
UITP 2006

Tinycals: step by step tacticals

Claudio Sacerdoti Coen 1 Enrico Tassi 2 Stefano Zacchiroli 3

Department of Computer Science, University of Bologna
Mura Anteo Zamboni, 7 — 40127 Bologna, ITALY

Abstract

Most of the state-of-the-art proof assistants are based on procedural proof lan-
guages, scripts, and rely on LCF tacticals as the primary tool for tactics composi-
tion. In this paper we discuss how these ingredients do not interact well with user
interfaces based on the same interaction paradigm of Proof General (the de facto
standard in this field), identifying in the coarse-grainedness of tactical evaluation
the key problem.

We propose Tinycals as an alternative to a subset of LCF tacticals, showing that
the user does not experience the same problem if tacticals are evaluated in a more
fine-grained manner. We present the formal operational semantics of tinycals as
well as their implementation in the Matita proof assistant.

Key words: Interactive Theorem Proving, Small Step Semantics,
Tacticals

1 Introduction

Several state-of-the-art interactive theorem provers are based on procedural
proof languages; the user interacts with the system mainly via a textual script
that records the executed commands. The commands that allow progress
during a proof are called tactics and are executed atomically. NuPRL [10],
Isabelle [6], Coq [13], and Matita 4 (the proof assistant under development by
our team at the University of Bologna) are a few examples of those systems.

The best known proof assistant that provides only a declarative proof
language is Mizar [8], while a few others superpose a declarative proof language
on top of a procedural core. The most notable system in this category is

1 sacerdot@cs.unibo.it
2 tassi@cs.unibo.it
3 zacchiro@cs.unibo.it
4 http://matita.cs.unibo.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

http://matita.cs.unibo.it

Sacerdoti Coen, Tassi, and Zacchiroli

Isabelle, which in its Isabelle/Isar variant offers to users the declarative Isar
proof language [14].

With the exception of Mizar, both kind of systems share the same user
interface paradigm, inspired by the pioneering work on CtCoq [2] and now
incarnated by Proof General [1]. In this paradigm, the smallest amount of code
that can be executed atomically is the statement, which during a proof is either
a tactic (in the procedural world) or a single proof step (in the declarative
world).

Scripts can be understood only by step by step execution, getting feed-
back on the proof status from the system. Since feedback is given only be-
tween atomic steps (at the so called execution points), it is important to have
atomic steps as small as possible for the sake of understanding but, also of
debugging and proof maintenance. This is in contrast with tacticals, higher
order constructs which can be used to combine tactics together.

In this paper we propose a replacement for tacticals in order to obtain
smaller atomic execution steps. Our work is not relevant in the context of
declarative proof languages. However, those few systems where it is possible
to embed procedural scripts inside declarative proof steps may already provide
the functionality we suggest.

Tacticals first appeared in the LCF theorem prover [5] in 1979. Paradig-
matic examples of tacticals are sequential composition and branching. 5 The
former, usually written as “t1 ; t2”, takes two tactics t1 and t2 and apply t2 to
each of the conjectures resulting from the application of t1 to the current con-
jecture (of course its application can be repeated to obtain pipelines of tactics
“t1 ; t2 ; t3 ; · · · ”). The latter, “t ; [t1 | · · · | tn]”, takes n+1 tactics, applies
t to the current conjecture and, requiring t to return exactly n conjectures,
applies t1 to the first returned conjecture, t2 to the second, and so forth.

Tacticals improve procedural proof languages providing concrete advan-
tages, that we illustrate with Figure 1. The concrete syntax used in the figure
is that of the Matita proof assistant.

Proof structuring. Using branching, the script representation of proofs can
mimic the structure of the proof tree (the tree having conjectures as nodes
and tactic-labeled arcs). Since proof tree branches usually reflect conceptual
parts of the pen and paper proof, the branching tactical helps in improving
scripts readability (on the average very poor, if compared with declara-
tive proof languages). Even maintainability of proof scripts is improved by
the use of branching, for example when hypothesis are added, removed or
permuted.

For instance, in the right hand side of Figure 1 it is now clear that elim f

splits the proof in two branches; both of them (selected by “[1,2:”) begin
with the same tactics until each branch is split again by the application of
the le times lemma. Of the four branches, the second and third one (se-

5 In this paper the term “branching” is used to refer to LCF’s THENL tactical

2

Sacerdoti Coen, Tassi, and Zacchiroli

theorem lt_O_defactorize_aux:
\forall f:nat_fact.
\forall i:nat.
O < defactorize_aux f i.
intro. elim f.
simplify. unfold lt.
rewrite > times_n_SO.
apply le_times.
change with (O < \pi _ i).
apply lt_O_nth_prime_n.
change with (O < (\pi _ i)^n).
apply lt_O_exp.
apply lt_O_nth_prime_n.
simplify.unfold lt.
rewrite > times_n_SO.
apply le_times.
change with (O < (\pi _ i)^n).
apply lt_O_exp.
apply lt_O_nth_prime_n.
change with
(O < defact n1 (S i)).

apply H.

theorem lt_O_defactorize_aux:
\forall f:nat_fact.
\forall i:nat.
O < defactorize_aux f i.
intro; elim f;
[1,2:
simplify; unfold lt;
rewrite > times_n_SO;
apply le_times;
[change with (O < \pi _ i);
apply lt_O_nth_prime_n

|2,3:
change with (O < (\pi _ i)^n);
apply lt_O_exp;
apply lt_O_nth_prime_n

| change with
(O < defact n1 (S i));

apply H]].

Fig. 1. The same proof with (on the right) and without (on the left) tacticals.

lected by “|2,3:”) are proved by the same tactics, being proofs of the same
fact. All the tactics that are not followed by branching do not introduce
ramifications in the proof.

In practice, the proof on the left hand side would be written by using
indentation and blank lines to understand where branches start and end.
This way readability is improved, but a lesser effect is achieved for proof
maintenance. Moreover, the system does not verify in any way the layout
of the proof and does not guarantee consistency when the script is changed.
We expect that users will abandon this behaviour as soon as an alternative
without drawbacks — not the case of LCF tacticals — will surface.

Notice that the selection of multiple branches at a time we propose in
this paper is an improvement over the standard branching tactical.

Conciseness. As code factorization is a good practice in programming, proof
factorization is in theorem proving. The use of tacticals like sequential
composition reduce the need of copy-and-paste in proof scripts helping in
factorizing common cases in proofs (so frequent in formal proofs pertaining
to the computer science field). Conciseness is evident in Figure 1.

In all the proof assistants we are aware of, tacticals are evaluated atomically
and placing the execution point in the middle of complex tacticals (for example
at occurrences of “;” in tactic pipelines) is not allowed. In Figure 1, this means
that having the execution point at the beginning of the proof and asking the

3

Sacerdoti Coen, Tassi, and Zacchiroli

system to move it forward (i.e. to execute the next statement), the user will
result in a “proof completed” status, without having any feedback of the inner
proof status the system passed through. The only way for the user to inspect
those status — a frequent need, for instance for script maintenance or proof
presentation — is to manually de-structure the complex tacticals.

The big step evaluation of tacticals has also drawbacks on how proof au-
thors develop their proofs. Since it is not always possible to predict the out-
come of complex tactics, the following is common practice:

(i) evaluate the next tactic of the script;

(ii) inspect the set of returned conjectures;

(iii) decide whether the use of “;” or “[” is appropriate;

(iv) if it is: retract the last statement, add the tactical, go to step (i).

Last, but not less important, is the imprecise error reporting of big step
evaluation of tacticals. Consider the frequent case of a script breaking and the
user having to fix it. The error message returned by the system may concern
an inner status unknown to the user, since the whole tactical is evaluated at
once. Moreover, the error message will probably concern terms that do not
appear verbatim in the script. Finding the statement that need to be fixed
is usually done replacing tactics with identity tactic proceeding outside-in,
until the single failing tactic is found. This technique is not only error prone,
but is even not reliable in presence of side-effects (tactics closing conjectures
other than that on which they are applied), since the identity tactic has no
side-effects and branches of the proof may be affected by their absence.

We claim that the tension between tacticals and Proof General like inter-
faces can be broken. In this paper we present a tiny language of tacticals
— the so called tinycals — which solves this issue. Tinycals can be evalu-
ated in small steps, enabling the execution point to be placed inside complex
structures like pipelines or branching constructs. This goal is achieved by de-
structuring the syntax of tacticals and stating the semantics as a transition
system over evaluation status, that are structures richer than the proof status
tactics act on. Note that de-structuring does not necessarily mean changing
the concrete syntax of tacticals, but rather enabling parsing and immediate
evaluation of tactical fragments like “[” alone.

The paper is organized as follows. Section 2 describes the abstract syn-
tax of tinycals together with their small-step operational semantics. Other
advantages of tinycals with respect to LCF tacticals are discussed there as
well. Section 3 presents the tinycals implementation in Matita. Section 4
deals with tacticals not covered by tinycals. Section 5 discusses related work
and Section 6 concludes the paper.

4

Sacerdoti Coen, Tassi, and Zacchiroli

2 Tinycals: syntax and semantics

The grammar of tinycals is reported in Table 1, where 〈L〉 is the top-level non-
terminal generating the script language. 〈L〉 is a sequence of statements 〈S〉.
Each statement is either an atomic tactical 〈B〉 (marked with “tactic”) or a
tinycal.

Note that the part of the grammar related to the tinycals themselves is
completely de-structured. The need for embedding the structured syntax of
LCF tacticals (nonterminal 〈B〉) in the syntax of tinycals will be discussed
in Section 4. For the time being, the reader can suppose the syntax to be
restricted to the case 〈B〉 ::= 〈T 〉.

Table 1
Abstract syntax of tinycals and core LCF tacticals.

〈S〉 ::= (statements)

“tactic” 〈B〉 (tactic)

| “.” (dot)

| “;” (semicolon)

| “[” (branch)

| “|” (shift)

| i1,. . ., in“:” (projection)

| “ ∗ :” (wild card)

| “accept” (acknowledge)

| “]” (merge)

| “focus” [g1;· · ·; gn] (selection)

| “done” (de-selection)

〈L〉 ::= (language)

〈S〉 (statement)

| 〈S〉 〈S〉 (sequence)

〈B〉 ::= (tacticals)

〈T 〉 (tactic)

| “try” 〈B〉 (recovery)

| “repeat” 〈B〉 (looping)

| 〈B〉“;”〈B〉 (composition)

| 〈B〉“;[” (branching)

〈B〉“|” . . . “|”〈B〉“]”

〈T 〉 ::= . . . (tactics)

We will now describe the semantics of tinycals which is parametric in the
proof status tactics act on and also in their semantics (see Table 2).

A proof status is the logical status of the current proof. It can be seen
as the current proof tree, but there is no need for it to actually be a tree.
Matita for instance just keeps the set of conjectures to prove, together with a
proof term where meta-variables occur in place of missing components. From
a semantic point of view the proof status is an abstract data type. Intuitively,
it must describe at least the set of conjectures yet to be proved. A Goal is
another abstract data type used to index conjectures.

5

Sacerdoti Coen, Tassi, and Zacchiroli

Table 2
Semantics parameters.

proof status: ξ

proof goal: goal

tactic application: apply tac : T → ξ → goal → ξ × goal list× goal list

The function apply tac implements tactic application. It consumes as in-
put a tactic, a proof status, and a goal (the conjecture the tactic should act
on), and returns as output a proof status and two lists of goals: the set of
newly opened goals and the set of goals which have been closed. This choice
enables our semantics to account for side-effects, that is: tactics can close
goals other than that on which they have been applied, a feature implemented
in several proof assistants via existential or meta-variables [4,9]. The proof
status was not directly manipulated by tactics in LCF because of the lack of
meta-variables and side effects.

In the rest of this section we will define the semantics of tinycals as a
transition (denoted by −→) on evaluation status. Evaluation status are
defined in Table 3.

Table 3
Evaluation status.

task = int× (Open goal | Closed goal) (task)

Γ = task list (context)

τ = task list (“todo” list)

κ = task list (dot’s continuations)

ctxt tag = B | F (stack level tag)

ctxt stack = (Γ× τ × κ× ctxt tag) list (context stack)

code = 〈S〉 list (statements)

status = code × ξ × ctxt stack (evaluation status)

The first component of the status (code) is a list of statements of the
tinycals grammar. The list is consumed, one statement at a time, by each
transition. This choice has been guided by the un-structured form of our
grammar and is the heart of the fine-grained execution of tinycals.

The second component is the proof status, which we enrich with a context
stack (the third component). The context stack, a representation of the proof
history so far, is handled as a stack: levels get pushed on top of it either
when the branching tinycal “[” is evaluated, or when “focus” is; levels get
popped out of it when the corresponding closing tinycals are (“]” for “[” and
“done” for “focus”). Since the syntax is un-structured, we can not ensure

6

Sacerdoti Coen, Tassi, and Zacchiroli

statically proper nesting of tinycals, therefore each stack level is equipped
with a tag which annotates it with the creating tinycal (B for “[” and F for
“focus”). In addition to the tag, each stack level has three components Γ, τ
and κ respectively for active tasks, tasks postponed to the end of branching
and tasks posponed by “.”. The role of these componenets will be explained
in the description of the tinycals that acts on them. Each component is a
sequence of numbered tasks. A task is an handler to either a conjecture yet
to be proved, or one which has been closed by a side-effect. In the latter case
the user will have to confirm the instantiation with “accept”.

Each evaluation status is meaningful to the user and can be presented by
slightly modifying already existent user interfaces. Our presentation choice
is described in Section 3. The impatient reader can take a sneak preview of
Figure 2, where the interesting part of the proof status is presented as a note-
book of conjectures to prove, and the conjecture labels represent the relevant
information from the context stack by means of: 1) bold text (for conjectures
in the currently selected branches, targets of the next tactic application; they
are kept in the Γ component of the top of the stack); 2) subscripts (for not yet
selected conjectures in sibling branches; they are kept in the Γ component of
the level below the top of the stack). The rest of the information hold in the
stack does not need to be shown to the user since it does not affect immediate
user actions.

We describe first the semantics of the tinycals that do not involve the
creation of new levels on the stack. The semantics is shown in Table 4, where
some utility functions (described in Appendix A) are used.

Tactic application

Consider the first case of the tinycals semantics of Table 4. It makes use of
the first component (denoted Γ) of a stack level, which represent the “current”
goals, that is the set of goals to which the next tactic evaluated will be applied.

When a tactic is evaluated, the set Γ of current goals is inspected (expecting
to find at least one of them), and the tactic is applied in turn to each of them in
order to obtain the final proof status. At each step i the two sets Co

i and Gc
i of

goals opened and closed so far are updated. This process is atomic to the user
(i.e. no feedback is given while the tactic is being applied to each of the current
goals in turn), but she is free to cast off atomicity using branching. After the
tactic has been applied to all goals, the new set of current goals is created
containing all the goals which have been opened during the applications, but
not already closed. They are marked (using the mark as handled utility) so
that they do not satisfy the unhandled predicate, indicating that some tactic
has been applied to them. Goals closed by side effects are removed from τ
and κ and marked as Closed in S. The reader can find a datailed description
of this procedure in Appendix A.

7

Sacerdoti Coen, Tassi, and Zacchiroli

Table 4
Basic tinycals semantics.

〈“tactic” 〈T 〉 ::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξn, S
′〉 n ≥ 1

where [g1;· · ·; gn] = get open goals in tasks list(Γ)

and



〈ξ0, G
o
0, G

c
0〉 = 〈ξ, [], []〉

〈ξi+1, G
o
i+1, G

c
i+1〉 = 〈ξi, G

o
i , G

c
i〉 gi+1 ∈ Gc

i

〈ξi+1, G
o
i+1, G

c
i+1〉 = 〈ξ′, (Go

i \Gc) ∪Go, Gc
i ∪Gc〉 gi+1 6∈ Gc

i

where 〈ξ′, Go, Gc〉 = apply tac(T, ξi, gi+1)

and S ′ = 〈Γ′, τ ′, κ′, t〉 ::close tasks(Gc
n, S)

and Γ′ = mark as handled(Go
n)

and τ ′ = remove tasks(Gc
n, τ)

and κ′ = remove tasks(Gc
n, κ)

〈“;”::c, ξ, S〉 −→ 〈c, ξ, S〉

〈“accept”::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξ, S ′〉

where Γ = [〈j1, Closed g1〉; · · · ; 〈jn, Closed gn〉] n ≥ 1

and Gc = [g1;· · ·; gn]

and S ′ = 〈[], remove tasks(Gc, τ), remove tasks(Gc, κ), t〉

:: close tasks(Gc, S)

〈“.”::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξ, 〈[l1], τ, [l2;· · ·; ln] ∪ κ, t〉 ::S〉 n ≥ 1

where get open tasks(Γ) = [l1;· · ·; ln]

〈“.”::c, ξ, 〈Γ, τ, l ::κ, t〉 ::S〉 −→ 〈c, ξ, 〈[l], τ, κ, t〉 ::S〉

where get open tasks(Γ) = []

Sequential composition

Since sequencing is handled by Γ, the semantics of “;” is simply the identity
function. We kept it in the syntax of tinycal for preserving the parallelism
with LCF tacticals.

8

Sacerdoti Coen, Tassi, and Zacchiroli

Side-effects handling

“accept” (third case in Table 4) is a tinycal used to deal with side-effects.
Consider for instance the case in which there are two current goals on which the
user branches. It can happen that applying a tactic to the first one closes the
second, removing the need of the second branch in the script. Using tinycals
the user will never see branches she was aware of disappear without notice.
Cases like the above one are thus handled marking the branch as Closed

(using the close tasks utility) on the stack and requiring the user to manually
acknowledge what happened on it using the “accept” tinycal, preserving the
correspondence among script structure and proof tree.

Example 2.1 Consider the following script:

apply trans_eq; [apply H | apply H1 | accept]

where the application of the transitivity property of equality to the conjecture
L = R opens the three conjectures ?1 : L=?3, ?2 : ?3 =R and ?3 : nat. Apply-
ing the hypothesis H instantiates ?3, implicitly closing the third conjecture,
that thus has to be acknowledged.

Local de-structuring

Structuring proof scripts enhances their readability as long as the script
structure mimics the structure of the intuition behind the proof. For this
reason, authors do not always desire to structure proof scripts down to the
most far leaf of the proof tree.

Example 2.2 Consider for instance the following script snippet template:

tac1;

[tac2. tac3.

| tac4; [tac5 | tac6]]

Here the author is trying to mock-up the structure of the proof (two main
branches, with two more branches in the second one), without caring about
the structure of the first branch.

Tacticals do not allow un-structured scripts to be nested inside branches.
In the example, they would only allow to replace the first branch with the
identity tactic, continuing the un-structured snippet “tac2. tac3.” at the end
of the snippet, but this way the correspondence among script structure and
proof tree would be completely lost. The semantics of the tinycal “.” (last
two cases of Table 4) accounts for local use of un-structured script snippets.

When “.” is applied to a non-empty set of current goals, the first one is
selected and become the new singleton current goals set Γ. The remaining
goals are remembered in the third component of the current stack level (dot’s
continuations, denoted κ), so that when the “.” is applied again on an empty
set of goals they can be recalled in turn. The locality of “.” is inherited by
the locality of dot’s continuation κ to stack levels.

9

Sacerdoti Coen, Tassi, and Zacchiroli

Table 5
Branching tinycals semantics.

〈“[”::c, ξ, 〈[l1;· · ·; ln], τ, κ, t〉 ::S〉 −→ 〈c, ξ, S ′〉 n ≥ 2

where renumber branches([l1;· · ·; ln]) = [l′1; · · · ; l′n]

and S ′ = 〈[l′1], [], [], B〉 ::〈[l′2; · · · ; l′n], τ, κ, t〉 ::S

〈“|”::c, ξ, 〈Γ, τ, κ, B〉 ::〈[l1;· · ·; ln], τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S ′〉 n ≥ 1

where S ′ = 〈[l1], τ ∪ get open tasks(Γ) ∪ κ, [], B〉 ::〈[l2;· · ·; ln], τ ′, κ′, t′〉 ::S

〈i1,. . ., in“:”::c, ξ, 〈[l], τ, [], B〉 ::〈Γ′, τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S ′〉

where unhandled(l)

and ∀j = 1 . . . n, ∃lj = 〈j, sj〉, lj ∈ l ::Γ′

and S ′ = 〈[l1; · · · ; ln], τ, [], B〉 ::〈(l ::Γ′) \ [l1; · · · ; ln], τ ′, κ′, t′〉 ::S

〈“ ∗ :”::c, ξ, 〈[l], τ, [], B〉 ::〈Γ′, τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S ′〉

where unhandled(l)

and S ′ = 〈l ::Γ′, τ, [], B〉 ::〈[], τ ′ ∪ get open tasks(Γ) ∪ κ, κ′, t′〉 ::S

〈“]”::c, ξ, 〈Γ, τ, κ, B〉 ::〈Γ′, τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S ′〉

where S ′ = 〈τ ∪ get open tasks(Γ) ∪ Γ′ ∪ κ, τ ′, κ′, t′〉 ::S

〈“focus” [g1;· · ·; gn] ::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξ, S ′〉

where gi ∈ get open goals in status(S)

and S ′ = 〈mark as handled([g1; · · · ; gn]), [], [], F〉

::close tasks(〈Γ, τ, κ, t〉 ::S)

〈“done”::c, ξ, 〈[], [], [], F〉 ::S〉 −→ 〈c, ξ, S〉

Table 5 describes the semantics of tinycals that require a stack discipline.

10

Sacerdoti Coen, Tassi, and Zacchiroli

Branching

Support for branching is implemented by “[”, which creates a new level
on the stack for the first of the current goals. Remaining goals (the current
branching context) are stored in the level just below the freshly created one.
There are three different ways of selecting them. Repeated uses of “|” con-
sume the branching context in sequential order. i1,. . ., in“:” enables multiple
positional selection of goals from the branching context. “∗:” recall all goals of
the current branching context as the new set of current goals. The semantics
of all these branching tacticals is shown in the first five cases of Table 5.

Each time the user finishes working on the current goals and selects a
new goal from the branching context, the result of her work (namely the
current goals in Γ) needs to be saved for restoring at the end of the branching
construct. This is needed to implement the LCF semantics that provides
support for snippets like the following:

Example 2.3

tac1; [tac2 | tac3]; tac4

where the goals resulting by the application of tac2 and tac3 are re-flowed
together to create the goals set for tac4.

The place where we store them is the second component of stack levels
(todo list, denoted τ). Each time a branching selection tinycal is used the
current goals set (possibly empty) is appended to the todo list for the current
stack level.

When “]” is used to finish branching (fifth rule of Table 5), the todo list
τ is used to create the new set of current goals Γ, together with the goals
not handled during the branching (note that this is a small improvement over
LCF tactical semantics, where leaving not handled branches is not allowed).

Focusing

The pair of tinycals “focus”. . . “done” is similar in spirit to the pair
“[”. . . “]”, but is not required to work on the current branching context. With
“focus”, goals located everywhere on the stack can be recalled to form a new
set of current goals. On this the user is then free to work as she prefer, for
instance branching, but is required to close all of them before invoking “done”.

The intended use of “focus”. . . “done” is to deal with meta-variables and
side effects. The application of a tactic to a conjecture with meta-variables in
the conclusion or hypotheses can instantiate the meta-variables making other
conjectures false. In other words, in presence of meta-variables conjectures are
no longer independent and it becomes crucial to consider and close a bunch
or dependent conjectures together, even if in far away branches of the proof.
In these cases “focus”. . . “done” is used to select all the related branches for
immediate work on them. Alternatively, “focus”. . . “done” can be used to
jump on a remote branch of the tree in order to instantiate a meta-variable

11

Sacerdoti Coen, Tassi, and Zacchiroli

by side effects before resuming proof search from the current position.

Note that using “focus”. . . “done”, no harm is done to the proper struc-
turing of scripts, since all goals the user is aware of, if closed, will be marked
as Closed requiring her to manually “accept” them later on in the proof.

3 Implementation issues

Tinycals have been implemented in the Matita proof assistant. This section
describes the issues faced in their implementation.

Encoding of tacticals

Tacticals play two different roles in a proof assistant. They can be used
both in scripts and in tactic implementations. As a matter of fact at least
one tactical among sequential composition and branching is used in the im-
plementation of each derived tactic.

In this paper we propose the replacement of tacticals with tinycals. Tacti-
cals operate on proof status, while tinycals operate on evaluation status. This
is welcome when tinycals are used in scripts, since the additional information
kept in the evaluation status is the rich intermediate state we want to present
to the user. On the contrary, this datatype change does not allow the re-
placement of tacticals with tinycals in the implementation of derived tactics.
Thus we are immediately led to consider if it is possible to express tacticals
in terms of tinycals, in order to avoid an independent re-implementation of
related operations.

The answer is positive under additional assumptions on the abstract data
type of proof status. Intuitively, we need to define two “inverse” functions
to embed a proof status, a goal, and a code in an evaluation status (let it
be embed) and to project an evaluation status to a proof status and two
lists of opened and closed goals (let it be proj). Once the two functions are
implemented, we can express sequential composition and branching as follows:

(t1; t2)(ξ, g) = proj (eval(embed([t1; “; ”; t2], ξ, g))) (1)

(t; [t1| . . . |tn])(ξ, g) = proj (eval(embed([t; “[”; t1; “|”; . . . ; “|”; tn; “]”], ξ, g))) (2)

where eval is the transitive closure of −→ . For each status S the code of the
status eval(S) is empty.

The embed function is easily defined as:

embed(c, ξ, g) = 〈c, ξ, [〈g, [], [], F〉]〉

To define the proj function, however, we need to be able to compute the
set of goals opened and closed by eval(embed(c, ξ, g)) for any given code c,
proof status ξ and selected goal g. The formers are easily computed by the
get open goals in status utility of Appendix A. However, to compute the lat-
ter the information stored in an evaluation context is not enough.

12

Sacerdoti Coen, Tassi, and Zacchiroli

We say that tactics do not reuse goals whenever closed goals cannot be
re-opened (remember that a goal is just an handle to a conjecture, not the
conjecture itself). Concretely, it is possible to respect this property in the
implementation by keeping a global counter that represents the highest goal
index already used. When a tactic opens a new goal it picks the successor
of the counter, that is also incremented. When tactics do not reuse goals it
is possible to determine the goals closed by a sequence of evaluation steps by
comparing the set of open goals at the two extremes of the sequence. To make
this comparison it is possible to add to the proof status abstract data type a
method that returns the set of opened goals.

Let diff be the function that given two proof status ξ and ξ′ returns the
set of goals that were open in ξ and are closed in ξ′. For each proof status ξ
the projξ function is defined as:

projξ([], ξ
′, S) = (ξ′, get open goals in status(S), diff (ξ, ξ′))

The function proj ξ must be used in Equation (1) and Equation (2) in place
of proj .

Tinycals user interface

Tinycals would be worthless without a way to present evaluation status
to the user. Our current solution for the Matita user interface is shown in
Figure 2.

Fig. 2. Evaluation status representation in the Matita user interface.

We already had a Proof General like user interface with script and exe-
cution point (on the left of Figure 2) and a tabbed representation of the set

13

Sacerdoti Coen, Tassi, and Zacchiroli

of open conjectures (on the right) as sequents, using meta-variable indexes as
labels. What the user was missing to work with tinycals was a visual repre-
sentation of the stack. Our choice has been to represent the current branching
context as tab label annotations: all goals in the current goals set have their
labels typeset in boldface, goals of the current branching context have labels
prepended by |n (where n is their positional index), and goals already closed
by side-effects have strike-through labels like: ?n.

For instance in Figure 2, the only goal (in bold-face) the next tactic will
be applied to is 20 (i.e. Γ = [〈1, Open 20〉]), while goal 21 will be selected by
the next “|” tinycal.

This choice makes the user aware of which goals will be affected by a tactic
evaluated at the execution point, and of all the indexing information she might
need there. She indeed can see all meta-variable indexes (in case she wants
to “focus”) and all the positional indexes of goals in the current branching
context (for i1,. . ., in“:”and “∗:”). Yet, this user interface choice minimizes
the drift from the usual way of working with Proof General like interfaces.

4 A digression on the remaining tacticals

Of the basic LCF tacticals, we have considered so far only sequential compo-
sition and branching. It is worth discussing the remaining ones, in particular
try, || (or-else) and repeat.

The try T tactical, that never fails, applies the tactic T , behaving as the
identity if T fails. It is a particular case of the or-else tactical: T1||T2 behaves
as T1 if T1 does not fail, as T2 otherwise. Thus try T is equivalent to T ||id.

The try and or-else tacticals occur in a script with two different usages.
The most common one is after sequential composition: T1; try T2 or T1; T2||T3.
Here the idea is that the user knows that T2 can be applied to some of the
goals generated by T1 (and T3 to the others in the second case). So she is
faced with two possibilities: either use branching and repeat T2 (or T3) in
every branch, or use sequential composition and backtracking (encapsulated
in the two tacticals). Tinycals offer a better solution to either choice by
means of the projection and wild card tinycals: T1; [i1, . . . , in : T2|∗ : T3].
The latter expression is not also more informative to the reader, but it is also
computationally more efficient since it avoids the (maybe costly) application
of T2 to several goals.

The second usage of try and or-else is inside a repeat tactical. The repeat T
tactical applies T once, failing if T fails; otherwise the tactical recursively
applies T again on every goal opened by T until T fails, in which case it
behaves as the identity tactic.

Is it possible to provide an un-structured version of try T , T ||T ′, and
repeat T in the spirit of tinycals in order to allow the user to write and execute
T step by step inspecting the intermediate evaluation status? The answer is
negative as we can easily see in the simplest case, that of try T . Consider

14

Sacerdoti Coen, Tassi, and Zacchiroli

the statement T ; try (T1; T2) where sequential composition is supposed to be
provided by the corresponding tinycal. Let T open two goals and suppose
that “try” is executed atomically so that the evaluation point is just before
T1. When the user executes T1, T1 can be applied as expected to both goals in
sequence. Let ξ be the proof status after the application of T and let ξ1 and
ξ2 be those after the application of T1 to the first and second goal respectively.
Let now the user execute the identity tinycal “;” followed by T2 and let T2

fail over the first goal. To respect the intended semantics of the tactical, the
status ξ2 should be partially backtracked to undo the changes from ξ to ξ1,
preserving those from ξ1 to ξ2.

If the system has side effects the latter operation is undefined, since T1 ap-
plied to ξ could have instantiated meta-variables that controlled the behavior
of T1 applied to ξ1. Thus undoing the application of T1 to the first goal also
invalidates the previous application of T1 to the second goal.

Even if the system has no side effects, the requirement that proof status can
be partially backtracked is quite restrictive on the possible implementations
of a proof status. For instance, a proof status cannot be a simple proof term
with occurrences of meta-variables in place of conjectures, since backtracking a
tactic would require the replacement of a precise subterm with a meta-variable,
but there would be no information to detect which subterm.

As a final remark, the simplest solution of implementing partial backtrack-
ing by means of a full backtrack to ξ followed by an application of T1 to the
second goal only does not conform to the spirit of tinycals. With this imple-
mentation, the application of T1 to the second goal would be performed twice,
sweeping the waste of computational resources under the rug. The only hon-
est solution consists of keeping all tacticals, except branching and sequential
composition, fully structured as they are now. The user that wants to inspect
the behavior of T ; try T1 before that of T ; try (T1; T2) is obliged to do so by
executing atomically try T1, backtracking by hand and executing try (T1; T2)
from scratch. A similar conclusion is reached for the remaining tacticals. For
this reason in the syntax given in Table 1 the production 〈B〉 lists all the
traditional tacticals that are not subsumed by tinycals. Notice that atomic
sequential composition and atomic branching (as implemented in the previous
section) are also listed since tinycals cannot occur as arguments of a tactical.

5 Related work

Different presentations of the semantics of tacticals has been given in the
past. The first presentation has been given in [5] by Gordon et al. Although
a larger set of tacticals than that considered here was described in their work,
the problem of inspection of inner proof status was not considered. Proof
General-like interfaces were not available at the time, as well as meta-variables
and tactics with side-effects.

In [7], Kirchner described a small step semantics of Coq tacticals. Despite

15

Sacerdoti Coen, Tassi, and Zacchiroli

the minor expressive advantages offered by tinycals over the corresponding Coq
tacticals (like “focus”, “∗:”, i1,. . ., in“:”, the less constrained use of “[”, and
the structuring facilities implemented by “.” and “accept”), the formalization
of tinycals is more general and we believe that it can be applied to a large
class of proof assistants. In particular our semantics only assume an abstract
proof status and a very general type for tactic applications, while in [7] a very
detailed API for proof trees was assumed.

Delahaye in [3] described Ltac, a powerful meta-language which can be
used both by users and tactics implementors to write small automations at
the proof language level. Ltac is way more powerful than tinycals, featur-
ing constructs typical of high-level programming and defining their reduction
semantics. However, since its aim was different, Ltac fails to address the in-
teraction problem that tinycals do address.

Two alternative approaches for authoring structured HOL scripts have
been proposed in [11] and [12]. The first approach, implemented in Syme’s
TkHOL, is similar to the one presented in this paper but lacks a formal de-
scription. Moreover, unlike HOL, we consider a logic with meta-variables
which can be closed by side effects. Therefore the order in which branches
are closed by tactics is relevant and must be made explicit in the script. For
this reason we support tinycals like “focus” and i1,. . ., in“:” which were not
needed in TkHOL. The second approach, by Takahashi et al., implements syn-
tax directed editing by automatically claiming lemmata for each goal opened
by the last executed tactic. This technique breaks down with meta-variables
because they are not allowed in the statements of lemmata.

6 Conclusions

In this paper we presented the syntax and semantics of tinycals, a tactical
language able to mimic some of the LCF tacticals so widespread in state-
of-the-art proof assistants. Tinycals advantages over LCF tacticals is that
their syntax is un-structured and their evaluation proceeds step by step, en-
abling the user to start execution of a structured script before its completion.
Intermediate proof status can be inspected and tactics with side effects are
supported as well. The neat result is better integration with user interfaces
based on the CtCoq/Proof General paradigm. Some implementative issues
have also been discussed, and the extension of the approach to other tacticals
has been considered with negative results.

Tinycals have been implemented and are used in the Matita proof assistant
for the ongoing development of its standard library. Users experienced with
other proof assistants, in particular Coq, consider them a serious improvement
in the proof authoring interface. This is not a big figure (our users are just the
member of our research team at the time of writing), but is enough to motivate
our work on them, hoping to see them adopted soon in other systems.

16

Sacerdoti Coen, Tassi, and Zacchiroli

References

[1] Aspinall, D., Proof General: A generic tool for proof development, in: Tools
and Algorithms for the Construction and Analysis of Systems, TACAS 2000,
Lecture Notes in Computer Science 1785 (2000).

[2] Bertot, Y., The CtCoq system: Design and architecture, Formal Aspects of
Computing 11 (1999), pp. 225–243.

[3] Delahaye, D., “Conception de langages pour décrire les preuves et les
automatisations dans les outils d’aide à la preuve: une étude dans le cadre du
système Coq,” Ph.D. thesis, Université Pierre et Marie Curie (Paris 6) (2001).
URL http://cedric.cnam.fr/∼delahaye/publications/these-delahaye.
ps.gz

[4] Geuvers, H. and G. I. Jojgov, Open proofs and open terms: A basis for
interactive logic, in: J. Bradfield, editor, Computer Science Logic: 16th
International Workshop, CLS 2002, Lecture Notes in Computer Science 2471
(2002), pp. 537–552.

[5] Gordon, M. J. C., R. Milner and C. P. Wadsworth, Edinburgh LCF: a
mechanised logic of computation, Lecture Notes in Computer Science 78 (1979).

[6] The Isabelle proof-assistant,
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/.

[7] Kirchner, F., Coq Tacticals and PVS Strategies: A Small-Step Semantics, in:
Design and Application of Strategies/Tactics in Higher Order Logics, 2003.

[8] The Mizar proof-assistant,
http://mizar.uwb.edu.pl/.

[9] Muñoz, C., “A Calculus of Substitutions for Incomplete-Proof Representation
in Type Theory,” Ph.D. thesis, INRIA (1997).

[10] The NuPRL proof-assistant,
http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html.

[11] Syme, D., A new interface for hol - ideas, issues and implementation, in:
Proceedings of Higher Order Logic Theorem Proving and Its Applications, 8th
International Workshop, TPHOLs 1995, Lecture Notes in Computer Science
971 (1995), pp. 324–339.

[12] Takahashi, K. and M. Hagiya, Proving as editing HOL tactics, Formal Aspects
of Computing 11 (1999), pp. 343–357.

[13] The Coq Development Team, The Coq proof assistant reference manual,
http://coq.inria.fr/doc/main.html (2005).

[14] Wenzel, M., Isar - a generic interpretative approach to readable formal proof
documents, in: Theorem Proving in Higher Order Logics, 1999, pp. 167–184.

17

http://cedric.cnam.fr/~delahaye/publications/these-delahaye.ps.gz
http://cedric.cnam.fr/~delahaye/publications/these-delahaye.ps.gz
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
http://mizar.uwb.edu.pl/
http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html
http://coq.inria.fr/doc/main.html

Sacerdoti Coen, Tassi, and Zacchiroli

A Utility functions

The goal automatically selected by “[” or “|” is called unhandled until a tac-
tic is applied to it. Unhandled goals are just postponed (not moved into
the todo list τ) by i1,. . ., in“:”. Goals opened by a tactic are marked with
mark as handled to distinguishing them from unhandled goals. The function
renumber branches is used by “[” to name branches.

unhandled(l) =

 true if l = 〈n, Open g〉 ∧ n > 0

false otherwise

mark as handled([g1; · · · ; gn]) = [〈0, Open g1〉; · · · ; 〈0, Open gn〉]

renumber branches([〈i1, s1〉; · · · ; 〈in, sn〉]) = [〈1, s1〉; · · · ; 〈n, sn〉]

The next three functions returns open goals or tasks in the status or parts of
it. Open goals are those corresponding to conjectures still to be proved.

get open tasks(l) =
[] if l = []

〈i, Open g〉 ::get open tasks(tl) if l = 〈i, Open g〉 :: tl

get open tasks(tl) if l = hd :: tl

get open goals in tasks list(l) =
[] if l = []

g :: get open goals in tasks list(tl) if l = 〈 , Open g〉 :: tl

get open goals in tasks list(tl) if l = 〈 , Closed g〉 :: tl

get open goals in status(S) =
[] if S = []

get open goals in tasks list(Γ@τ@κ)

@get open goals in status(tl) if S = 〈Γ, τ, κ, 〉 :: tl

18

Sacerdoti Coen, Tassi, and Zacchiroli

To keep the correspondence between branches in the script and ramifications
in the proof, goals closed by side-effects are marked as Closed if they are in
Γ (that keeps track of open branches). Otherwise they are silently removed
from postponed goals (in todo list τ or dot continuation κ). Closed branches
have to be accepted by the user with “accept”.

close tasks(G, S) =

[] if S = []

〈closeaux (G, Γ), τ ′, κ′, t〉 ::close tasks(G, tl) if S = 〈Γ, τ, κ, t〉 :: tl

where τ ′ = remove tasks(G, τ)

and κ′ = remove tasks(G, κ)

closeaux (G, l) =
[] if l = []

〈i, Closed g〉 ::closeaux (G, tl) if l = 〈i, Open g〉 :: tl ∧ g ∈ G

hd ::closeaux (G, tl) if l = hd :: tl

remove tasks(G, l) =
[] if l = []

remove tasks(G, tl) if l = 〈i, Open g〉 :: tl ∧ g ∈ G

hd ::remove tasks(G, tl) if l = hd :: tl

19

	Introduction
	Tinycals: syntax and semantics
	Implementation issues
	A digression on the remaining tacticals
	Related work
	Conclusions
	References
	Utility functions

