
Co-Constraint Validation in a Streaming Context

Paolo Marinelli
pmarinel@cs.unibo.it

Department of Computer Science, University of Bologna

Stefano Zacchiroli
zacchiro@cs.unibo.it

Department of Computer Science, University of Bologna

Abstract

In many use cases applications are bound to be run consuming only a
limited amount of memory. When they need to validate large XML docu-
ments, they have to adopt streaming validation, which does not rely on an
in-memory representation of the whole input document. In order to vali-
date an XML document, different kinds of constraints need to be verified.
Co-constraints—which relate the content of elements to the presence and
values of other attributes or elements—are one such kind of constraints.

In this paper we propose an approach to the problem of validating in a
streaming fashion an XML document against a schema also specifying co-
constraints. We describe how the streaming evaluation of co-constraints
influences the output of the validation process. Our proposal makes use
of the validation language SchemaPath [11], a light extension to XML
Schema [14], adding conditional type assignment for the support of co-
constraints. The paper is based on the description of our streaming Sche-
maPath validator [10].

1 Introduction

XML is frequently adopted as a format for data-exchange among applications.
Such applications process the received data for their own purposes, e.g. applying
queries or filters. In general, an application can profit by the knowledge that
the processed document has been validated against a schema.

There are contexts where an application needs to process an XML document
in a streaming fashion. This occurs, for instance, when the application receives
a continuous flow of XML-formatted information. A concrete example is repre-
sented by a monitoring sensor producing data for some interested applications
[13]. When the input XML data is very huge, such an application cannot lo-
cally store the incoming flow of data, because it would require large amounts

1

mailto:pmarinel@cs.unibo.it
mailto:zacchiro@cs.unibo.it


of memory. Rather, the application should use a streaming parser, e.g, a SAX
parser.1

In order to exploit the knowledge of the validity of a document against a
schema in a streaming context, also the validation process has to be performed
in a streaming fashion. This means that the validator has to validate the input
document based on a sequence of input events describing the document (e.g.
SAX events), and without relying on an in-memory representation of the entire
document.

Generally speaking, an XML document is said to be valid if it complies with a
set of various kinds of constraints. At the very minimum this usually means that
the logical structure of the document has to conform to a grammar (i.e. a set of
structural constraints), such as those that can be defined using grammar-based
languages (e.g. DTD [5], XML Schema [14, 4] and RELAX NG [8]). Addition-
ally the elements and attributes of the document may be subject to complex
rules constraining the set of their legal datavalues (datavalues constraints). Fur-
thermore, the document may be subject to the called co-occurrence constraints
(commonly referred to as co-constraints). A co-constraint is a rule governing
the content of an element or attribute based on the presence or values of other
attributes and elements. An example of co-constraint is the following:

if element def has an attribute href then its content must be
empty, otherwise its content must satisfy the content model def.type

In this paper we address the problem of streaming validation of XML doc-
uments. We describe how the problem of verifying in streaming that an XML
document conforms to structural, datavalues, and co-occurrence constraints can
be approached.

As the applicative case for our solution we have chosen SchemaPath [11] as
validation language. SchemaPath is a validation language that extends XML
Schema in a minimal and conservative way, adding support for co-constraints.
The extension boils down to the addition of conditional declarations. They
conditionally assign a type to elements and attribute, based on the evaluation
of XPath predicates [7] on the instance document.

As shown in [11], the conditional type assignment represents a good approach
to address a large set of co-constraints use cases. Moreover, SchemaPath inherits
from XML Schema the constructs for the definition of a grammar constraining
the logical structure of valid documents, as well as those for the definition of
datatypes. This means that SchemaPath allows to express structural, dataval-
ues, and co-occurrence constraints.

In this paper we discuss how an XML document can be validated against
a SchemaPath specification in a streaming fashion. Our discussion is based on
the description of our prototype streaming SchemaPath validator [10].

The remainder of the paper is structured as follows. In Section 1 we give a
description of the SchemaPath syntax and semantics. We also shortly describe

1http://www.saxproject.org/

2

http://www.saxproject.org/


<xs:element name="def">

<xs:alt cond="@href" priority="2.0">

<xs:complexType />

</xs:alt>

<xs:alt type="def.type" priority="1.0"/>

</xs:element>

Figure 1: Sample element conditional declaration in SchemaPath

there the streaming environment where a streaming validator works. In Sec-
tion 3 we describe how our validator communicates the result of the validation
process to the interested applications while in Section 4 we describe how it eval-
uates the XPath predicates associated to conditional declarations. In Section 5
we give some technical details of our implementation. Then, in Section 6 we
describes some related works, mainly concerning the streaming evaluation of
XPath expressions. We conclude the paper in Section 7, where we also sketch
our future development lines.

2 Background

2.1 An Introduction to SchemaPath

SchemaPath [11] is a validation language minimally and conservatively extend-
ing XML Schema, the schema language directly backed by the W3C. Schema-
Path extends XML Schema adding the concept of conditional declarations and
the new xs:error built-in type.

Conditional declarations are used to conditionally assign a type to elements
and attributes of the instance document. Indeed, a conditional declaration
specifies several type definitions, each associated with a condition and a priority.
The conditions are expressed as XPath predicates and they are evaluated on the
instance document. A conditionally declared item is assigned the type associated
with the holding condition with the highest priority.

In Figure 1 an example of conditional declaration (implementing the co-
constraint example of Section 1) is shown. The declared element def is assigned
an anonymous empty type if it has an attribute href; otherwise (no attribute
href is present) it is assigned the type def.type.

Each element xs:alt of a conditional declaration represents a so called al-
ternative, and it specifies:

1. an XPath condition through the attribute cond (if not present, it defaults
to the always-true condition true());

2. a type definition: it is either referenced by name through the attribute
type; or it is anonymously defined through the constructs provided by
XML Schema.

3



<xs:element name="a">

<xs:alt cond=".//a" type="xs:error" />

<xs:alt type="a.type" />

</xs:element>

Figure 2: Sample usage of xs:error within a conditional declaration

3. a priority, i.e. a real number specified through the attribute priority.
It is used to disambiguate those situations where multiple alternatives
of the declaration are satisfied. If an explicit priority is not provided,
an implicit one is added by SchemaPath: the more the specificity of the
XPath condition, the higher the priority.

Within each conditional declaration there is a default alternative, chosen
when all the other alternatives are excluded. Such an alternative specifies the
always-true condition true(), a priority lower than the priorities of all the other
alternatives, and the type xs:error.

xs:error is a simple built-in type added by SchemaPath, whose lexical and
value spaces [4] are empty, i.e. each item of the instance document assigned such
a type has to be considered invalid. Within a conditional declaration xs:error
is used to express a condition we do not want to be satisfied by the instance
document. For example, consider one of the most famous element prohibitions
stated in the specifications of XHTML: an element a “must not contain other
a elements”.

In SchemaPath this prohibition can be enforced using the conditional dec-
laration of Figure 2 in which the declared element a is assigned type xs:error
if it contains another element a. Otherwise, it is assigned type a.type, which
is meant to define the logical structure of a.

2.2 Validation Environment

In this section we describe a generic environment where a streaming valida-
tor works. Our validator works in a very similar environment, which can be
generalized to the one described here.

A streaming validator usually works within a pipeline composed by three
components: a parser, a validator and an application interested in the result
of the validation (a downstream application). Each component of the pipeline
receives a sequence of input events and sends a sequence of output events to
the next component. The parser has the purpose of reading the input XML
document. It generates events such as those generated by a SAX parser. We
assume the events generated by the parser are:

startDocument() to communicate the beginning of the document;

endDocument() to communicate the end of the document;

4



startElement(name, id, level) to communicate the start-tag of an element
and its name, node-id and depth-level;

endElement(name, id, level) to communicate the end-tag of an element;

characters(text, id) to communicate the presence of a text node, and the
actual text characters;

attribute(name, value, id) to communicate the presence of an attribute
node, and its name, value and node-id.

Such events are sent to the validator, which processes them in order to per-
form validation. For each received event, the validator sends it to the interested
application. The validator can also output events other than those received in
input in order to inform the downstream application about the outcome of the
validation process. For instance, the validator can inform it about the validity
of an element, the presence of a validation error, and so on.

The exact set of output events generated by a validator depends on the
relevant validation language and its semantics. For instance, an XML Schema
validator could send a different set of events with respect to a DTD validator.
In the next sections we describe the output events generated by our streaming
SchemaPath validator.

3 Streaming SchemaPath Validation Outcome

As in XML Schema, the reuslt of a SchemaPath validation is the production of
a Post Schema Validation Infoset (PSVI). Each element and attribute of the
instance document is associated with a set of properties (the so called PSVI
properties) describing, e.g. the type definition used to validate the item, the
validity state of the item, and the list of validation errors encountered during
the validation of the item.

With respect to XML Schema, SchemaPath does not change the set of PSVI
properties associated to elements and attributes of the instance document. In
fact, the alternatives of a conditional declaration do not survive the validation
process: they are used only to decide the proper type to assign to an element.
In a way, they are similar to a type attribution via the xsi:type mechanism.

Therefore the output events generated by our streaming SchemaPath val-
idator concerns the PSVI properties associated to elements and attributes of
the document. Due to space constraints in this paper we do not consider the
full set of PSVI properties, but rather a minimal one: [type definition] and
[validity]. For a given element or attribute node, [type definition] indi-
cates the type definition used to validate it; [validity] indicates the validity
state of the item, i.e. valid, invalid, or notKnown: the third value is used
when it is not possible to decide whether the item is valid or not.

When our validator receives a startElement() event for an element e it
sends the event to the downstream application. Furthermore, it searches for a

5



<xs:element name="quantity">

<xs:alt cond="following-sibling::unit=’meters’" type="xs:decimal"

priority="2.0" />

<xs:alt cond="following-sibling::unit=’items’" type="xs:integer"

priority="1.0" />

</xs:element>

Figure 3: Sample conditional declaration with conditions on following elements

type definition to use to validate e. If such a type is found, the validator also
outputs the event typeDefinition(type), informing the downstream applica-
tion that the value of the property [type definition] of e is type.

Similarly when the validator receives an endElement() for e, it sends the
event downstream and checks whether the content of e satisfies the associ-
ated type definition. If the check succeeds, the validator outputs the event
validity(valid), otherwise it outputs the event validity(invalid).

However, the presence of conditional declarations affects the validation pro-
cess meaning that our validator is not always able to decide the PSVI property
[type definition] for an element node at the corresponding startElement()
event. Similarly, our SchemaPath validator cannot be always able to decide the
[validity] property of an element at the corresponding endElement() event.
This is is not due to a limitation of the implementation, but is rather intrinsic
in certain co-constraints, as we are going to see in Section 3.1.

3.1 Other Output Events

Consider the following co-constraint:

if the element quantity is followed by a sibling unit with value
"meters", it has to be considered a decimal number; otherwise, if
unit has value "items", quantity has to be considered an integer.

It is properly defined by the element declaration of Figure 3. Let’s leave
aside SchemaPath for the moment, and suppose that the co-constraint has to
be checked on the following quantity element:

<invoiceLine>
<quantity>10.2</quantity>
<unit>meters</unit>

</invoiceLine>

According to its definition quantity has to be treated as a decimal.
Within a streaming environment, when the start-tag for quantity is read,

it is not possible to know if the element has to be considered a decimal or an
integer, because the element unit has not been read yet. Note that this is

6



not a limitation of the SchemaPath language (that we are still ignoring for the
moment), but rather an intrinsic property imposed by the co-constraint itself.

In this case, the most reasonable behaviour for any streaming validator is
to inform the downstream application that the type of quantity is either a
decimal or an integer but that it is not possible to decide among the two.

Similarly when the end-tag of quantity is read, it is not yet possible to
know if the element has to be considered a decimal or an integer. Consequently,
it is not possible to know if quantity is valid or invalid. Indeed, "10.2" is
considered a decimal but not an integer. Again, this is due to the nature of the
co-constraint itself.

The most reasonable behaviour for a validator in this case is to inform the
downstream application that quantity may be valid or invalid, depending on
the value of its sibling unit.

We now come back to SchemaPath and our streaming validator. According
to the declaration of Figure 3, at the startElement() event for quantity, our
validator does not know if the type to assign to the element is either xs:decimal,
xs:integer, or xs:error (the type assigned by the default alternative, see
Section 2.1). Our validator informs the downstream application about all the
types that may be assigned to quantity, sending the following output events:2

startElement(quantity, 5, 3)
possibleTypeDefinition(xs:decimal, alt1)
possibleTypeDefinition(xs:integer, alt2)
possibleTypeDefinition(xs:error, alt3)

where alt1, alt2, and alt3 represent respectively the first, the second and the
default alternatives of the declaration.

When the validator receives the endElement event for quantity, it is still
unable to decide which condition quantity satisfies. Consequently, it cannot
know if the value "10.2" has to be validated against xs:decimal, xs:integer
or xs:error, and thus it cannot know if quantity is valid. Our streaming
processor performs the validation against all the three types and outputs the
following events:

endElement(quantity, 5, 3)
possibleValidity(valid, alt1)
possibleValidity(invalid, alt2)
possibleValidity(invalid, alt3)

informing the downstream application about the fact that quantity has to be
considered valid if the first alternative will be chosen, invalid otherwise.

Finally, when the validator receives the end element event for unit it pro-
cesses the event and as result obtains that quantity satisfies the XPath condi-
tion of the first alternative (it has a following sibling unit with value "meters").
Since the first alternative has the greatest priority among the alternatives of the

2We assume quantity is the fifth node of the document and is located at depth level 3.

7



<xs:element name="quantity">

<xs:alt cond="preceding-sibling::unit=’meters’" type="xs:decimal"

priority="2.0" />

<xs:alt cond="preceding-sibling::unit=’items’" type="xs:integer"

priority="1.0" />

</xs:element>

Figure 4: A conditional declaration with conditions using backward axes.

declaration, the validator can assert that the second and the default alternatives
can be discarded and thus that the first alternative has to be chosen. The val-
idator communicates these results to the downstream application through the
events:

removeAlternative(5, alt2)
removeAlternative(5, alt3)
assignAlternative(5, alt1)

Note that the downstream application is informed that the node identified
by 5 (i.e. quantity) is assigned the first alternative, and thus the application
can infer that the type definition of quantity is xs:decimal and the element
has to be considered valid.

4 Evaluating the XPath Conditions

In this section we describe how our validator evaluates the XPath conditions
used by the SchemaPath specification.

An element conditionally declared is assigned the proper type definition on
the base of the evaluation of the XPath conditions specified within its condi-
tional declaration. Consequently, the result of the validation of the element
depends on the evaluation of such XPath predicates. Thus, within a stream-
ing validation environment it is crucial to evaluate the XPath conditions of a
conditional declaration in a streaming fashion.

Unfortunately streaming evaluation of XPath is not so easy to implement.
Indeed an XPath predicate can be used to specify a condition on nodes preceding
(in document order) the item for which it has to be evaluated. This occurs
when the XPath expression makes use of location-steps with backward axes (i.e.
ancestor::, parent::, preceding::, etc).

In Figure 4 a conditional declaration making use of “backward conditions” is
shown. Through that declaration, an element quantity is assigned one among
two alternative types on the base of the value of a sibling element unit preceding
it.

Suppose the declaration of Figure 4 has to be used by the streaming Sche-
maPath processor to validate the following quantity element:

8



<invoiceLine>
<unit>meters</unit>
<quantity>10.2</quantity>

</invoiceLine>

The validator cannot start to evaluate the XPath predicates of the declara-
tion after the start-tag of the element quantity has been read: it would be too
late. Indeed, the nodes selected by the location-step preceding-sibling::unit
(used within both the conditions) would have been already read by the parser.
Since the validator does not rely on an in-memory representation of the entire
document and the parser cannot read multiple times a given portion of the
XML document, the validator would not be able to recognize the nodes selected
by the backward location-step, and thus it would not be able to decide which
condition the element quantity satisfies.

In order to overcome this kind of difficulties, the XPath conditions of a Sche-
maPath specification pass through a pre-processing phase performed before the
validation process starts, and able to produce an XPath expression with no
reverse axes. The evaluation is then performed on the obtained expression.

4.1 XPath Pre-Processing

Each XPath predicate of a conditional declaration is transformed into an abso-
lute location-path, which is in turn transformed into a semantically equivalent
location-path with no reverse-axes.

For example, consider the first alternative of the element declaration of Fig-
ure 4. The obtained absolute location-path is the following:

/descendant::quantity[preceding-sibling::unit="meters"]

In order to remove the reverse-axes, such an expression is then transformed
through some rewriting rules into the following location-path:3

/descendant::quantity[/descendant::unit[self::node()="meters"]/
following-sibling::node() == self::node()]

Note that the obtained expression selects all the elements of the instance doc-
ument named quantity and preceded by a sibling unit with value "meters".

The rewriting algorithm actually used in our implementation is that pre-
sented in [12], it is called rare and it is mainly based on the symmetry relating
reverse and forward axes.

4.2 Streaming Evaluation

Our validator does not evaluate the XPath predicates as expressed within the
conditional declarations, but for each of them it evaluates an absolute location-
path with no reverse axes.

3The binary operator == expresses the node equality based on identity. An expression p1
== p2 is true iff the location-path p1 selects a node also selected by the location-path p2.

9



To be more precise, the validator delegates the evaluation of a location-path
to a streaming XPath evaluator. The validator sends to each evaluator (there is
an evaluator for each XPath condition present in the SchemaPath specification)
the input events it receives from the parser.

During the evaluation process of a location-path, an evaluator informs the
validator (through events) about which nodes are selected and which nodes are
not selected by the location-path. For example, consider the absolute location-
path shown in Section 4.1. For each quantity element of the instance document,
the streaming evaluator informs the validator whether the element belongs to
the node-set selected by the location-path or not. Based on this information, the
validator decides which alternatives have to be discarded and which alternative
has to be assigned to the element.

The algorithm used to evaluate an absolute location-path is an extended
version of χαoς [2]. In our algorithm, each time a (forward) location-step has
to be evaluated with respect to a context node, a Deterministic Finite State
Automata (DFA) recognizing all the nodes selected by the location-step is cre-
ated. The DFA accepts as input the events produced by the parser of the XML
document. It has an initial state, one or more final states, some intermediate
states, and a sink state. The transitions from a state to another depends on the
axis of the corresponding location-step and the depth-level of the context node
(i.e. a DFA is parameterized on the depth-level of the context node for which it
has to be evaluated). For every DFA there is a sequence of input events making
it transiting into the sink state. Once such a state is reached, the DFA can be
discarded.

If with a start element event for a node n, a DFA transits into a final state,
the appropriate actions are taken:

• if the location-step corresponding to the DFA is followed by another
location-step a DFA, parametric on the depth-level of n, for such a location-
step is created;

• if the location-step corresponding to the DFA has a predicate containing
a location-path, a DFA for the first location-step of such a location-path
is created and it is parameterized on the depth-level of n;

• if the location-step corresponding to the DFA has no predicate and it is
the last location-step of a location-path, then n is a node selected by such
location-path.

The algorithm is more involved than described here. In fact, it handles the
presence of absolute location-paths within a predicate of a location-step, and
it also handles the functions and operators defined by XPath 1.0. However,
because of space limitations we do not discuss these aspects.

10



5 Implementation

Our streaming SchemaPath validator has been realized patching the source
code of Xerces2 [15], a streaming XML Schema validating parser. We also
implemented the streaming evaluator for absolute location-paths, used by the
validator.

The implementation is a prototype, whose purpose is to show that Schema-
Path allows a streaming validation. It has some limitations concerning both
the SchemaPath validator and the XPath evaluator. For instance, our val-
idator does not correctly handle the default attributes conditionally declared.
The XPath evaluator does not implement the algorithm rare used to trans-
form a location-path into a reverse-axes-free one. Furthermore, some functions
and operators are not handled. Such limitations have not been overcome yet
but they do not invalidate the approach of the implementation. Our valida-
tor can be downloaded from: http://tesi.fabio.web.cs.unibo.it/Tesi/
TesiMarinelliSpecialistica.

6 Related Work

The problem of XML streaming validation has already been faced. In [6, 13]
the authors investigate the problem of validating an XML document against a
DTD in a streaming fashion, using finite-state machines. However, the authors
consider only structural constraints, leaving aside co-constraints. Similarly,
Xerces2 [15] provides a streaming XML Schema validator, but XML Schema
does not support co-constraints.

For what concerns the streaming evaluation of XPath expressions, several re-
search groups have already faced the problem. In [2] the authors propose χαoς,
an algorithm for the streaming evaluation of absolute location-paths. χαoς is
the algorithm we have modified and extended in order to evaluate our XPath
expressions in our validator. Its main contribution is represented by the ability
of handling backward and forward axes. However, the subset of XPath con-
sidered is limited with respect to the purposes of SchemaPath. Indeed, the
handled axes are ancestor::, parent::, child::, and descendant::; χαoς
handles just one boolean operator (and); no XPath function is considered; and
the predicates of a location-step cannot contain an absolute location-path. Fur-
thermore, the purpose of χαoς is to create a compact memory representation of
the node-set selected by the evaluated XPath expression. On the other hand,
our XPath evaluator has the purpose of signaling during the evaluation process
which nodes are and which nodes are not selected by the location-path.

Other contributions come from the research on the problem of Selective
Dissemination of Information (SDI), where a system receives a streamed XML
document and has to send it to a set of registered users, on the base of their
profiles. In [1] the authors propose XFilter, an algorithm for the streaming
evaluation of a large number (thousands) of XPath expressions (each expression
represents a user profile) on a XML document. XFilter transforms each XPath

11

http://tesi.fabio.web.cs.unibo.it/Tesi/TesiMarinelliSpecialistica
http://tesi.fabio.web.cs.unibo.it/Tesi/TesiMarinelliSpecialistica


into a nondeterministic finite automata, accepting SAX events as input. The
XPath subset considered in [1] accepts only forward axes, and thus ignore the
problem of backward axes.

In [9] the authors propose another technique for the streaming evaluation of
a large set of XPath queries on a XML document. The idea is to collect all the
XPath expressions and to transform them into a unique Deterministic Pushdown
Automata (PDA) accepting SAX events as input, and whose states are computed
lazily during the evaluation process. The main contribution concerns the time-
saving in the evaluation of those predicates common to many XPath queries.
Again, the subset of XPath considered in [9] excludes backward axes.

In [12] the authors do not propose an algorithm for the streaming evaluation
of XPath expressions, but rather a rewriting algorithm called rare able to trans-
form an XPath expression with reverse axes into an equivalent expression with
no reverse axes. Each rule is mainly based on the symmetry relating forward
and backward axes. As already discussed, rare is used by our validator in order
to pre-process the XPath conditions used within the SchemaPath specification.

7 Conclusions

In this paper we proposed an approach for validating an XML document in
a streaming fashion against a schema specifying co-constraints. Our approach
relies on SchemaPath as the validation language, since it allows to define co-
constraints and structural and datavalues constraints.

We described our streaming SchemaPath validator, obtained modifying
Xerces2. In particular, we discussed the approach to the streaming verifica-
tion of co-constraints, and the streaming evaluation of the XPath conditions.

We think our work represents a contribution to the problem of the streaming
validation of XML documents, because it expressly faces the issue of evaluating
co-constraints in a streaming fashion.

Our work is also an important contribution for the SchemaPath language,
because it demonstrates how it can be used in those contexts where a streaming
validation is required. However, some remarks are worth.

As discussed in Section 3, there are cases where a conditionally declared
element cannot be assigned a type definition during the processing of its start
element event. It means that the downstream application is informed about the
presence of a new element, for which it is temporary impossible to know the
type. Consequently, the application cannot decide neither the required amount
of memory for the content of the element, nor how such memory has to be
structured. However, our validator informs the application about all the possi-
ble types that can be assigned to the new element. As more events are processed,
the validator informs the application about the type definitions becoming im-
possible. Thus, the downstream application, after allocating a memory area for
each possible type, can then progressively get rid of the superfluous allocated
memory areas.

There are also cases where during the processing of the relevant end element

12



event, it is not possible to assign a type to a conditionally declared element, and
thus it is not possible to decide if the closed element is valid or not. In such
cases, the downstream application does not know if the information represented
by the element has to be considered valid or not. What has to be studied are
the effects of such cases on a downstream application.

Another future work is to consider XPath 2.0 [3] as language to express the
conditions of the conditional declarations. XPath 2.0 makes use of a type system
based on XML Schema. Thus, it has to be studied whether the type system of
the language is compatible with the conditional type assignment of elements and
attributes. Furthermore, we will study if our approach of streaming evaluation
of XPath 1.0 expressions works also for the streaming evaluation of XPath 2.0.

Finally, our prototype implementation has some limitations, implementative
work has to be done in order to overcome them.

8 Acknowledgements

We thank Prof. Fabio Vitali, the supervisor of our work and the main inventor
of SchemaPath.

References

[1] M. Altinel and M. J. Franklin. Efficient Filtering of XML Documents for
Selective Dissemination of Information. In Proceedings of the 26th Interna-
tional Conference on Very Large Data Bases, pages 53–64, Cairo, Egypt,
September 2000. Morgan Kaufmann Publishers Inc.

[2] C. M. Barton, P. G. Charles, D. Goyal, M. Raghavachari, V. Josifovski,
and M. F. Fontoura. Streaming XPath Processing with Forward and Back-
ward Axes. In Proceedings of the 19th International Conference on Data
Engineering (ICDE), pages 455–466, Bangalore, India, March 2003.

[3] A. Berglund, S. Boag, D. Chamberlin, M. F. F. M. Kay, J. Robie, and
J. Siméon. XML Path Language (XPath) 2.0. http://www.w3.org/TR/
2006/CR-xpath20-20060608/, June 2006. W3C Candidate Recommenda-
tion.

[4] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes Second
Edition. http://www.w3.org/TR/xmlschema-2, October 2004. W3C Rec-
ommendation.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. cois Yergeau.
Extensible Markup Language (XML) 1.0 (Fourth Edition). http://www.
w3.org/TR/REC-xml, August 2006. W3C Recommendation.

[6] C. Chitic and D. Rosu. On validation of XML streams using finite state
machines. In Proceedings of the 7th International Workshop on the Web

13

http://www.w3.org/TR/2006/CR-xpath20-20060608/
http://www.w3.org/TR/2006/CR-xpath20-20060608/
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml


and Databases: colocated with ACM SIGMOD/PODS 2004, volume 67,
pages 85–90, Paris, France, June 2004. ACM Press.

[7] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. http:
//www.w3.org/TR/xpath, November 1999. W3C Recommendation.

[8] J. Clark and M. Murata. RELAX NG. http://relaxng.org, 2001.

[9] A. Gupta and D. Suciu. Stream Processing of XPath Queries with Pred-
icates. In Proceeding of ACM SIGMOD Conference on Management of
Data, pages 419–430, San Diego, California, 2003. ACM Press.

[10] P. Marinelli. Validazione in streaming del linguaggio SchemaPath. Master’s
thesis, University of Bologna, 2006. Dissertation in English.

[11] P. Marinelli, C. Sacerdoti Coen, and F. Vitali. SchemaPath, a Minimal
Extension to XML Schema for Conditional Constraints. In Proceedings of
the Thirteenth International World Wide Web Conference, New York, May
2004.

[12] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking forward.
In Proc. of the EDBT Workshop on XML Data Management (XMLDM),
volume 2490 of LNCS, pages 109–127, Prague, Czech Republic, March 2002.
Springer-Verlag.

[13] L. Segoufin and V. Vianu. Validating streaming XML documents. In Pro-
ceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 53–64, Madison, Wisconsin, June
2002. ACM Press.

[14] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML
Schema Part 1: Structures Second Edition. http://www.w3.org/TR/
xmlschema-1/, October 2004. W3C Recommendation.

[15] Xerces2 Java Parser. http://xerces.apache.org/xerces2-j/, 2006.
The Apache Project XML.

14

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://relaxng.org
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://xerces.apache.org/xerces2-j/

	Introduction
	Background
	An Introduction to SchemaPath
	Validation Environment

	Streaming SchemaPath Validation Outcome
	Other Output Events

	Evaluating the XPath Conditions
	XPath Pre-Processing
	Streaming Evaluation

	Implementation
	Related Work
	Conclusions
	Acknowledgements

