
WebGraph: The Next Generation (Is in Rust)
Tommaso Fontana

tommaso.fontana.96@gmail.com
Inria
DGDI

Paris, France

Sebastiano Vigna
sebastiano.vigna@unimi.it

Università degli Studi di Milano
Dipartimento di Informatica

Milan, Italy

Stefano Zacchiroli
stefano.zacchiroli@telecom-paris.fr

LTCI, Télécom Paris
Institut Polytechnique de Paris

Palaiseau, France

ABSTRACT
We report the results of a yearlong effort to port the WebGraph
framework [4] from Java to Rust. For two decades WebGraph has
been instrumental in the analysis and distribution of large graphs
for the research community of TheWebConf, but the intrinsic limita-
tions of the Java Virtual Machine had become a bottleneck for very
large use cases, such as the Software HeritageMerkle graph [2] with
its half a trillion arcs. As part of this clean-slate implementation
of WebGraph in Rust, we developed a few ancillary projects bring-
ing to the Rust ecosystem some missing features of independent
interest, such as easy, consistent and zero-cost memory mapping of
data structures. WebGraph in Rust offers impressive performance
improvements over the previous implementation, enabling open-
source graph analytics on very large datasets on top of a modern
system programming language.

CCS CONCEPTS
• Theory of computation→ Data compression; • Information
systems → Network data models.

KEYWORDS
graphs, big data, compression, web graphs, social networks, Java,
Rust

ACM Reference Format:
Tommaso Fontana, Sebastiano Vigna, and Stefano Zacchiroli. 2024. We-
bGraph: The Next Generation (Is in Rust). In Companion Proceedings of
the ACM Web Conference 2024 (WWW ’24 Companion), May 13–17, 2024,
Singapore, Singapore. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3589335.3651581

1 INTRODUCTION
Very large graphs, such as Web snapshots, large social networks,
or software dependency graphs, can be analyzed using two ap-
proaches: distributing the computation on multiple computational
units or compressing the graph to fit in the memory of a single
one. A popular instance of the latter approach is the WebGraph
framework [4], a compression framework with an open-source Java
implementation that has been instrumental in the last two decades
in the distribution and analysis of large graphs for research pur-
poses. Hundreds of papers, many of which at TheWebConf, have

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0172-6/24/05
https://doi.org/10.1145/3589335.3651581

been written using data and tools provided byWebGraph. Moreover,
open data projects such as Common Crawl and Software Heritage
(SWH) [5] have used WebGraph to compress and distribute their
data.

WebGraph has been designed initially with web graphs in mind,
but its approach has been shown to be effective in general: when
Facebook’s 3.74 degrees of separation where computed for the first
time [1], the computation was done using WebGraph, which made
it possible to represent the whole Facebook graph in 211GB. Cur-
rently, SWH is able to represent their Merkle graph of source code
artifacts [11], constituted of 34 billion nodes and 517 billion arcs, in
main memory, allowing to satisfy software engineering use cases
previously unattainable at this scale such as code clone and fork
detection, software provenance tracking, and detection of unfixed
security vulnerabilities. The largest, trillion-scale protein-protein
similarity graphs ever released [9] were also created, indexed and
distributed using WebGraph, showing, once again, the wide appli-
cability of the framework to different fields.

In spite of its popularity, the Java languagewas getting in the way
of practical usability of WebGraph on big graphs: the limitations on
the array size (231 elements), the unpredictable impact of garbage
collection, and the difficulty of exploiting modern operating-system
features like memory mapping were becoming bottlenecks.

Thus, inspired by the success of WebGraph in the SWH project,
we decided to rethink and reimplement WebGraph in Rust, a mod-
ern, safe, high-performance language that is gaining traction in
the systems programming community, and which provides the
balance between safety and performance that is needed to move
compression-based graph analytics to the present big graph era.
The result is more than 100 000 committed lines of open-source
code (50 000 released) distributed among a few Rust projects that
aim at filling a few gaps in the Rust ecosystem.

Data availability. All the software discussed in this paper is open-
source, released as multiple Rust crates (webgraph, sux, epserde,
dsi-bitstream, mem_dbg) via crates.io and as source code onGitHub
starting from https://github.com/vigna/webgraph-rs. The repro-
ducibility package used for experimental evaluation is archived
on Zenodo with DOI 10.5281/zenodo.10793566 and on SWH with
SWHID swh:1:dir:4c44e237561e228a4c73907e34e866a1fe2acace.

2 JAVA IMPLEMENTATION LIMITATIONS
In this section, we discuss the Java limitations encountered with
the previous implementation of WebGraph and, more generally,
with large-graph processing.

Unfriendly memory model. The Java Virtual Machine (JVM) has
a memory model based on relatively small, fast-cycling garbage-
collected objects. This model is at odds with the approach of using

https://orcid.org/0000-0002-9806-3493
https://orcid.org/0000-0002-3257-651X
https://orcid.org/0000-0002-4576-136X
https://doi.org/10.1145/3589335.3651581
https://doi.org/10.1145/3589335.3651581
https://doi.org/10.1145/3589335.3651581
https://crates.io/crates/webgraph
https://crates.io/crates/sux
https://crates.io/crates/epserde
https://crates.io/crates/dsi-bitstream
https://crates.io/crates/mem_dbg
https://crates.io/
https://github.com/vigna/webgraph-rs
https://doi.org/10.5281/zenodo.10793566
https://archive.softwareheritage.org/swh:1:dir:4c44e237561e228a4c73907e34e866a1fe2acace;origin=https://github.com/zommiommy/webgraph-www-2024-reproducibility;visit=swh:1:snp:5cfcbe844df9b68277cf82c5d52921bddc3cd02f;anchor=swh:1:rev:bcee54c6d6b55a3ef20b5525a296f9a6dfcdcfa0


WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Tommaso Fontana, Sebastiano Vigna, and Stefano Zacchiroli

a large part of the memory for an immutable representation of data,
which is a common need for in-memory graph analytics. While
some improvements could be obtained via recent (still in preview at
the time of writing) out-of-heap allocation features, such features
introduce additional complexity in accessing the data.

Difficult representation of node-related data. Many algorithms
require to store some form of complex data per node. For large
graphs this could amount to submit to the garbage collector billions
of objects. Future Java extensions might allow for value objects,
which would mitigate the problem, but presently the only solution
is to use cumbersome parallel arrays of primitive types instead.

32-bit collections. Arrays in Java are indexed by 32-bit integers,
limiting their size to 231 elements. The limit is carried on by data
structure implementations belonging to the java.util package.
It is possible to design data structures for larger collections by
multiplexing storage on multiple arrays, as the external fastutil
library does, but that comes with performance drawbacks.

Convoluted access to memory-mapping facilities. Use cases that
need large static data structures, such as search-engine indices or
friendship graph representations, rely on memory mapping to re-
duce loading times. Memory mapping assigns to the content of a
file a virtual address; the file is then loaded on-demand and trans-
parently by the operating system as part of memory access. Java
memory-mapping facilities are very limited both in the allowed
maximum size of a mapping and in the access mechanism. It is also
impossible to refer to memory-mapped memory transparently, re-
sulting in complex conditional code if one wants to support regular
and memory transparently. Memory mapping is a requirement for
very large graphs, because often interesting analyses can be done
by only accessing a small fraction of the graph (e.g., software prove-
nance tracking, or the computation of similar proteins). Memory
mapping makes startup costs negligible and reduces I/O costs to
the strict minimum of graph regions actually accessed.

Difficult access to native code. The mechanism to access native
code from the Java Virtual Machine is the Java Native Interface
(JNI), which is a complex and error-prone mechanism. Again, fu-
ture expansions aim at improving this situation, but they are not
available for production code yet.

3 BACKGROUND: RUST
Rust [10] is a modern, safe, high-performance language that is
gaining traction in both industry and the open-source community.
While Rust builds upon many important ideas from advanced func-
tional languages such as Haskell and OCaml, its greatest innovation
is its ownership model, which makes it possible to avoid at the same
time explicit memory allocation/deallocation and garbage collec-
tion. This is achieved by making all assignment moves (as in C++’s
move semantics) and by having a borrow checker proving that all
references are valid. The borrow checker runs at compile time and
proves, essentially, that if each variable would be wrapped in a
read/write lock, the program would run smoothly anyway. The
compiler then knows exactly when a value will not be used any
longer, that is, when the only variable holding its value goes out of
scope, and deallocates it automatically.

Another important characteristic is the compilation model. The
Rust build system and package manager (cargo) builds binaries
starting from a complete code base that contains the source code of
all dependencies. There are no libraries as in traditional languages:
binaries are built and linked starting from source code. This makes
it possible to perform inlining and optimization well beyond the
possibilities of system languages like C and C++, in which separate
compilations partitions precompiled binary code (e.g., from 3rd
party libraries) and source code under compilation (this separa-
tion is somehow lessened by templates and by recent link-time
optimization features of C/C++ compilers, but not at the level of
Rust). Moreover, Rust binaries can always be fully optimized for
the current architecture, as even the code from dependencies is
compiled locally.

Recently, Rust has become the first high-level language after C
to be allowed into the Linux kernel. Moreover, several high-profile
organizations have started to rewrite their core infrastructure in
Rust: in fact, Rust was originally developed to rewrite the Firefox
browser.

Rust has a natural, efficient approach to all the problems we
mentioned in the previous section and it is thus a natural choice
for a clean-slate reimplementation of WebGraph.

4 THE NEW RUST IMPLEMENTATION
Porting the WebGraph framework to Rust required porting a num-
ber of ancillary projects for which no Rust equivalent implemen-
tation was available, and to design an entirely novel approach to
memory mapping of large immutable data structures that keep
the memory safety of Rust without any performance degradation.
Taken together the developed projects correspond to more than
100 000 committed lines of open-source Rust code, of which more
than 50 000 are currently released.

One of the main goals of the rewrite was to use the Rust type sys-
tem to avoid dynamic dispatch, which is a major source of overhead
in the Java implementation, and which prevents inlining and aggres-
sive optimization. Quite to our surprise, we managed to rewrite the
entire code base without a single use of dynamic dispatch. The Rust
sophisticated type system made it possible to write code that, once
compiled, is entirely monomorphic, and thus can be fully inlined
and optimized by the compiler.

We briefly describe below the Rust software components (and
crates) that form the new WebGraph framework.

Bit streams (crate dsi-bitstream). The Java implementation of
WebGraph uses custom classes to read and write bit streams. We
have reimplemented these classes using state-of-the-art techniques
and in particular accessing the underlying data at the granularity
of memory words, rather than bytes, exploiting the endianness of
the architecture (the previous Java implementation is big-endian
only). The user has the possibility of fine-tuning the library to any
architecture by reading or writing words of different sizes, and by
choosing whether to use or not decoding tables to speed up the
decoding of instantaneous codes representing small values.

Succinct data structures (sux). To store pointers to the com-
pressed bitstream, WebGraph uses a Java implementation of the
Elias-Fano representation of monotone sequences [7, 8] from the

https://crates.io/crates/dsi-bitstream
https://crates.io/crates/sux


WebGraph: The Next Generation (Is in Rust) WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore

Sux4J project. We used our experience with the C++ Sux project
to reimplement the Elias-Fano representation in Rust, and to pro-
vide a number of variants that entirely composable. In particular,
succinct indices (for rank, selection, etc.) can be selected via functor-
oriented programming, where a functor transforms a data structure
in a variant with additional properties (e.g., an index for ranking).
This approach allows to freely combine different techniques for
ranking and selection, with Rust monomorphization guaranteeing
a zero-cost abstraction.

Binary serialization and memory mapping (epserde). The Rust
ecosystem provides a few well-known serialization frameworks,
but none of them supports memory mapping as a zero-cost ab-
straction: there is always a price to pay. We devised Y-copy as a
new approach to the problem and implemented it in the novel
Y-serde (de)serialization framework for Rust. Typically, zero-copy
serialization frameworks make it possible to load serialized data
structures in memory and use them directly, without further copy-
ing. This makes it possible, as an alternative, to map data structures
into memory, without loading them explicitly. However, all current
zero-copy serialization frameworks for Rust incur access penal-
ties to maintain Rust strong safety guarantees, without modifying
serialized data.

Y-copy is our solution for this problem: it is a strategy in which a
small, negligible part of the data structure is actually copied, while
the rest is linked to it by reference, making it possible to retain
the same performance of the original data structure even when
memory mapping it. The Rust type system makes Y-copy possible
by letting users write methods that use the same code both for
vectors (mutable sequences), which support structures at creation
time, and immutable arrays (provided that no mutation methods
are invoked), which support structures that are Y-copy deserialized.

Fast structure measurement and inspection (mem_dbg). Rust has
facilities to compute the stack size of a value, that is, the space
occupied by the main allocation of a value. However, if the value
contains references to other pieces of data, the space occupied
by the referenced data is not accounted for. We have developed a
new crate, mem_dbg, that was instrumental in the development of
succinct data structures and serialization. While there are a few
crates that provide solutions for these problems by recursing into
complex data types, they all ultimately have to rely on iteration on
vectors and arrays. In our case (structures with dozens of billions
of elements), measuring the size of a structure took several seconds.
We leveraged the idea of zero-copy structures from Y-serde to avoid
iteration, resulting in a library that can measure exactly the size of
a structure in a few hundred nanoseconds.

WebGraph (webgraph). The first and foremost difference be-
tween the Java and Rust implementation is that, by using our new
bitstream implementation, we can read data a word at a time (rather
than a byte at a time, as in the Java implementation) and exploit
the endianness of the architecture. We provide an implementation
using function pointers for decoding, which can be used with any
graph, and amonomorphic implementationwith static dispatch that
can be tailored to a specific choice of parameters, which provides
further possibilities for the compiler to perform optimizations.

The second important step we took was decoupling the specific
method of storage for the compression of the BV format [4] from the
algorithm implementing the format. Traditionally the components
(outdegrees, successor gaps, etc.) of the BV format are stored using
instantaneous codes. We have generalized the format to use any
kind of encoder, and we briefly report some preliminary results in
Section 6.

The largest redesign w.r.t. the previous implementation is that of
the labeling system. Labels attached to edges were an afterthought
in the Java version, and despite their usage in several large-scale
datasets [3, 9, 11], they were cumbersome to use and slow. The
Rust implementation attacks the problem using a new, abstract
compositional approach: labelings are simply structures associated
with a graph that can enumerate labels associated with the succes-
sors of a node. In fact, a graph is simply an integer labeling, where
integers are node identifiers. Labelings can be “zipped” together,
with labels of the resulting labeling being pairs. Finally, a labeled
graph is a labeling whose labels are pairs whose first coordinate
is an integer. Thus, one can easily attach labels to a graph at any
time by zipping labels to the arcs of a graph, or even combine labels
transparently. Left and right projection operators make it possible
to extract the graph underlying a labeling, or the labeling itself.
All graph operations such as transposition are now implemented
directly on labeled graphs; any unlabeled graph can be labeled in
a trivial way using Rust unit type (), which has zero space occu-
pancy. The resulting code is indistinguishable from code written
on purpose for unlabeled graphs, as the compiler can deduce that
the labels are irrelevant.

5 EXPERIMENTAL EVALUATION
In this section, we report the results of the first experimental
benchmarks comparing the execution speed of the previous Java
(GraalVM 21) implementation of WebGraph and the new Rust (1.75)
one. Three very different graphs—whose characteristics are shown
in Table 1—were used for this experimental evaluation:

enwiki-2023 a 2023 snapshot of the English Wikipedia graph;
eu-2015 a 2015 snapshot of the web graph of the .eu ccTLD;
swh-2023 a 2023 snapshot of the Merkle graph of the Software

Heritage archive.
The first two graphs are available from the Laboratory for Web
Algorithmics1, the third one from Software Heritage [11]2.

We consider two basic measures of access speed: random-access
enumeration of successors and breadth-first visits. In the first case,
we extract 10 million random nodes and we enumerate their suc-
cessors; in the second case, we perform a breadth-first visit of the
whole graph. Testing enumeration of successors is a direct measure
of how much the new implementation relates to the old one, but it
is also important to test more realistic scenarios, because principle
the gains in speed might be leveled by overheads in the implemen-
tation of more complex algorithms. Results are shown in Table 2.
We performed three runs of each experiment, with an additional
one for the Java implementation to warm up the JVM and let the
JIT perform runtime compilation and inlining. We report the best
result out of three; the timing variance between runs was very low.

1http://law.di.unimi.it/datasets.php
2https://docs.softwareheritage.org/devel/swh-dataset/graph/dataset.html

https://crates.io/crates/epserde
https://crates.io/crates/mem_dbg
https://crates.io/crates/mem_dbg
https://crates.io/crates/webgraph
http://law.di.unimi.it/datasets.php
https://docs.softwareheritage.org/devel/swh-dataset/graph/dataset.html


WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Tommaso Fontana, Sebastiano Vigna, and Stefano Zacchiroli

Graph Nodes Arcs Degree Bits/arc Size
(avg.) (comp.)

enwiki-2023 4.2M 101M 24.93 13.55 267MB
eu-2015 1 B 92 B 85.74 1.19 13GB
swh-2023 34 B 491 B 14.38 3.07 176GB

Table 1: Graphs used as experimental datasets for benchmark-
ing purposes (see results in Table 2) and their characteristics:
nodes, arcs, average degree, compressed bits/arc ratio, and
compressed size.

WebGraph impl. Java→Rust
Graph Java Rust speedup

Random access (ns/arc)

enwiki-2023 61 31 × 1.97
eu-2015 24 17 × 1.41
swh-2023 104 47 × 2.21

BFS visit (ns/node)

enwiki-2023 1450 734 × 1.98
eu-2015 1580 971 × 1.63
swh-2023 1140 359 × 3.18

Table 2: Comparison of the speed of the Java and Rust imple-
mentation of WebGraph. The first two graphs were tested on
an Intel® Core™ i7-12700KF CPU @3.60GHz, the third on
an Intel® Xeon® Gold 6342 CPU @2.80GHz.

Random-access speed has increased with the Rust implemen-
tation from 50% to more than 200% depending on the graph. The
cost of accessing highly compressible graphs, such as eu-2015 (1.2
bits/arc), depends mostly on the compression algorithm of the BV
format; this part, mainly relying on algorithmic steps involving
arrays, works reasonably in Java too. If, however, the graph is less
compressible (e.g., enwiki-2023 with 13.5 bits/arc and swh-2023
with 3.07) reading quickly from the compressed bitstream becomes
more important and Rust optimizations become more effective.
Maybe surprisingly, the same performances hold even when con-
sidering a long-running application such as a breadth-first visit,
which is 300% faster on swh-2023. This is partially due to the Rust
compilation model, as aggressive inlining and optimization make
the cost of calls to basic access functions negligible, and make it
possible to integrate it directly with the application code.

6 FUTUREWORK
We already started to use the Rust implementation to test the feasi-
bility of replacing instantaneous codes using a recently proposed
entropy coder, asymmetric numeral systems [6], which is gaining
traction in the compression community for its speed and compres-
sion performance. We can report that ANS appears to provide a
further 10–15% percent of additional compression with respect to
instantaneous codes, providing a new record in the compressibil-
ity of web and social graphs: for example, the high-compression
version of the eu-2015 dataset, which uses 0.9 bits per arc using

instantaneous codes, needs just 0.8 bits per arc using ANS. Decod-
ing speed is about twice as slower than decoding instantaneous
codes, but we are currently working on optimizing the decoding
algorithm.

7 CONCLUSIONS
We have presented a new implementation of the WebGraph frame-
work in Rust. The new implementation is much faster than the
previous Java implementation, and provides several new features,
such as transparent memory mapping, and a much-necessary re-
design of the labeling system. While there is ongoing development
to bring the Rust version to feature parity with the previous one, the
new version is already usable for many applications, and it is being
deployed in production at Software Heritage on a half-a-trillion arc
graph. Analysis of web and social network graphs, the original goal
of WebGraph in 2004, is now possible at much greater speed and in
a more modern programming language.

While developing the new implementation, we have also devel-
oped a number of ancillary projects that are of independent interest,
including a generic framework formemory-mapped (de)serialization
which is almost zero-copy.

ACKNOWLEDGMENTS
This work is supported by project SERICS (PE00000014) under the
NRRP MUR program funded by the EU - NGEU, and by project
COREGRAPHIE (ANR-20-CE23-0002) of the French Agence Na-
tionale de la Recherche (ANR). The authors would like to thank
Valentin Lorentz, for his invaluable feedback and testing during
the inception of WebGraph in Rust, and Lorenzo Cimini, for his
contributions to the design and implementation of ANS-based com-
pression.

REFERENCES
[1] Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vi-

gna. 2012. Four Degrees of Separation. In ACM Web Science 2012: Conference
Proceedings. ACM Press, 45–54. Best paper award.

[2] Paolo Boldi, Antoine Pietri, Sebastiano Vigna, and Stefano Zacchiroli. 2020. Ultra-
large-scale Repository Analysis via Graph Compression. In SANER 2020. IEEE.

[3] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2008. A Large Time-Aware
Graph. SIGIR Forum 42, 2 (2008), 33–38.

[4] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-
pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601.

[5] Roberto Di Cosmo and Stefano Zacchiroli. 2017. Software Heritage: Why and
How to Preserve Software Source Code. In Proceedings of the 14th International
Conference on Digital Preservation, iPRES 2017. https://hal.archives-ouvertes.fr/
hal-01590958/

[6] Jarek Duda. 2009. Asymmetric numeral systems. CoRR abs/0902.0271 (2009).
arXiv:0902.0271 http://arxiv.org/abs/0902.0271

[7] Peter Elias. 1974. Efficient Storage and Retrieval by Content and Address of Static
Files. J. Assoc. Comput. Mach. 21, 2 (1974), 246–260.

[8] Robert M. Fano. 1971. On the number of bits required to implement an associative
memory. (1971). Memorandum 61, Computer Structures Group, Project MAC,
MIT, Cambridge, Mass., n.d..

[9] Mohsen Koohi Esfahani, Paolo Boldi, Hans Vandierendonck, Peter Kilpatrick,
and Sebastiano Vigna. 2023. On Overcoming HPC Challenges of Trillion-Scale
Real-World Graph Datasets. In IEEE Big Data 2023. IEEE Comput. Soc. Press,
215–220. https://doi.org/10.1109/BigData59044.2023.10386309

[10] Nicholas D. Matsakis and Felix S. Klock. 2014. The Rust language. In Proceedings
of the 2014 ACM SIGAda Annual Conference on High Integrity Language Technology
(HILT ’14). ACM, 103–104. https://doi.org/10.1145/2663171.2663188

[11] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2019. The Software
Heritage graph dataset: public software development under one roof. In Proceed-
ings of the 16th International Conference on Mining Software Repositories, MSR
2019. IEEE / ACM, 138–142. https://doi.org/10.1109/MSR.2019.00030

https://hal.archives-ouvertes.fr/hal-01590958/
https://hal.archives-ouvertes.fr/hal-01590958/
https://arxiv.org/abs/0902.0271
http://arxiv.org/abs/0902.0271
https://doi.org/10.1109/BigData59044.2023.10386309
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1109/MSR.2019.00030

	Abstract
	1 Introduction
	2 Java implementation limitations
	3 Background: Rust
	4 The new Rust implementation
	5 Experimental evaluation
	6 Future work
	7 Conclusions
	Acknowledgments
	References

