qi. Increment instructions add one component in this state qi, while
decrement instructions move one component in state qi to a different state. The state
qi activates a provide port onei, so the simulation of a jump has simply to check the
absence in the environment of active onei ports.

The resource types of the components that we use to model 2CMs are depicted in
Fig. 6. Namely, we consider four resource types: TP to simulate the execution of the
program instructions, TR1 and TR2 for the two registers and TB used to guarantee that
components of type TRi involved in the simulation cannot be deleted. In TP we assume
one state q j for each instruction j. If the j-th instruction is j : Inc(Ri), a protocol with
three intermediary states is executed. The first one will activate a port oni allowing a
resource of type TRi to start a complementary protocol. The second state of the protocol
activates a strong requirement on the provide port inci while the last state activates
a conflict on the same port inci. The complementary protocol of the resource type TRi

includes three states as well. The first one activates a strong requirement on the port oni:
in this way, the protocol can start only if the complementary protocol already started.
The second state of the protocol activates the port inci in order to allow the protocol
to progress. Finally, the protocol completes by entering the qi state. Note that the first
state of the protocol opens a provide port a, and the first two states activates a strong
requirement on the absence in the environment of such an active port. This guarantees

12

Fig. 6. Modeling 2 counter machines (2CMs) in the Aeolus flat model (sketch)

that exactly one resource of type TRi will execute the protocol, in other terms, the
register Ri is incremented exactly by 1.

Fig. 6 also depicts the modeling of an instruction m : DecJump(Ri, l). The decre-
ment branch executes a protocol similar to the previous one, whose effect here is to
decrement Ri by 1. The jump branch simply checks the absence of components of type
TRi in state qi by activating a strong requirement on the absence of an active port onei
(note that such a port is indeed activated by components of type TRi in state qi).

In our component model, when a resource z is not used to satisfy strong require-
ments, it could be removed by executing the delRsrc(z) action. The cancellation of a
components of type TRi could then erroneously change register contents during simu-
lation. To avoid that we force the connection of each resource of type TRi with a cor-
responding instance of a component of type TB. These types of resources reciprocally
“strongly” connect through the ports c and d as soon as they move from their initial state
q0. Such connections remain active during the entire simulation, ensuring components
will not be deleted by mistake. Notice that it is necessary to add the capacity constraint
1 to the provide ports c and d, in order to have an exact one-to-one correspondence
between the components of type TRi and those of type TB.

As a final remark, notice that the first state q1 of the resource type TP has a strong
requirement on the absence in the environment of an active provide port e, port which
is activated by all the states in TP. This guarantees that at most one component of
type TP will simulate program instructions. Moreover, we also have to avoid that such
component is removed by a delRsrc action during the simulation: this can be guaranteed
by using the same pairing technique with a component of type TB described above. It
is sufficient to impose that all the states of TP, but q0, activate a provide port on c with
numerical constraint 1, and a strongly require port on d. For simplicity, this part of the
specification of TP is not shown in Fig. 6.

We are now ready to formally state our undecidability result.

Theorem 2. The achievability problem is undecidable in the Aeolus flat model.

13

Proof. Let M be a 2CM and let U = {TP,TR1 ,TR2 ,TB} be the set of the corresponding
resource types defined as in Fig. 6. In the light of the discussion above, we have that
achievability is satisfied for the universe U , the resource type TP and the state q j if and
only if the j-th instruction is reachable in M. The undecidability of achievability thus
follows from the undecidability of reachability for 2CMs. ut

5 Related work

To the best of our knowledge this is the first paper that formally addresses the problem
of component deployment in the cloud. In this section we compare the approach we
have adopted to related formal models considered in slightly different contexts.

Automata have been adopted long ago in the context of component-oriented de-
velopment frameworks. One of the most influential model are interface automata [3],
where automata are used to represent the component behavior in terms of input, out-
put, and internal actions. Interface automata support automatic compatibility check and
refinement verification: a component refines another if its interface has weaker input
assumptions and stronger output guarantees. Differently from that approach, we are not
interested in component compatibility or refinement, and we do not require complemen-
tary behavior of components: we simply check in the current configuration whether all
required functionalities are provided by currently deployed components. The automata
in Aeolus do not represent the internal behavior of components, but the effect on the
component of an external deployment or reconfiguration actions.

Aeolus reconfiguration actions show interesting similarities with transitions in Petri
nets [13], a very popular model born from the attempt to extend automata with concur-
rency. At first sight, one might encode our model in Petri net, representing our compo-
nent states as places, each deployed component as a token in the corresponding place,
and reconfiguration actions as transitions that cancel and produce tokens. Achievabil-
ity in Aeolus would then correspond to coverability in Petri nets. But there are several
important differences. Multiple state change actions can atomically change the state of
an unbounded number of components, while in Petri net each transition consumes a
predefined number of tokens. More importantly, we have proved that achievability can
be solved in polynomial time for the Aeolus− fragment and that it is undecidable for
the Aeolus flat model, while in Petri nets coverability is an ExpSpace problem [14].

Several process calculi extend/modify the π-calculus [10] in order to deal with soft-
ware components. The Piccola calculus [2] extends the asynchronous π-calculus [10]
with forms, first-class extensible namespaces, useful to model component interfaces
and bindings. Calculi like KELL [15] and HOMER [5] extends a core π-calculus with
hierarchical locations, local actions, higher-order communication, programmable mem-
branes, and dynamic binding. More recently, MECo [12] has extended this approach by
proposing also explicit component interfaces and channels to realize tunneling effects
traversing the hierarchical location boundaries. On the one hand, all these proposals dif-
fer from Aeolus model because they focus on the modeling of component interactions
and communication, while we focus on their interdependencies during system deploy-
ment and reconfiguration. On the other hand, we plan to take inspiration from these
calculi in order to extend our model with boundaries and administrative domains.

14

6 Conclusions and future work

We have presented Aeolus flat, a component model expressive enough to capture most
common deployment scenarii for distributed software applications in the cloud. We
have shown that it is possible to generate a deployment plan in polynomial time for the
fragment Aeolus− of the model, corresponding to the industrial tools currently in use,
while it is not possible to generate a deployment plan for Aeolus flat, that captures more
faithfully the constraints imposed by real world applications.

Several interesting models between Aeolus− and Aeolus flat can now be considered,
to reconcile expressivity and decidability: one can impose in Aeolus flat an upper limit
on the number of resources that can be allocated during a deployment run; or one can
extend Aeolus− with only conflict constraints.

The Aeolus flat model can be extended to a hierarchical component model to take
into account administrative domains and components that are built by grouping together
other components. We will also experiment with different planning systems to explore
the issues related to plan generation, and use the results as additional guidance in the
search for the best compromise between expressivity and decidability.

References
1. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: MPM: a modular package manager. In:

CBSE’11: 14th symposium on component based software eng. pp. 179–188. ACM (2011)
2. Achermann, F., Nierstrasz, O.: A calculus for reasoning about software composition. Theor.

Comput. Sci. 331(2-3), 367–396 (2005)
3. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC / SIGSOFT FSE (2001)
4. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal component

model and its support in java. Softw., Pract. Exper. 36(11-12), 1257–1284 (2006)
5. Bundgaard, M., Hildebrandt, T.T., Godskesen, J.C.: A cps encoding of name-passing in

higher-order mobile embedded resources. Theor. Comput. Sci. 356(3), 422–439 (2006)
6. Cloud Foundry, deploy & scale your applications in seconds. http://www.cloudfoundry.

com/, retrieved April 2012
7. Di Cosmo, R., Trezentos, P., Zacchiroli, S.: Package upgrades in FOSS distributions: Details

and challenges. In: HotSWup’08 (2008)
8. Juju, devops distilled. https://juju.ubuntu.com/, retrieved April 2012
9. Lau, K.K., Wang, Z.: Software component models. IEEE Trans. Software Eng. 33(10), 709–

724 (2007)
10. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i/ii. Inf. Comput. 100(1),

1–77 (1992)
11. Minsky, M.: Computation: finite and infinite machines. Prentice Hall (1967)
12. Montesi, F., Sangiorgi, D.: A model of evolvable components. In: TGC. Lecture Notes in

Computer Science, vol. 6084, pp. 153–171. Springer (2010)
13. Petri, C.A.: Kommunikation mit Automaten, PhD thesis. Institut für Instrumentelle Mathe-

matik, Bonn, Germany (1962)
14. Rackoff, C.: The covering and boundedness problems for vector addition systems. Theoret.

Comp. Sci. 6, 223–231 (1978)
15. Schmitt, A., Stefani, J.B.: The kell calculus: A family of higher-order distributed process

calculi. In: Global Computing. LNCS, vol. 3267, pp. 146–178. Springer (2004)
16. Seinturier, L., Merle, P., Fournier, D., Dolet, N., Schiavoni, V., Stefani, J.B.: Reconfigurable

SCA applications with the FraSCAti platform. In: IEEE SCC. pp. 268–275. IEEE (2009)

15

http://www.cloudfoundry.com/
http://www.cloudfoundry.com/
https://juju.ubuntu.com/

	Towards a Formal Component Model for the Cloud

