
Grassroots Free Software
In-Depth Case Study: Debian

Stefano Zacchiroli

Debian Project Leader
Université Paris Diderot

IRILL

21 June 2012
Insubria International Open Source Summer School

Como, Italy

Stefano Zacchiroli (Debian) Debian Como, Italy 1 / 112

Outline

1 FOSS concepts

2 Debian overview

3 Philosophy

4 Organization

5 Processes

6 Derivatives

7 Appendix: packaging tutorial

8 Appendix: contribute

Stefano Zacchiroli (Debian) Debian Como, Italy 2 / 112

About the speaker

Research
ñ associate professor (maître de conférences) at Paris Diderot
ñ research fellow at IRILL (Initiative de Recherche et Innovation sur

le Logiciel Libre) — http://www.irill.org

Research interests
ñ component based software engineering (CBSE)
ñ formal methods for component upgrades and QA
ñ case in point: FOSS distribution packages

Debian
ñ Debian Developer since March 2001
ñ packages: OCaml, Vim, Python, math-related sw
ñ QA & infrastructure (PTS)
ñ Debian Project Leader since April 2010, 3rd term

Stefano Zacchiroli (Debian) Debian Como, Italy 3 / 112

http://www.irill.org

Outline

1 FOSS concepts

2 Debian overview

3 Philosophy

4 Organization

5 Processes

6 Derivatives

7 Appendix: packaging tutorial

8 Appendix: contribute

Stefano Zacchiroli (Debian) Debian Como, Italy 4 / 112

Free Software

1 an idea: software users should be in control of their software
ñ AKA: software users should enjoy a set of fundamental freedoms

while “using” it
2 a social and political movement to promote software freedoms

world-wide
ñ rooted in the hacker culture of the 70s and of the early UNIX-es
ñ started in 1983 by Richard Stallman, launching the GNU Project
ñ promoted since 1985 by the Free Software Foundation

Stefano Zacchiroli (Debian) Debian Como, Italy 5 / 112

Free Software — why it matters

Lester picked up a screwdriver. “You see this? It’s a tool.
You can pick it up and you can unscrew stuff or screw stuff
in. You can use the handle for a hammer. You can use the
blade to open paint cans. You can throw it away, loan it
out, or paint it purple and frame it.” He thumped the
printer. “This [Disney in a Box] thing is a tool, too, but it’s
not your tool. It belongs to someone else — Disney. It isn’t
interested in listening to you or obeying you. It doesn’t want
to give you more control over your life.” [. . .]

“If you don’t control your life, you’re miserable. Think of
the people who don’t get to run their own lives: prisoners,
reform-school kids, mental patients. There’s something
inherently awful about living like that. Autonomy makes us
happy.”

— Cory Doctorow, Makers
http://craphound.com/makers/

Stefano Zacchiroli (Debian) Debian Como, Italy 6 / 112

http://craphound.com/makers/

Free Software, defined

Definition (Free Software)

A program is free software if the program’s users have the four
essential freedoms:

0 The freedom to run the program, for any purpose (freedom 0).
1 The freedom to study how the program works, and change it so

it does your computing as you wish (freedom 1).

2 The freedom to redistribute copies so you can help your
neighbor (freedom 2).

3 The freedom to distribute copies of your modified versions to
others (freedom 3). By doing this you can give the whole
community a chance to benefit from your changes.

Access to the source is a precondition for freedoms 1 and 3.
Source: http://www.gnu.org/philosophy/free-sw.html

Stefano Zacchiroli (Debian) Debian Como, Italy 7 / 112

http://www.gnu.org/philosophy/free-sw.html

What About “Open Source”?

A different point of view on similar objectives

Free Software best practices as a development methodology. . .

. . . that leads to better software

major influence from “The Cathedral and the Bazaar”, by Eric
S. Raymond

that later influenced Netscape “open source”-ing

synthesized by the Open Source Initiative (OSI) in the Open
Source Definition (1981)

ñ derived from the Debian Free Software Guidelines (more on this
later. . .)

Origin of a heated debate since then
http://www.gnu.org/philosophy/open-source-misses-the-point.html

Stefano Zacchiroli (Debian) Debian Como, Italy 8 / 112

http://www.gnu.org/philosophy/open-source-misses-the-point.html

Distributing Free Software — the early days

Actors:
1 upstream software developer

2 final users

Notable flows: software, fixes,
bug report, patches

Highlights:

source distribution
ñ compilation is done on

user machines. . .
ñ . . . by every user

Stefano Zacchiroli (Debian) Debian Como, Italy 9 / 112

Distributing Free Software — the early days (cont.)

Practically, users need to:
1 download

ñ bonus point: verify checksums and GPG-sig

2 untar

3 ./configure
4 make
5 make install

(or language-specific variants)

Example

Let’s have a look at:
http://www.gnu.org/prep/standards/html_node/

Managing-Releases.html

Stefano Zacchiroli (Debian) Debian Como, Italy 10 / 112

http://www.gnu.org/prep/standards/html_node/Managing-Releases.html
http://www.gnu.org/prep/standards/html_node/Managing-Releases.html

Distributing Free Software — the early days (cont.)

Pros:
tight relationships between
upstream and users

encourage becoming involved
with development

Cons:

confuses user and developer
roles → developer knowledge
needed to run the software

scalability
ñ update frequency
ñ trust

Stefano Zacchiroli (Debian) Debian Como, Italy 11 / 112

Example — installation issues in the early days

foo is cool, let’s install it!

1 download foo-1.0.tar.gz
ñ checksum mismatch, missing public key, etc.

2 ./configure
ñ error: missing bar, baz, . . .

3 foreach (bar, baz, . . .) go to 1
until (recursive) success

4 make
ñ error: symbol not found

5 make install
ñ error: cp: cannot create regular file /some/weird/path

now try scale that up to 17’000 sources releasing 3’000 new
versions/month

Stefano Zacchiroli (Debian) Debian Como, Italy 12 / 112

The notion of “distribution”

distributions are meant to ease software management

key notion: the abstraction of package

offer coherent collections of software

killer application: package managers

Stefano Zacchiroli (Debian) Debian Como, Italy 13 / 112

Package manager

React to user requests to alter (upgrade / install / remove) software
installation:

1 dependency solving

2 software download
3 software installation

ñ as in: putting files in the right places
4 software configuration

ñ as in: doing post-installation configuration

Stefano Zacchiroli (Debian) Debian Como, Italy 14 / 112

Package manager — example

Phase Trace
User request # apt-get install aterm

Constraint resolution

Reading package lists... Done
Building dependency tree... Done
The following extra packages will be installed:

libafterimage0
The following NEW packages will be installed

aterm libafterimage0
0 upgraded, 2 newly installed, 0 to remove and 1786 not upgraded.
Need to get 386kB of archives.
After unpacking 807kB of additional disk space will be used.
Do you want to continue [Y/n]? Y

Package retrieval

Get: 1 http://debian.ens-cachan.fr testing/main libafterimage0 2.2.8-2 [301kB]
Get: 2 http://debian.ens-cachan.fr testing/main aterm 1.0.1-4 [84.4kB]
Fetched 386kB in 0s (410kB/s)

Pre-configuration {

Unpacking

Selecting previously deselected package libafterimage0.
(Reading database ... 294774 files and directories currently installed.)
Unpacking libafterimage0 (from .../libafterimage0_2.2.8-2_i386.deb) ...
Selecting previously deselected package aterm.
Unpacking aterm (from .../aterm_1.0.1-4_i386.deb) ...

Configuration

Setting up libafterimage0 (2.2.8-2) ...
Setting up aterm (1.0.1-4) ...

Stefano Zacchiroli (Debian) Debian Como, Italy 15 / 112

Distribution concerns

Distributions act as intermediaries between upstream software
authors and final users. Distributions are meant to ease Free
Software life cycle management.

Within distributions scope:

package management

trusted sw delivery

sw integration

initial installation

sw packaging

upstream release tracking

bug triage and forwarding

(porting)

Outside distribution scope:
upstream sw development
(but beware of overlaps)

“shielding” users from
upstream and vice-versa

Stefano Zacchiroli (Debian) Debian Como, Italy 16 / 112

Source vs binary distribution

Source distribution

packages contain source code

which get compiled
(automatically) on user
machines

distribution takes care of
compilability

Binary distribution

packages contain compiled
(or “binary”) code

which get installed on user
machines

distribution takes care of
compilation

ñ on all supported platforms

Trade-off: distribution work vs user (machine) work

Stefano Zacchiroli (Debian) Debian Como, Italy 17 / 112

Packages — a closer look

zack@usha:~% ls -al apache2-bin_2.4.2-2_amd64.deb
-rw-r--r-- 1 zack zack 1288852 mag 28 19:17 apache2-bin_2.4.2-2_amd64.deb

Contains:
1 the actual files that come with the Apache HTTP server

ñ /usr/sbin/apache2
ñ /usr/share/doc/apache2/README
ñ . . .

2 configuration programs that get executed before/after
installation

ñ start automatically Apache after installation
ñ stop automatically Apache before removal
⇒ so that Apache is down during upgrade and up again

immediately after

3 metadata, lots of. . .

Stefano Zacchiroli (Debian) Debian Como, Italy 18 / 112

Package metadata
zack@usha:~% apt−cache show apache2−bin
Package : apache2−bin
Version : 2.4.2−2
Instal led−Size : 3321
Maintainer : Debian Apache Maintainers <debian−apache@lists . debian . org>
Architecture : amd64
Replaces : apache2.2−bin (<< 2.3~) , apache2.2−common
Provides : apache2−api−20120211, httpd , httpd−cgi
Depends : l ibapr1 (>= 1.4.2) , l ibaprut i l1−dbd−sql i te3 | l ibaprut i l1−dbd−mysql | [. . .] ,

l ibaprut i l1−ldap , l ibc6 (>= 2.4) , l ibldap−2.4−2 (>= 2.4.7) , l iblua5 .1−0,
libpcre3 (>= 8.10) , l ibss l1 .0.0 (>= 1.0.1) , libxml2 (>= 2.7.4) ,
zlib1g (>= 1:1.1.4) , perl

Suggests : www−browser , apache2−doc , apache2−suexec−pr is t ine | apache2−suexec−custom
Conflicts : apache2.2−bin (<< 2.3~) , apache2.2−common
Description−en : Apache HTTP Server (binary f i l e s and modules)
The Apache Software Foundation ’ s goal i s to build a secure , e f f i c i en t and
extensible HTTP server as standards−compliant open source software . The
result has long been the number one web server on the Internet . [. . .]

Homepage: http :// httpd . apache . org/
Section : httpd
Priority : optional
Size : 1288852
MD5sum: 0f2988d78c7653ed9f967437f477059a
SHA1: 31f3015b2b94dd8f9fc2f573784fe98178ccbadc

Stefano Zacchiroli (Debian) Debian Como, Italy 19 / 112

Distributions

easing software distribution: major
concern in the early Free Software
days

distribution: a “somewhat”
successful idea

≈ 300+ active distribution nowadays
source: http://distrowatch.com

a distribution timeline:
http://futurist.se/gldt/

Stefano Zacchiroli (Debian) Debian Como, Italy 20 / 112

http://distrowatch.com
http://futurist.se/gldt/

Distributions (cont.)

Some axes to compare distributions:
package management

ñ source vs binary distribution
ñ low-level package format (most notably: deb vs rpm)
ñ high-level package managers

other technical features
ñ included/default software
ñ architectures
ñ . . .

organization
ñ manpower: company vs volunteer
ñ decision making
ñ community

availability of commercial support / expertise

Review of major distributions:
http://lwn.net/Distributions/#lead

Stefano Zacchiroli (Debian) Debian Como, Italy 21 / 112

http://lwn.net/Distributions/#lead

This class

In-depth case study of how a major volunteer Free Software
project—and in particular a distribution: Debian—is organized.

Points of view:

philosophical (volunteer motivation, social structure, etc.)

management (decision making, project structure, etc.)

technical

Stefano Zacchiroli (Debian) Debian Como, Italy 22 / 112

Outline

1 FOSS concepts

2 Debian overview

3 Philosophy

4 Organization

5 Processes

6 Derivatives

7 Appendix: packaging tutorial

8 Appendix: contribute

Stefano Zacchiroli (Debian) Debian Como, Italy 23 / 112

Debian: once upon a time

Fellow Linuxers,
This is just to announce the imminent completion of a

brand-new Linux release, which I’m calling the Debian
Linux Release. [. . .]

Ian A Murdock, 16/08/1993
comp.os.linux.development

http://deb.li/bigbang

make GNU/Linux competitive with commercial OS

easy to install

built collaboratively by software experts

1st major distro developed “openly in the spirit of GNU”
FSF-supported for a while

trivia: named after DEBra Lynn and IAN Ashley Murdock

Stefano Zacchiroli (Debian) Debian Como, Italy 24 / 112

http://deb.li/bigbang

Since then — 15 releases

1993 development snapshots

1994 0.91

1995 0.93r5, 0.93r6, 1.0

1996 1.1 (Buzz), 1.2 (Rex)

1997 1.3 (Bo)

1998 2.0 (Hamm)

1999 2.1 (Slink)

2000 2.2 (Potato)

2002 3.0 (Woody)

2005 3.1 (Sarge)

Apr 2007 4.0 (Etch)

Feb 2009 5.0 (Lenny)

Feb 2011 6.0 (Squeeze)

Q4 2012 (?) 6.0 (Wheezy)

trivia:
why does Buzz have a

(Debian) swirl on his chin?

Stefano Zacchiroli (Debian) Debian Como, Italy 25 / 112

Since then — 12 Debian Project Leaders (DPL)

1993–1996 Ian Murdock

1996–1997 Bruce Perens

1997–1998 Ian Jackson

1999–2001 Wichert Akkerman

2001–2002 Ben Collins

2002–2003 Bdale Garbee

2003–2005 Martin Michlmayr

2005–2006 Branden Robinson

2006–2007 Anthony Towns

2007–2008 Sam Hocevar

2008–2010 Steve McIntyre

2010–2013 yours truly

Stefano Zacchiroli (Debian) Debian Como, Italy 26 / 112

What is Debian?

3 aspects, interlinked:
1 an operating system

2 a project

3 a community

Stefano Zacchiroli (Debian) Debian Como, Italy 27 / 112

Debian: the operating system

flagship product: Debian stable

binary distribution

completely Free (DFSG)
ñ DFSG
ñ contrib, non-free

released every 24 months (≈)

a dozen architectures
amd64, armel, armhf, ia64, mips,

mipsel, powerpc, s390, s390x,

sparc

archive-wide security support

2.0 2.1 2.2 3.0 3.1 4.0 5.0 6.0
0

5000

10000

15000

20000

25000

30000

Source packages Binary packages

one of the largest GNU/Linux
porting platforms

renowned for
ports, stability, packaging system, old hardware support, documentation,
smooth upgrades, i18n/l10n, the testing suite, runs anywhere, technical
policy, package choice, . . .

Stefano Zacchiroli (Debian) Debian Como, Italy 28 / 112

Debian 6.0 “Squeeze” — highlights

What could happen in a release cycle?

dependency-based boot system
(faster, more robust)

completely Free Linux kernel,
firmware included

GNU/kFreeBSD as technology
preview

improved debian-installer
ñ ext4, btrfs
ñ ZFS (kFreeBSD)
ñ better support for complex setups

e.g. LVM + RAID + encryption

get Squeeze

http://deb.li/squeeze

Stefano Zacchiroli (Debian) Debian Como, Italy 29 / 112

http://deb.li/squeeze

Debian 6.0 “Squeeze” — highlights (cont.)

Debian Pure Blends
ñ DebianEdu, Debian Med, Debian

Science, Debian Accessibility,
DebiChem, Debian EzGo, Debian
GIS, Debian Multimedia, . . .

ñ blends.alioth.debian.org/

new services
ñ snapshot.debian.org
ñ backports.debian.org
ñ squeeze-updates suite

(ex-volatile)
ñ screenshots.debian.net
ñ ask.debian.net

updates throughout the archive

choice: GNOME, KDE Plasma, Xfce,
LXDE, . . .

get Squeeze

http://deb.li/squeeze

Stefano Zacchiroli (Debian) Debian Como, Italy 29 / 112

blends.alioth.debian.org/
snapshot.debian.org
backports.debian.org
screenshots.debian.net
ask.debian.net
http://deb.li/squeeze

Debian: the Project

Common goal:

Create the best, Free operating system.

Debian Social Contract (1997)

100% Free Software

give back

don’t hide problems

priorities: users & Free Software

Debian Constitution (1998)

Structures and rules of a Free-Software-compatible democracy

Strong motive to join: ≈ 1’000 volunteers, world-wide

Stefano Zacchiroli (Debian) Debian Como, Italy 30 / 112

Demography

Stefano Zacchiroli (Debian) Debian Como, Italy 31 / 112

Demography (cont.)

Developer’s per country

2012 statistics:
http://www.perrier.eu.org/weblog/2012/06/06#

devel-countries-201206

Take a guess: your country’s position?

Stefano Zacchiroli (Debian) Debian Como, Italy 32 / 112

http://www.perrier.eu.org/weblog/2012/06/06#devel-countries-201206
http://www.perrier.eu.org/weblog/2012/06/06#devel-countries-201206

Demography (cont.)

Figure: age histogram

Bottom line: very diverse, international and inter-generation project.

Stefano Zacchiroli (Debian) Debian Como, Italy 33 / 112

Debian: the community

Open development

we don’t hide problem

easy to have an impact (just “show me the code!”)

Large amounts of communication

mailing lists

IRC

(a few) social media (growing)
ñ social: @debian, !debian on identi.ca

Large number of tech-savvy users

users help each other, contribute patches, get involved

Stefano Zacchiroli (Debian) Debian Como, Italy 34 / 112

Debian: one of a kind?

1993 — not many distros back then
19 years later — lots of other distros

openSUSE, Linux Mint, PCLinuxOS, Slackware, Gentoo Linux, CentOS, FreeBSD, Arch, Sabayon, Puppy, Lubuntu,
MEPIS, Ultimate, NetBSD, Tiny Core, Zenwalk, CrunchBang, Dreamlinux, Vector, Kubuntu, Maemo, Red Hat, aptosid,
Peppermint, PC-BSD, Chakra, Salix, ClearOS, KNOPPIX, Xubuntu, Super OS, BackTrack, gOS, TinyMe, Zentyal,
EasyPeasy, Frugalware, Clonezilla, Pardus, Meego, OpenBSD, Quirky, PC/OS, Zorin, Debian, SystemRescue, Element,
Unity, SliTaz, Macpup, wattOS, Scientific, Mythbuntu, Slax, DragonFLY, Elive, linux-gamers, 64 Studio, Ubuntu,
mageia, Nexenta, Parisx, NuTyX, GhostBSD, Kongoni, moonOS, LFS, Lunar, Imagineos, Untangle, Fedora, Yellow
Dog, aLinux, Yoper, IPFire, BlankOn, Mandriva, PureOS, FreeNAS, Moblin, Linpus, TurboLinux, blackPanther, . . .

with many differences:

technical choices

release management

release schedule

target user

community

support

packaging system

user base

look & feel

. . .

How is Debian different?
Stefano Zacchiroli (Debian) Debian Como, Italy 35 / 112

Debian’s special #1: package quality

“ Culture of technical excellence ”

package design: Policy
i.e. “how a package should look like”

package testing: lintian, piuparts,
archive rebuilds (FTBFS), . . .

package maintainers are software experts

no 2nd class packages, all are equal

Debian release mantra
we release when it’s ready

Stefano Zacchiroli (Debian) Debian Como, Italy 36 / 112

Debian’s special #2: freedom

Firm principles: developers and users bound by the Social Contract

1 promoting the “culture of Free Software” since 1993
2 Free the bottom up

ñ in its software
firmware included !

ñ in its infrastructure
no non-free web services (for users)
no non-free services (for developers)

Community awareness

users know

users trust Debian not to betray Free Software principles

high bar for software freedom advocates

Stefano Zacchiroli (Debian) Debian Como, Italy 37 / 112

Debian’s special #3: independence

Debian is an independent project

no (single) company babysitting us

living up on:
1 donations (money & hardware)
2 gift-economy

. . . truly remarkable in today “big” distro world

people trust Debian choices not to be “profit-driven”

Stefano Zacchiroli (Debian) Debian Como, Italy 38 / 112

Debian’s special #4: decision making

1 do-ocracy

An individual Developer may make any technical or
nontechnical decision with regard to their own work;

— Debian Constitution, §3.3.1.1

2 democracy

Each decision in the Project is made by one or more
of the following:

1. The Developers, by way of General Resolution [...]

— Debian Constitution, §2

that means:

reputation follows work

no benevolent dictator, no oligarchy

no imposed decisions
by who has money, infrastructure, people, . . .

Stefano Zacchiroli (Debian) Debian Como, Italy 39 / 112

Outline

1 FOSS concepts

2 Debian overview

3 Philosophy

4 Organization

5 Processes

6 Derivatives

7 Appendix: packaging tutorial

8 Appendix: contribute

Stefano Zacchiroli (Debian) Debian Como, Italy 40 / 112

Social Contract

History

1996 early worries about companies involvement in distro
development “will RedHat always remain Free?”

FOSS licenses are not enough to guarantee that
Debian solution: a “contract” on project commitments

1996 drafted by Bruce Perens (as DPL) + discussion

1997 ratified version 1.0

2004 ratified version 1.1

one of Debian Foundation Documents

tacit agreement between Debian and the FOSS community

volunteer project → very important for developers’ motivation

http://www.debian.org/social_contract

Stefano Zacchiroli (Debian) Debian Como, Italy 41 / 112

http://www.debian.org/social_contract

Social Contract — details

We declare that:

1 Debian will remain 100% free
We provide the guidelines that we use to determine if a work is
“free” in the document entitled “The Debian Free Software
Guidelines”. We promise that the Debian system and all its
components will be free according to these guidelines. We will
support people who create or use both free and non-free works
on Debian. We will never make the system require the use of a
non-free component.

Depends: DFSG

allow users to live 100% Free digital life

. . . but does not force them to

Stefano Zacchiroli (Debian) Debian Como, Italy 42 / 112

Social Contract — details (cont.)

2 We Will Give Back to the Free Software Community
When we write new components of the Debian system, we will
license them in a manner consistent with the Debian Free
Software Guidelines. We will make the best system we can, so
that free works will be widely distributed and used. We will
communicate things such as bug fixes, improvements and user
requests to the upstream authors of works included in our
system.

dogfooding

commitment to the Free Software ecosystem

encourage ecosystem sustainability, rather than Debian’s only

principle: Free Software success is more important than
Debian’s

Stefano Zacchiroli (Debian) Debian Como, Italy 43 / 112

Implied distribution ecosystem

shortcut the 1-to-many user-upstream relationship

does not hide upstream existence (they’re in the social contract!)

encourages:
ñ contributing distro-originated bugs and fixes upstream
ñ software selection and integration at the distro level

centralizes user trust on distro editors

Stefano Zacchiroli (Debian) Debian Como, Italy 44 / 112

Social Contract — details (cont.)

3 We Won’t Hide Problems
We will keep our entire bug report database open for public
view at all times. Reports that people file online will promptly
become visible to others.

historically relevant: first community distro
ñ possibly the single greatest Debian contribution to Free Software

induced a culture of project-wide transparency
ñ folklore: “social contract 3 is not only for bugs”
ñ folklore: “there is no cabal”

con: it is hard, really; makes harder interaction with actors that have
different values

pro: fundamental for volunteer motivation

Stefano Zacchiroli (Debian) Debian Como, Italy 45 / 112

Social Contract — details (cont.)

4 Our priorities are our users and free software
We will be guided by the needs of our users and the free
software community. We will place their interests first in our
priorities. [. . .] We will not object to non-free works that are
intended to be used on Debian systems, or attempt to charge a
fee to people who create or use such works. We will allow others
to create distributions containing both the Debian system and
other works, without any fee from us. [. . .]

attempted balance: user and free software interests
ñ often at stake: non-free graphic/network drivers in Debian?

first glimpses of pragmatism: the real world is what it is

Stefano Zacchiroli (Debian) Debian Como, Italy 46 / 112

Social Contract — details (cont.)

5 Works that do not meet our free software standards
We acknowledge that some of our users require the use of works that
do not conform to the Debian Free Software Guidelines. We have
created contrib and non-free areas in our archive for these works.
The packages in these areas are not part of the Debian system,
although they have been configured for use with Debian. We
encourage CD manufacturers to read the licenses of the packages in
these areas and determine if they can distribute the packages on
their CDs. Thus, although non-free works are not a part of Debian,
we support their use and provide infrastructure for non-free
packages (such as our bug tracking system and mailing lists).

Debian pragmatism at its peek

enabled to attract a vast non ideological community

Stefano Zacchiroli (Debian) Debian Como, Italy 47 / 112

Debian Free Software Guidelines (DFSG)

the Social Contract relies on a “definition” of Free Software
the other Debian Foundation Document

guidelines only — not hard rules

used to help decide what is part of Debian

apply to the “freedoms” attached to a given package
ñ usually: copyright license
ñ but also: trademark license, and your favorite $monopoly

have de facto made Debian a renowned authority about
software free-ness

ñ together with major authorities: FSF, OSI

trivia: basis for Open Source Definition / Initiative

http://www.debian.org/social_contract#guidelines

Stefano Zacchiroli (Debian) Debian Como, Italy 48 / 112

http://www.debian.org/social_contract#guidelines

DFSG — details

1 Free Redistribution
The license of a Debian component may not restrict any party
from selling or giving away the software as a component of an
aggregate software distribution containing programs from
several different sources. The license may not require a royalty
or other fee for such sale.

≈ Free Software freedom 2: redistribute copies

Stefano Zacchiroli (Debian) Debian Como, Italy 49 / 112

DFSG — details

2 Source Code
The program must include source code, and must allow
distribution in source code as well as compiled form.

explicit the “open source” requirement of freedoms 1 (study)
and 3 (distribute modifications)

“open source” heritage of those days, then become part of its
definition

3 Derived Works
The license must allow modifications and derived works, and
must allow them to be distributed under the same terms as the
license of the original software.

≈ Free Software freedom 3 (distribute modifications)

Stefano Zacchiroli (Debian) Debian Como, Italy 50 / 112

DFSG — details

2 Source Code
The program must include source code, and must allow
distribution in source code as well as compiled form.

explicit the “open source” requirement of freedoms 1 (study)
and 3 (distribute modifications)

“open source” heritage of those days, then become part of its
definition

3 Derived Works
The license must allow modifications and derived works, and
must allow them to be distributed under the same terms as the
license of the original software.

≈ Free Software freedom 3 (distribute modifications)

Stefano Zacchiroli (Debian) Debian Como, Italy 50 / 112

DFSG — details (cont.)

4 Integrity of The Author’s Source Code
The license may restrict source-code from being distributed in
modified form only if the license allows the distribution of patch
files with the source code for the purpose of modifying the
program at build time. The license must explicitly permit
distribution of software built from modified source code. The
license may require derived works to carry a different name or
version number from the original software.

trademarks are not (necessarily) incompatible with software
freedoms

But:

(This is a compromise. The Debian group encourages all authors not
to restrict any files, source or binary, from being modified.)

Stefano Zacchiroli (Debian) Debian Como, Italy 51 / 112

DFSG — details (cont.)

5 No Discrimination Against Persons or Groups
The license must not discriminate against any person or group
of persons.

6 No Discrimination Against Fields of Endeavor
The license must not restrict anyone from making use of the
program in a specific field of endeavor. For example, it may not
restrict the program from being used in a business, or from
being used for genetic research.

Exercise (Free Software ethics)

Why a license that states the software cannot be used for warfare
purposes is unacceptable from the Free Software point of view?
What would be the loss for the Free Software ecosystem?

Stefano Zacchiroli (Debian) Debian Como, Italy 52 / 112

DFSG — details (cont.)

5 No Discrimination Against Persons or Groups
The license must not discriminate against any person or group
of persons.

6 No Discrimination Against Fields of Endeavor
The license must not restrict anyone from making use of the
program in a specific field of endeavor. For example, it may not
restrict the program from being used in a business, or from
being used for genetic research.

Exercise (Free Software ethics)

Why a license that states the software cannot be used for warfare
purposes is unacceptable from the Free Software point of view?
What would be the loss for the Free Software ecosystem?

Stefano Zacchiroli (Debian) Debian Como, Italy 52 / 112

DFSG — details (cont.)

7 Distribution of License
The rights attached to the program must apply to all to whom
the program is redistributed without the need for execution of
an additional license by those parties.

i.e. license applies by default, no need to “execute” anything

Stefano Zacchiroli (Debian) Debian Como, Italy 53 / 112

DFSG — details (cont.)

8 License Must Not Be Specific to Debian
The rights attached to the program must not depend on the
program’s being part of a Debian system. If the program is
extracted from Debian and used or distributed without Debian
but otherwise within the terms of the program’s license, all
parties to whom the program is redistributed should have the
same rights as those that are granted in conjunction with the
Debian system.

no special casing: it is free for us only if it is free for everybody

coherent with the “Free Software first” view

Stefano Zacchiroli (Debian) Debian Como, Italy 54 / 112

DFSG — details (cont.)

9 License Must Not Contaminate Other Software
The license must not place restrictions on other software that is
distributed along with the licensed software. For example, the
license must not insist that all other programs distributed on
the same medium must be free software.

license modularity

ancillary clause to ensure Debian can be distributed on media

Stefano Zacchiroli (Debian) Debian Como, Italy 55 / 112

Debian Free Software (?) Guidelines

Spot the differences!

Debian Will Remain 100% Free Software (SC 1.0)
We promise to keep the Debian GNU/Linux Distribution

entirely free software. As there are many definitions of free
software, we include the guidelines we use to determine if
software is “free” below. We will support our users who develop
and run non-free software on Debian, but we will never make the
system depend on an item of non-free software.

vs

Debian will remain 100% free (SC 1.1)
We provide the guidelines that we use to determine if a work

is “free” in the document entitled “The Debian Free Software
Guidelines”. We promise that the Debian system and all its
components will be free according to these guidelines. We will
support people who create or use both free and non-free works
on Debian. We will never make the system require the use of a
non-free component.

Stefano Zacchiroli (Debian) Debian Como, Italy 56 / 112

Debian Free Software (?) Guidelines (cont.)

SC “editorial” changes of 2004
http://www.debian.org/vote/2004/social_contract_reform.3

all content is equal and subject to DFSG
no double standard for

ñ software
ñ documentation
ñ firmware
ñ data collections
ñ . . .

radical position at the time
ñ increasingly popular today in the free culture movement
ñ objected by major actors (e.g. FSF for “political” texts)

Source of ethical doubts and technical issues within the community
for Debian releases up to Squeeze. Today: no non-free firmware in
main and no (new) non-free firmware in Linux upstream.

Stefano Zacchiroli (Debian) Debian Como, Italy 57 / 112

http://www.debian.org/vote/2004/social_contract_reform.3

DFSG in practice

DFSG are no laws, but guidelines

no judges, no tribunals, just judgement (with responsibles in
charge)

For complex cases, a series of thought experiments have been
developed and are used as “benchmark” for some DFSG features

Stefano Zacchiroli (Debian) Debian Como, Italy 58 / 112

DFSG thought experiments

Example (The Desert Island test)

Imagine a castaway on a desert island with a solar-powered
computer.
This would make it impossible to fulfill any requirement to make
changes publicly available or to send patches to some particular
place. This holds even if such requirements are only upon request,
as the castaway might be able to receive messages but be unable to
send them. To be free, software must be modifiable by this
unfortunate castaway, who must also be able to legally share
modifications with friends on the island.

Stefano Zacchiroli (Debian) Debian Como, Italy 59 / 112

DFSG thought experiments (cont.)

Example (The Desert Island test)

Imagine a castaway on a desert island with a solar-powered
computer.
This would make it impossible to fulfill any requirement to make
changes publicly available or to send patches to some particular
place. This holds even if such requirements are only upon request,
as the castaway might be able to receive messages but be unable to
send them. To be free, software must be modifiable by this
unfortunate castaway, who must also be able to legally share
modifications with friends on the island.

Stefano Zacchiroli (Debian) Debian Como, Italy 59 / 112

DFSG thought experiments (cont.)

Example (The Dissident test)

Consider a dissident in a totalitarian state who wishes to share a
modified bit of software with fellow dissidents, but does not wish to
reveal the identity of the modifier, or directly reveal the
modifications themselves, or even possession of the program, to the
government.
Any requirement for sending source modifications to anyone other
than the recipient of the modified binary—in fact any forced
distribution at all, beyond giving source to those who receive a copy
of the binary—would put the dissident in danger. For Debian to
consider software free it must not require any such excess
distribution.

Stefano Zacchiroli (Debian) Debian Como, Italy 59 / 112

DFSG thought experiments (cont.)

Example (The Dissident test)

Consider a dissident in a totalitarian state who wishes to share a
modified bit of software with fellow dissidents, but does not wish to
reveal the identity of the modifier, or directly reveal the
modifications themselves, or even possession of the program, to the
government.
Any requirement for sending source modifications to anyone other
than the recipient of the modified binary—in fact any forced
distribution at all, beyond giving source to those who receive a copy
of the binary—would put the dissident in danger. For Debian to
consider software free it must not require any such excess
distribution.

Stefano Zacchiroli (Debian) Debian Como, Italy 59 / 112

DFSG thought experiments (cont.)

Example (The Tentacles of Evil test)

Imagine that the author is hired by a large evil corporation and, now
in their thrall, attempts to do the worst to the users of the program:
to make their lives miserable, to make them stop using the program,
to expose them to legal liability, to make the program non-free, to
discover their secrets, etc. The same can happen to a corporation
bought out by a larger corporation bent on destroying free software
in order to maintain its monopoly and extend its evil empire.
The license cannot allow even the author to take away the required
freedoms!

Stefano Zacchiroli (Debian) Debian Como, Italy 59 / 112

DFSG thought experiments (cont.)

Example (The Tentacles of Evil test)

Imagine that the author is hired by a large evil corporation and, now
in their thrall, attempts to do the worst to the users of the program:
to make their lives miserable, to make them stop using the program,
to expose them to legal liability, to make the program non-free, to
discover their secrets, etc. The same can happen to a corporation
bought out by a larger corporation bent on destroying free software
in order to maintain its monopoly and extend its evil empire.
The license cannot allow even the author to take away the required
freedoms!

Stefano Zacchiroli (Debian) Debian Como, Italy 59 / 112

DFSG vs common licenses

some DFSG-free licenses:

strong copyleft licenses: GPL, AGPL, (CC BY-SA 3.0,) . . .

weak copyleft licenses: LGPL, MPL

liberal license: BSD, MIT/X11, Apache, . . .

some non-DFSG-free licenses:

all the “bad” ones

Stefano Zacchiroli (Debian) Debian Como, Italy 60 / 112

DFSG — exercises

Exercise

Which of the following Creative Commons licenses is DFSG-free?

CC BY 3.0 http://creativecommons.org/licenses/by/3.0/

CC BY-ND 3.0 http://creativecommons.org/licenses/by-nd/3.0/

CC BY-NC-SA 3.0
http://creativecommons.org/licenses/by-nc-sa/3.0/

Exercise

Is the TeX license DFSG-free?
http://en.wikipedia.org/wiki/TeX#License

Exercise

Is the GNU Free Documentation License DFSG-free?
http://www.gnu.org/copyleft/fdl.html

Stefano Zacchiroli (Debian) Debian Como, Italy 61 / 112

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://en.wikipedia.org/wiki/TeX#License
http://www.gnu.org/copyleft/fdl.html

DFSG — exercises

Exercise

Which of the following Creative Commons licenses is DFSG-free?

CC BY 3.0 http://creativecommons.org/licenses/by/3.0/

CC BY-ND 3.0 http://creativecommons.org/licenses/by-nd/3.0/

CC BY-NC-SA 3.0
http://creativecommons.org/licenses/by-nc-sa/3.0/

Exercise

Is the TeX license DFSG-free?
http://en.wikipedia.org/wiki/TeX#License

Exercise

Is the GNU Free Documentation License DFSG-free?
http://www.gnu.org/copyleft/fdl.html

Stefano Zacchiroli (Debian) Debian Como, Italy 61 / 112

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://en.wikipedia.org/wiki/TeX#License
http://www.gnu.org/copyleft/fdl.html

DFSG — exercises

Exercise

Which of the following Creative Commons licenses is DFSG-free?

CC BY 3.0 http://creativecommons.org/licenses/by/3.0/

CC BY-ND 3.0 http://creativecommons.org/licenses/by-nd/3.0/

CC BY-NC-SA 3.0
http://creativecommons.org/licenses/by-nc-sa/3.0/

Exercise

Is the TeX license DFSG-free?
http://en.wikipedia.org/wiki/TeX#License

Exercise

Is the GNU Free Documentation License DFSG-free?
http://www.gnu.org/copyleft/fdl.html

Stefano Zacchiroli (Debian) Debian Como, Italy 61 / 112

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://en.wikipedia.org/wiki/TeX#License
http://www.gnu.org/copyleft/fdl.html

Outline

1 FOSS concepts

2 Debian overview

3 Philosophy

4 Organization

5 Processes

6 Derivatives

7 Appendix: packaging tutorial

8 Appendix: contribute

Stefano Zacchiroli (Debian) Debian Como, Italy 62 / 112

Constitution

structure and rules for decision making in a Free
Software-compatible democracy

volunteers

minimal “people management”

“do-ocracy”
ñ anybody can decide how to do their job
ñ nobody can impose to others what to do

relationships with the real “fiscal” world

http://www.debian.org/devel/constitution

Stefano Zacchiroli (Debian) Debian Como, Italy 63 / 112

http://www.debian.org/devel/constitution

Constitution — changelog

Need: project-wide decisions
Solution: project-wide voting (AKA general resolution)

1998 drafted by Ian Jackson (as DPL) + discussion

1998 v1.0: ratified

2003 v1.1: clarify voting method: Condorcet/clone proof SSD

2003 v1.2: clearly define foundation documents

2006 v1.3: generalize asset management

2007 v1.4: reduce the length of DPL election

Note: equipped with typical constitutional self-defense mechanisms.
All changes above needed to pass, and obtained, 3:1 majority

Stefano Zacchiroli (Debian) Debian Como, Italy 64 / 112

Constitution — bodies

individual “developers” (or, better, project members)

Debian Project Leader (DPL) elected each year

technical committee (tech-ctte)

secretary

trusted organizations

Stefano Zacchiroli (Debian) Debian Como, Italy 65 / 112

Project members

akin to Debian Project citizens

everybody can work on Debian without being a project
member. . .

but project members do have specific rights:
ñ voting (and being voted)
ñ right to use project technical infrastructure
ñ upload access to the official archive (for packagers)

Stefano Zacchiroli (Debian) Debian Como, Italy 66 / 112

Project leader

represents Debian

delegates “area of ongoing responsibility” to developers
ñ AKA appoint delegates

coordinate project activities, “lead discussions”

decide upon project assets
ñ money
ñ hardware
ñ “IP”, e.g. trademarks

decision “garbage collector”
ñ urgency
ñ lack of other responsibles

Stefano Zacchiroli (Debian) Debian Como, Italy 67 / 112

Technical committee

“tribunal” for technical disputes, 4–8 members

the only formalized dispute resolution body in Debian
ñ everything else (e.g. social issues) dealt with via mediation
ñ often by the DPL

members: skilled, (project-)elderly, well-respected developers
ñ appointed by DPL

formal voting process that mimics project-wide votes

Example (some recent tech-ctte issues)

#614907 node: name conflicts with node.js interpreter

#552688 Please decide how Debian should enable hardening
build flags

#665851 GNU parallel, name conflict with moreutils

#573745 Please decide on Python interpreter packages
maintainership

Stefano Zacchiroli (Debian) Debian Como, Italy 68 / 112

http://bugs.debian.org/614907
http://bugs.debian.org/552688
http://bugs.debian.org/665851
http://bugs.debian.org/573745

Constitution — decision making

golden rule

do-ocracy, no formal process

formally, decisions are taken by:1

1 developers as a whole
ñ with general resolutions or elections

2 the DPL

3 the technical committee (CTTE)
4 individual developers working on some task ←- default

5 DPL delegates

6 the project secretary

1overruling from top to bottom
Stefano Zacchiroli (Debian) Debian Como, Italy 69 / 112

General resolutions

decision making heavy weapon, not to be abused

used for project-wide decisions and position statement

folklore: “thou shalt not use GRs for technical decisions”

1 initial proposal
ñ post to the debian-vote mailing list
ñ requires seconds, depend on n. of developer

2 discussion period
ñ might lead to alternative proposals
ñ can put “on hold” decisions of any body

3 vote with Condorcet-based method
4 single winner

ñ super majority (3:1) required to change Foundation Documents
and Constitution

Stefano Zacchiroli (Debian) Debian Como, Italy 70 / 112

Voting method

Definition (Condorcet winner)
A candidate that would win majority
against any single other candidate.

If there is a Condorcet winner, it
will win in any Condorcet
method election

Debian: Schulze method (most
popular Condorcet method)

Sample ballot:

[4] bar
[2] baz
[1] foo
[2] quux
[3] None Of The Above

foo

14.11

baz

9.62

1 9 8

quux

1.19

3 4 0

bar

7.62

1 4 7

None Of The Above

3 6 7

2 8 7

3 3 6

3 4

3 0

2 7 9

3 1 8

Figure: foo has won!

Stefano Zacchiroli (Debian) Debian Como, Italy 71 / 112

Secretary

appointed conjointly by DPL and incumbent secretary

responsible for election procedures
ñ de facto authority for Constitution interpretation in electoral

matters

maintains and run the voting software devotee
ñ voting artifacts (software, ballots, etc.) available for review
ñ software allows to rerun and verify election results, e.g.:

« http://www.debian.org/vote/2010/vote_001_tally.txt
« http://www.debian.org/vote/2010/vote_002_tally.txt

Pop quiz: e-voting

would you run your country’s election this way?

Stefano Zacchiroli (Debian) Debian Como, Italy 72 / 112

http://www.debian.org/vote/2010/vote_001_tally.txt
http://www.debian.org/vote/2010/vote_002_tally.txt

Secretary

appointed conjointly by DPL and incumbent secretary

responsible for election procedures
ñ de facto authority for Constitution interpretation in electoral

matters

maintains and run the voting software devotee
ñ voting artifacts (software, ballots, etc.) available for review
ñ software allows to rerun and verify election results, e.g.:

« http://www.debian.org/vote/2010/vote_001_tally.txt
« http://www.debian.org/vote/2010/vote_002_tally.txt

Pop quiz: e-voting

would you run your country’s election this way?

Stefano Zacchiroli (Debian) Debian Como, Italy 72 / 112

http://www.debian.org/vote/2010/vote_001_tally.txt
http://www.debian.org/vote/2010/vote_002_tally.txt

Fiscal sponsorship

Do Free Software projects exist in the “real world”,
the one made of money, laws (and lawyers), taxes, etc?

They do have needs that relate them to it, e.g.:

receive (tax exempt) donations
ñ . . . and provide (tax deductible) receipts

own hardware, potentially expensive
ñ Debian hardware cost per year: 29’000 USD

own copyright and trademarks
ñ that might want/need to enforce. . .

use donated money to reimburse or pay developers

developers might get sued
ñ $evil_proprietary_software_company
ñ patent trolls
ñ . . .

Stefano Zacchiroli (Debian) Debian Como, Italy 73 / 112

Fiscal sponsorship

Do Free Software projects exist in the “real world”,
the one made of money, laws (and lawyers), taxes, etc?

They do have needs that relate them to it, e.g.:

receive (tax exempt) donations
ñ . . . and provide (tax deductible) receipts

own hardware, potentially expensive
ñ Debian hardware cost per year: 29’000 USD

own copyright and trademarks
ñ that might want/need to enforce. . .

use donated money to reimburse or pay developers

developers might get sued
ñ $evil_proprietary_software_company
ñ patent trolls
ñ . . .

Stefano Zacchiroli (Debian) Debian Como, Italy 73 / 112

Fiscal sponsorship (cont.)

Definition (Fiscal sponsorship)

Fiscal sponsorship is the practice of non-profit organizations (NPO)
to offer legal and tax-exempt status to groups related to the
organization’s missions.

By extension, in Free Software it commonly refers to providing all
the “real world”-related needs that a project needs.

high-profile FOSS projects have set up their own NPO

but it is a lot of work!
. . . and hackers are not necessarily good at it

umbrella organizations that do fiscal sponsorship for Free
Software projects are more and more common, e.g.:

ñ Software Freedom Conservancy, http://sfconservancy.org/
ñ Software in the Public Interest (SPI), http://spi-inc.org/
ñ (Apache Software Foundation, http://apache.org/)

Stefano Zacchiroli (Debian) Debian Como, Italy 74 / 112

http://sfconservancy.org/
http://spi-inc.org/
http://apache.org/

Trusted Organization

1997 Debian founds SPI for the needs of Free Software projects
ñ including Debian itself, but with the usual “give back” intent

1998 the Constitution entrusts SPI to handle Debian assets

2006 Constitution amended to not special case SPI
introducing the notion of. . .

Trusted Organizations (TO):

hold assets “in trust” for the Project
ñ DPL as liaison / decision maker

link with the real bureaucratic world
ñ donations, legal advice, tax exemption, reimbursements, . . .

SPI (us), FFIS (de), debian.ch (ch), Assoli (it), ASL (br), . . .

Stefano Zacchiroli (Debian) Debian Como, Italy 75 / 112

Day to day organization: teams!

Luckily, day to day organization is much easier and more informal:

http://wiki.debian.org/Teams/

teams grow as jobs get bigger

some “core teams” are DPL delegates, most are not

examples
ñ packaging teams for related packages
ñ ftp-master
ñ release team
ñ security team
ñ kernel team
ñ debian-installer
ñ debian-cd
ñ . . .

Stefano Zacchiroli (Debian) Debian Como, Italy 76 / 112

http://wiki.debian.org/Teams/

Joining — an ethical moment

1993 as most FOSS projects, Debian incubated as 1-man-show

1994 Debian manifesto to explain Debian values

1995–1997 easy to join: send a mail!

small numbers, project members in the tens

1998-1999 ethic crisis

we need manpower!
new developers accepted too quickly
disagreement on core values

to be more competitive with other distros,
we should accept non-free components

(lack of needed technical skills)

Debian Account Manager (DAM) stops accepting new
members

Stefano Zacchiroli (Debian) Debian Como, Italy 77 / 112

Joining — an ethical moment (cont.)

1999 creation of the NM (New Maintainer) process and NM
team to accept new members

DPL stated requirements to be on the NM team (excerpt):

- needs to have a *strong* opinion for free software
- needs to have a *strong* opinion for free software
- he needs to know what he’s doing,
that new people need some guidance,
we have to prevent ourselves from trojans, etc.

- we need to trust him more than we trust *any* other
active person

- he *has to* understand that new-maintainer is *more*
than just creating dumb accounts on N machines

References
Gabriella Coleman, Three Ethical Moments in Debian,
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=805287

Stefano Zacchiroli (Debian) Debian Como, Italy 78 / 112

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=805287

NM Process

http://www.debian.org/devel/join/newmaint

1 identification
ñ via GPG key, available in the Web of Trust (WoT)
ñ signed by at least 2 project members
ñ correspondence: Internet identity ↔ real person
ñ Debian people: largest connected group in the WoT

2 assignment of an Application Manager (AM)
ñ both mentoring and examination
ñ requirement: not a newbie project member

3 philosophy & procedures
ñ adherence to project core values
ñ license/legal knowledge
ñ knowledge of common procedures
ñ Q&A via email

Stefano Zacchiroli (Debian) Debian Como, Italy 79 / 112

http://www.debian.org/devel/join/newmaint

NM Process (cont.)

http://www.debian.org/devel/join/newmaint

4 tasks and skills
ñ technical (packaging or other) ability
ñ with evidence of previous work → trivial

5 DAM review & approval
ñ DAMs are DPL delegates, (indirect) formal blessing of new

members by the Project as a whole
ñ special casing in the Constitution:

Leader’s Delegates [. . .] may make certain decisions
which the Leader may not make directly, including
approving or expelling Developers

6 account creation
ñ and setup of related permissions

Stefano Zacchiroli (Debian) Debian Como, Italy 79 / 112

http://www.debian.org/devel/join/newmaint

Diversity

The Debian Project is an association of individuals who have
made common cause to create a free operating system.

but you have the New (Package) Maintainer process

is that a problem?

Yes

technical: there’s much more than packaging to a Free OS
ñ translation, infrastructure, porting, bug triaging, artwork,

communication, management, testing, legal advice, QA, . . .

ethical: first/second class citizen split
ñ no sense of belonging for non-packagers results in lack of

motivation

Stefano Zacchiroli (Debian) Debian Como, Italy 80 / 112

Diversity

The Debian Project is an association of individuals who have
made common cause to create a free operating system.

but you have the New (Package) Maintainer process

is that a problem?

Yes

technical: there’s much more than packaging to a Free OS
ñ translation, infrastructure, porting, bug triaging, artwork,

communication, management, testing, legal advice, QA, . . .

ethical: first/second class citizen split
ñ no sense of belonging for non-packagers results in lack of

motivation

Stefano Zacchiroli (Debian) Debian Como, Italy 80 / 112

Diversity (cont.)

2010 GR “Debian project members”
to become a Project member, all contributions count
http://www.debian.org/vote/2010/vote_002

2011 rename: New Maintainer (NM) Process → New Member

2012 GR “Diversity statement”

The Debian Project welcomes and encourages participation
by everyone.
No matter how you identify yourself or how others perceive
you: we welcome you. We welcome contributions from
everyone as long as they interact constructively with our
community.
While much of the work for our project is technical in
nature, we value and encourage contributions from those
with expertise in other areas, and welcome them into our
community.

Stefano Zacchiroli (Debian) Debian Como, Italy 81 / 112

http://www.debian.org/vote/2010/vote_002

Diversity (cont.)

2010 GR “Debian project members”
to become a Project member, all contributions count
http://www.debian.org/vote/2010/vote_002

2011 rename: New Maintainer (NM) Process → New Member

2012 GR “Diversity statement”

The Debian Project welcomes and encourages participation
by everyone.
No matter how you identify yourself or how others perceive
you: we welcome you. We welcome contributions from
everyone as long as they interact constructively with our
community.
While much of the work for our project is technical in
nature, we value and encourage contributions from those
with expertise in other areas, and welcome them into our
community.

Stefano Zacchiroli (Debian) Debian Como, Italy 81 / 112

http://www.debian.org/vote/2010/vote_002

Organization — putting it all together

Users

Developers
elect

Officers

appoints appoints

Project leader

Project secretaryTechnical committee

appoints/approves

Release team

FTP masters

Security team

Press contacts

Administrators

etc.

Delegates

Maintainers / porters

etc. etc.

CD team

Web/list/...masters

Policy group

Quality assurance

Documentation / i18n teams

DAM NM team / advocates applicants
apply

approve

Software in the Public Interest (SPI)

Stefano Zacchiroli (Debian) Debian Como, Italy 82 / 112

Outline

1 FOSS concepts

2 Debian overview

3 Philosophy

4 Organization

5 Processes

6 Derivatives

7 Appendix: packaging tutorial

8 Appendix: contribute

Stefano Zacchiroli (Debian) Debian Como, Italy 83 / 112

Package lifecycle

The most important processes in Debian derive from the package
lifecycle, which follows packages from upstream software creation,
through packaging, to final users of one or more of Debian suites
(or package repositories).

Related human processes are documented extensively in the Debian
Developer’s Reference:
http://www.debian.org/doc/manuals/developers-reference/

Stefano Zacchiroli (Debian) Debian Como, Italy 84 / 112

http://www.debian.org/doc/manuals/developers-reference/

UpStream

Sources

Security
Patches

Security
Team

Security
incoming

(Manual) package upload
automatic processing

 special/optional process
Standard process

BTS

package installation
Legend

maintenance responsibility
exchange help, discussion

submission, notification

builds

incoming

developer/
maintainer

packaging

power user/
developer

 user/
production

unstable

testing

frozen

by
RM

testing

unstable

stable

stable

proposed updates

proposed updates
security
updates

by
stable
RM

semi official repository

human/
group

transitional
state

stable-updates
(ex volatile)

backports

experimental

Quality Assurance (QA)

How do you do quality in a large volunteer project?

Pitfalls:

no “I’ll fire you” or monetary levers

people might (and will) disappear without notice

strong opinions

“thou shalt not touch my package”

a pinch of anarchy

Stefano Zacchiroli (Debian) Debian Como, Italy 86 / 112

The Debian Policy Manual

AKA “the Policy”

specification-like manual describing expectations on Debian
artifacts (in particular: packages)

ñ structure of the archive, source, and binary packages
ñ semantics of package metadata
ñ expectations on package installation and maintainer scripts
ñ file system logical structure (FHS)
ñ OS design issues: service invocations, shared libraries, . . .

maintained by the policy auditors, who are DPL delegates

failure to respect the Policy → RC bugs

http://www.debian.org/doc/debian-policy/

Stefano Zacchiroli (Debian) Debian Como, Italy 87 / 112

http://www.debian.org/doc/debian-policy/

Testing packages

How do you enforce policy?

user testing → bug reports (fundamental contribution in FOSS!)

testing suite
ñ lack of compliance, among other reasons, keep packages out

automated testing
ñ lintian — automated policy compliance checker
http://lintian.debian.org/

ñ piuparts — stress testing of package installation expectations
http://piuparts.debian.org/

ñ periodic archive-wide rebuilds

References
Lucas Nussbaum, Rebuilding Debian using distributed computing,
CLADE’09, http://dl.acm.org/citation.cfm?id=1552318

No automated bug filing (false positive will waste volunteer time and
upset people), rather manual review + bug report.

Stefano Zacchiroli (Debian) Debian Como, Italy 88 / 112

http://lintian.debian.org/
http://piuparts.debian.org/
http://dl.acm.org/citation.cfm?id=1552318

QA Team

http://qa.debian.org

Loosely defined team: “every DD is in the QA Team”
Rather, a discussion place for people interested in distro-wide QA
More generally: interested in the distro as a whole

Maintainers of the QA infrastructure:

DDPO: http://qa.debian.org/developer.php?login=zack

PTS: http://packages.qa.debian.org/o/ocaml.html

http://lintian.debian.org/

http://piuparts.debian.org/

rebuild scripts (now in “the cloud”!)

. . .

Stefano Zacchiroli (Debian) Debian Como, Italy 89 / 112

http://qa.debian.org
http://qa.debian.org/developer.php?login=zack
http://packages.qa.debian.org/o/ocaml.html
http://lintian.debian.org/
http://piuparts.debian.org/

The Maintainer field

in the beginning, it was the base system
then the Maintainer field

Package: git
Version: 1:1.7.10-1
Maintainer: Gerrit Pape <pape@smarden.org>
Architecture: amd64

Pros:

it gives pride and motivations

“wow, you maintain THAT!”

Cons:

create islands, increase
barriers to contributions

agile methods say “fight
strong code package
ownership”

what if a maintainer
disappears?

Stefano Zacchiroli (Debian) Debian Como, Italy 90 / 112

Missing In Action (MIA)

Given enough volunteers,
someone will eventually disappear without notice.

You can’t assume they are gone; might be simply busy with RL.
You can’t do nothing: blocks others, and frustrates volunteers.
MIA process / MIA team:

big brother like tracking of developers activities
periodic, cadenced pings
package orphaning in the end
still much more work than in the responsible leave scenario

References

Martin Michlmayr, Managing volunteer activity in free software
projects, USENIX 2004 (Freenix track),
http://static.usenix.org/publications/library/proceedings/

usenix04/tech/freenix/full_papers/michlmayr/michlmayr_html/

Stefano Zacchiroli (Debian) Debian Como, Italy 91 / 112

http://static.usenix.org/publications/library/proceedings/usenix04/tech/freenix/full_papers/michlmayr/michlmayr_html/
http://static.usenix.org/publications/library/proceedings/usenix04/tech/freenix/full_papers/michlmayr/michlmayr_html/

Non Maintainer Uploads (NMU)

You’ve found a serious issue in a package and a fix is available.
How do you deploy it?

via maintainer:
1 report bug+patch

2 wait maintainer reacts

3 eventually: upload

What if the maintainer is MIA?
What is the community impact?

NMU: upload performed by people
other than the official maintainer

very effective in reducing
volunteer inertia

lot of care needed to avoid
upset people and bad
publicity to the process

ñ principle: NMU to help
fellow developers

ñ make it easy to integrate
your work

ñ DELAYED/XX uploads

Stefano Zacchiroli (Debian) Debian Como, Italy 92 / 112

Non Maintainer Uploads (NMU) (cont.)

References:

http://www.debian.org/doc/manuals/developers-reference/
pkgs.html#nmu

ñ note the care in avoiding to upset and/or undermine the
authority of the legitimate maintainer

ñ volunteer work is to be cherished, until it gets in the way of the
work of other volunteers

a (successful) experiment in dispelling NMU’s bad publicity:
http://upsilon.cc/~zack/hacking/debian/rcbw/

Exercise

Where does the need for the NMU process come from?
Why is it not needed in other large Free Software projects?

Stefano Zacchiroli (Debian) Debian Como, Italy 93 / 112

http://www.debian.org/doc/manuals/developers-reference/pkgs.html#nmu
http://www.debian.org/doc/manuals/developers-reference/pkgs.html#nmu
http://upsilon.cc/~zack/hacking/debian/rcbw/

Outline

1 FOSS concepts

2 Debian overview

3 Philosophy

4 Organization

5 Processes

6 Derivatives

7 Appendix: packaging tutorial

8 Appendix: contribute

Stefano Zacchiroli (Debian) Debian Como, Italy 94 / 112

Interlude — derivatives how to

Free Software 101 — reminder
3 The freedom to redistribute copies so you can help your

neighbor.
4 The freedom to distribute copies of your modified versions to

others.

When applied to distros: derived distributions, AKA derivatives

How? 1 take existing packages and add your extras
2 patch & rebuild packages as needed
3 sync periodically

Stefano Zacchiroli (Debian) Debian Como, Italy 95 / 112

Derivatives are game changers

Derivatives have changed the way in which distros are made

derivatives’ focus is on customization

people power is needed “only” for that

everybody wins (if done properly)

derivative: massive reuse of packaging work

“mother” distro: reach out to new public
ñ users and contributors

Stefano Zacchiroli (Debian) Debian Como, Italy 96 / 112

Debian derivatives

Debian: a base for ≈140 active derivatives — distrowatch.com

Tucunare, LinEx, Inquisitor, Grml, UniventionCorporateServer,
Vanillux, Emdebian, Crunchbang, PureOS, StormOS, Ubuntu,
GNUSTEP, gNewSense, Debathena, Maemo, LMDE, SPACEflight, BCCD,
Bayanihan, semplice, ArchivistaBox, Knoppix, Tails, BlankOn,
AlienVault-OSSIM, DoudouLinux, Vyatta, Symbiosis, VoyageLinux,
Lihuen, LinuxAdvanced, Aptosid, Canaima, siduction,
ZevenOS-Neptune, BOSSlinux, Parsix, AstraLinux, ProgressLinux,
Finnix, SprezzOS, CoreBiz, Epidemic-Linux, MetamorphoseLinux , . . .

Why? quality & licensing assurances
solid base system
huge package base
the “universal OS”, perfect for customizations

Stefano Zacchiroli (Debian) Debian Como, Italy 97 / 112

A Debian derivative example: Ubuntu

started in 2004 by Canonical
target: desktop

Debian derivative

very popular (15–20x Debian?)

historical/past correlations

main ↔ corporate
universe ↔ community

ñ heavily customized/forked in main
ñ very close to Debian elsewhere

sprouting its own derivatives (≈80)
ñ . . . as Debian transitive derivatives

Debian

Ubuntu

Upstream

Patch

74%
15%

11%

Data for Oneiric Ocelot, main + universe

Stefano Zacchiroli (Debian) Debian Como, Italy 98 / 112

Do you Debian?

Ubuntu appears to be the most customized Debian derivative
other derivs. ⇒ much larger amount of pristine Debian packages

Tucunare, LinEx, Inquisitor, Grml, UniventionCorporateServer,
Vanillux, Emdebian, Crunchbang, PureOS, StormOS, Ubuntu,

GNUSTEP, gNewSense, Debathena, Maemo, LMDE, SPACEflight,
BCCD, Bayanihan, semplice, ArchivistaBox, Knoppix, Tails,

BlankOn, AlienVault-OSSIM, DoudouLinux, Vyatta, Symbiosis,
VoyageLinux, Lihuen, LinuxAdvanced, Aptosid, Canaima,

siduction, ZevenOS-Neptune, BOSSlinux, Parsix, AstraLinux,
ProgressLinux, Finnix, SprezzOS, CoreBiz, Epidemic-Linux,
MetamorphoseLinux , Debian, Xubuntu, Linux Mint, Ubuntu
Studio, Mythbuntu, ArtistX, Asturix, Peppermint OS, TurnKey

Linux, Kubuntu, Caixa Mágica, Lubuntu , . . .

if you are running a Debian (transitive) derivative, chances are you
heavily depend on Debian and on its well-being

even if your distro hasn’t told you

Stefano Zacchiroli (Debian) Debian Como, Italy 99 / 112

The distribution pipeline

yesterday . . .

Stefano Zacchiroli (Debian) Debian Como, Italy 100 / 112

The new distribution pipeline

. . . today

Stefano Zacchiroli (Debian) Debian Como, Italy 100 / 112

The new distribution pipeline

. . . today

That’s wonderful!

freedom spreads

more eyeballs swallow more bugs

more potential contributors

But.

should be sustainable

to everybody’s benefit

Stefano Zacchiroli (Debian) Debian Como, Italy 100 / 112

Derivative pitfalls

are derivatives always useful?
ñ similar to: are fork useful in Free Software?

what could possibly go wrong. . .

Stefano Zacchiroli (Debian) Debian Como, Italy 101 / 112

Looking back: a derivatives crisis

http://xkcd.com/523/

Aug 1993 Debian birth

Jul 1997 Debian Social Contract

Mar 2004 Canonical birth

Oct 2004 Ubuntu Warty release

Apr 2005 Ubuntu Hoary release

Jun 2005 Debian Sarge release (after a long delay)

2006–2007 The Big Crisis™

Debian: “Ubuntu is not giving back!”
Debian: “Ubuntu is taking all the credit!”
Ubuntu: “Debian is not easy to work with”
Ubuntu: “Debian is hostile to us”

2008 getting better, signs of mutual interest in collaboration

2009 failed release coordination results in new crisis

due to communication issues

Stefano Zacchiroli (Debian) Debian Como, Italy 102 / 112

http://xkcd.com/523/

A Debian-ic vision of derivatives

2010 propose a Debian-compatible vision of derivatives
present it to both (making headlines)

Free Software is bigger and more important
than Debian and any other distro or project

1 give back, i.e. reduce patch flow viscosity

2 give credit where credit is due

Stefano Zacchiroli (Debian) Debian Como, Italy 103 / 112

Implementing that vision

Derivatives Front Desk wiki.debian.org/DerivativesFrontDesk

contact point and discussion place

make emerge a critical mass of DDs interested in collaboration

Debian dErivatives eXchange (DEX) dex.alioth.debian.org

short-lived cross-distro projects to merge back changes

visible progress

Derivatives Census wiki.debian.org/Derivatives/Census

gather detailed information about derivatives

useful for QA and for relationship development

“patches.ubuntu.com” equivalent for all derivatives

Solutions for all derivatives, obtained generalizing lessons learned
from the Debian ↔ Ubuntu experience.

Stefano Zacchiroli (Debian) Debian Como, Italy 104 / 112

wiki.debian.org/DerivativesFrontDesk
dex.alioth.debian.org
wiki.debian.org/Derivatives/Census

Early results

4/2010
6/2010

8/2010
10/2010

12/2010
2/2011

4/2011
6/2011

8/2011

0

20

40

60

80

100

120

140 Patches

Average

forwarded Ubuntu→Debian patches per month; source: Debian BTS

increase in forwarded patches

new “upstream first” guidelines for new packages (in Universe)

more Ubuntu people getting involved in Debian as DMs/DDs

Stefano Zacchiroli (Debian) Debian Como, Italy 105 / 112

Outline

1 FOSS concepts

2 Debian overview

3 Philosophy

4 Organization

5 Processes

6 Derivatives

7 Appendix: packaging tutorial

8 Appendix: contribute

Stefano Zacchiroli (Debian) Debian Como, Italy 106 / 112

About this tutorial

Goal: tell you what you really need to know about Debian packaging
I Modify existing packages

I Create your own packages

I Interact with the Debian community

I Become a Debian power-user

Covers the most important points, but is not complete
I You will need to read more documentation

Most of the content also applies to Debian derivatives distributions
I That includes Ubuntu

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 1 / 69

Packaging tutorial — outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Advanced packaging topics

5 Maintaining packages in Debian

6 Conclusion

7 Answers to practical sessions

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 2 / 69

Packaging tutorial — outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Advanced packaging topics

5 Maintaining packages in Debian

6 Conclusion

7 Answers to practical sessions

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 3 / 69

Debian

GNU/Linux distribution

1st major distro developed “openly in the spirit of GNU”

Non-commercial, built collaboratively by over 1,000 volunteers

3 main features:
I Quality – culture of technical excellence

We release when it’s ready

I Freedom – devs and users bound by the Social Contract
Promoting the culture of Free Software since 1993

I Independence – no (single) company babysitting Debian
And open decision-making process (do-ocracy + democracy)

Amateur in the best sense: done for the love of it

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 4 / 69

Debian packages

.deb files (binary packages)

A very powerful and convenient way to distribute software to users

One of the two most common packages format (with RPM)

Universal:
I 30,000 binary packages in Debian

→ most of the available free software is packaged in Debian!

I For 12 ports (architectures), including 2 non-Linux (Hurd; KFreeBSD)

I Also used by 120 Debian derivatives distributions

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 5 / 69

The Deb package format

.deb file: an ar archive

$ ar tv wget_1 .12 -2.1 _i386.deb

rw-r--r-- 0/0 4 Sep 5 15:43 2010 debian -binary

rw-r--r-- 0/0 2403 Sep 5 15:43 2010 control.tar.gz

rw-r--r-- 0/0 751613 Sep 5 15:43 2010 data.tar.gz

I debian-binary: version of the deb file format, "2.0\n"
I control.tar.gz: metadata about the package

control, md5sums, (pre|post)(rm|inst), triggers, shlibs, . . .
I data.tar.gz: data files of the package

You could create your .deb files manually
http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/

But most people don’t do it that way

This tutorial: create Debian packages, the Debian way

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 6 / 69

Tools you will need

A Debian (or Ubuntu) system (with root access)

Some packages:
I build-essential: has dependencies on the packages that will be assumed to

be available on the developers’ machine (no need to specify them in the
Build-Depends: control field of your package)

F includes a dependency on dpkg-dev, which contains basic Debian-specific tools
to create packages

I devscripts: contains many useful scripts for Debian maintainers

Many other tools will also be mentioned later, such as debhelper, cdbs,
quilt, pbuilder, sbuild, lintian, svn-buildpackage, git-buildpackage, . . .
Install them when you need them.

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 7 / 69

General packaging workflow

Web upstream sourceDebian mirror

source package where most of the
manual work is done

one or several binary packages .deb

dh_makeapt-get source dget

debuild (build and test with lintian)
or dpkg-buildpackage

install (debi)upload (dput)

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 8 / 69

Example: rebuilding dash

1 Install packages needed to build dash, and devscripts
sudo apt-get build-dep dash

(requires deb-src lines in /etc/apt/sources.list)
sudo apt-get install --no-install-recommends devscripts

2 Create a working directory, and get in it:
mkdir /tmp/debian-tutorial ; cd /tmp/debian-tutorial

3 Grab the dash source package
apt-get source dash

(This needs you to have deb-src lines in your /etc/apt/sources.list)

4 Build the package
cd dash-*

debuild -us -uc (-us -uc disables signing the package with GPG)
5 Check that it worked

I There are some new .deb files in the parent directory

6 Look at the debian/ directory
I That’s where the packaging work is done

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 9 / 69

Packaging tutorial — outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Advanced packaging topics

5 Maintaining packages in Debian

6 Conclusion

7 Answers to practical sessions

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 10 / 69

Source package

One source package can generate several binary packages
e.g the libtar source generates the libtar0 and libtar-dev binary packages

Two kinds of packages: (if unsure, use non-native)
I Native packages: normally for Debian specific software (dpkg, apt)
I Non-native packages: software developed outside Debian

Main file: .dsc (meta-data)

Other files depending on the version of the source format
I 1.0 – native: package_version.tar.gz
I 1.0 – non-native:

F pkg_ver.orig.tar.gz : upstream source
F pkg_debver.diff.gz : patch to add Debian-specific changes

I 3.0 (quilt):
F pkg_ver.orig.tar.gz : upstream source
F pkg_debver.debian.tar.gz : tarball with the Debian changes

(See dpkg-source(1) for exact details)

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 11 / 69

Source package example (wget_1.12-2.1.dsc)

Format: 3.0 (quilt)

Source: wget

Binary: wget

Architecture: any

Version: 1.12 -2.1

Maintainer: Noel Kothe <noel@debian.org >

Homepage: http ://www.gnu.org/software/wget/

Standards -Version: 3.8.4

Build -Depends: debhelper (>> 5.0.0) , gettext , texinfo ,

libssl -dev (>= 0.9.8) , dpatch , info2man

Checksums -Sha1:

50 d4ed2441e67 [..]1 ee0e94248 2464747 wget_1 .12. orig.tar.gz

d4c1c8bbe431d [..] dd7cef3611 48308 wget_1 .12 -2.1. debian.tar.gz

Checksums -Sha256:

7578 ed0974e12 [..] dcba65b572 2464747 wget_1 .12. orig.tar.gz

1e9b0c4c00eae [..]89 c402ad78 48308 wget_1 .12 -2.1. debian.tar.gz

Files:

141461 b9c04e4 [..]9 d1f2abf83 2464747 wget_1 .12. orig.tar.gz

e93123c934e3c [..]2 f380278c2 48308 wget_1 .12 -2.1. debian.tar.gz

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 12 / 69

Retrieving an existing source package

From the Debian archive:
I apt-get source package
I apt-get source package=version
I apt-get source package/release

(You need deb-src lines in sources.list)

From the Internet:
I dget url-to.dsc
I dget http://snapshot.debian.org/archive/debian-archive/

20090802T004153Z/debian/dists/bo/main/source/web/

wget_1.4.4-6.dsc

(snapshot.d.o provides all packages from Debian since 2005)

From the (declared) version control system:
I debcheckout package

Once downloaded, extract with dpkg-source -x file.dsc

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 13 / 69

Creating a basic source package

Download the upstream source
(upstream source = the one from the software’s original developers)

Rename to <source_package>_<upstream_version>.orig.tar.gz

(example: simgrid_3.6.orig.tar.gz)

Untar it

cd upstream_source && dh_make (from the dh-make package)

There are some alternatives to dh_make for specific sets of packages:
dh-make-perl, dh-make-php, . . .

debian/ directory created, with a lot of files in it

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 14 / 69

Files in debian/

All the packaging work should be made by modifying files in debian/

Main files:
I control – meta-data about the package (dependencies, etc)
I rules – specifies how to build the package
I copyright – copyright information for the package
I changelog – history of the Debian package

Other files:
I compat
I watch
I dh_install* targets

*.dirs, *.docs, *.manpages, . . .
I maintainer scripts

*.postinst, *.prerm, . . .
I source/format
I patches/ – if you need to modify the upstream sources

Several files use a format based on RFC 822 (mail headers)

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 15 / 69

debian/changelog

Lists the Debian packaging changes
Gives the current version of the package

1.2.1.1-5
Debian
revision

Upstream
version

Edited manually or with dch
I Create a changelog entry for a new release: dch -i

Special format to automatically close Debian or Ubuntu bugs
Debian: Closes: #595268; Ubuntu: LP: #616929

Installed as /usr/share/doc/package /changelog.Debian.gz

mpich2 (1.2.1.1 -5) unstable; urgency=low

* Use /usr/bin/python instead of /usr/bin/python2 .5. Allow

to drop dependency on python2 .5. Closes: #595268

* Make /usr/bin/mpdroot setuid. This is the default after

the installation of mpich2 from source , too. LP: #616929

+ Add corresponding lintian override.

-- Lucas Nussbaum <lucas@debian.org > Wed , 15 Sep 2010 18:13:44 +0200

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 16 / 69

debian/control

Package metadata
I For the source package itself
I For each binary package built from this source

Package name, section, priority, maintainer, uploaders,
build-dependencies, dependencies, description, homepage, . . .

Documentation: Debian Policy chapter 5
http://www.debian.org/doc/debian-policy/ch-controlfields.html

Source: wget

Section: web

Priority: important

Maintainer: Noel Kothe <noel@debian.org >

Build -Depends: debhelper (>> 5.0.0) , gettext , texinfo ,

libssl -dev (>= 0.9.8) , dpatch , info2man

Standards -Version: 3.8.4

Homepage: http ://www.gnu.org/software/wget/

Package: wget

Architecture: any

Depends: ${shlibs:Depends}, ${misc:Depends}

Description: retrieves files from the web

Wget is a network utility to retrieve files from the Web
Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 17 / 69

Architecture: all or any

Two kinds of binary packages:

Packages with different contents on each Debian architecture
I Example: C program
I Architecture: any in debian/control

F Or, if it only works on a subset of architectures:
Architecture: amd64 i386 ia64 hurd-i386

I buildd.debian.org: builds all the other architectures for you on upload
I Named package_version_architecture.deb

Packages with the same content on all architectures
I Example: Perl library
I Architecture: all in debian/control
I Named package_version_all.deb

A source package can generate a mix of Architecture: any and
Architecture: all binary packages

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 18 / 69

debian/rules

Makefile

Interface used to build Debian packages

Documented in Debian Policy, chapter 4.8
http://www.debian.org/doc/debian-policy/ch-source.html#s-debianrules

Five required targets:
I build: should perform all the configuration and compilation
I binary, binary-arch, binary-indep: build the binary packages

F dpkg-buildpackage will call binary to build all the packages, or binary-arch to
build only the Architecture: any packages

I clean: clean up the source directory

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 19 / 69

Packaging helpers – debhelper

You could write shell code in debian/rules directly
I See the adduser package for example

Better practice (used by most packages): use a Packaging helper

Most popular one: debhelper (used by 98% of packages)

Goals:
I Factor the common tasks in standard tools used by all packages
I Fix some packaging bugs once for all packages

dh_installdirs, dh_installchangelogs, dh_installdocs, dh_installexamples, dh_install,
dh_installdebconf, dh_installinit, dh_link, dh_strip, dh_compress, dh_fixperms, dh_perl,
dh_makeshlibs, dh_installdeb, dh_shlibdeps, dh_gencontrol, dh_md5sums, dh_builddeb, . . .

I Called from debian/rules
I Configurable using command parameters or files in debian/

package.docs, package.examples, package.install, package.manpages, ...

Third-party helpers for sets of packages: python-support, dh_ocaml,
. . .

Gotcha: debian/compat: Debhelper compatibility version (use "7")
Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 20 / 69

debian/rules using debhelper (1/2)

#!/usr/bin/make -f

Uncomment this to turn on verbose mode.

#export DH_VERBOSE =1

build:

$(MAKE)

#docbook -to-man debian/packagename.sgml > packagename .1

clean:

dh_testdir

dh_testroot

rm -f build -stamp configure -stamp

$(MAKE) clean

dh_clean

install: build

dh_testdir

dh_testroot

dh_clean -k

dh_installdirs

Add here commands to install the package into debian/packagename.

$(MAKE) DESTDIR=$(CURDIR)/ debian/packagename install

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 21 / 69

debian/rules using debhelper (2/2)

Build architecture -independent files here.

binary -indep: build install

Build architecture -dependent files here.

binary -arch: build install

dh_testdir

dh_testroot

dh_installchangelogs

dh_installdocs

dh_installexamples

dh_install

dh_installman

dh_link

dh_strip

dh_compress

dh_fixperms

dh_installdeb

dh_shlibdeps

dh_gencontrol

dh_md5sums

dh_builddeb

binary: binary -indep binary -arch

.PHONY: build clean binary -indep binary -arch binary install configure

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 22 / 69

CDBS

With debhelper, still a lot of redundancy between packages

Second-level helpers that factor common functionality
I E.g building with ./configure && make && make install or CMake

CDBS:
I Introduced in 2005, based on advanced GNU make magic
I Documentation: /usr/share/doc/cdbs/
I Support for Perl, Python, Ruby, GNOME, KDE, Java, Haskell, . . .
I But some people hate it:

F Sometimes difficult to customize package builds:
"twisty maze of makefiles and environment variables"

F Slower than plain debhelper (many useless calls to dh_*)

#!/usr/bin/make -f

include /usr/share/cdbs /1/ rules/debhelper.mk

include /usr/share/cdbs /1/ class/autotools.mk

add an action after the build

build/mypackage ::

/bin/bash debian/scripts/foo.sh

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 23 / 69

Dh (aka Debhelper 7, or dh7)

Introduced in 2008 as a CDBS killer

dh command that calls dh_*

Simple debian/rules, listing only overrides

Easier to customize than CDBS

Doc: manpages (debhelper(7), dh(1)) + slides from DebConf9 talk
http://kitenet.net/~joey/talks/debhelper/debhelper-slides.pdf

#!/usr/bin/make -f

%:

dh $@

override_dh_auto_configure:

dh_auto_configure -- --with -kitchen -sink

override_dh_auto_build:

make world

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 24 / 69

Classic debhelper vs CDBS vs dh

Mind shares:
Classic debhelper: 36% CDBS: 21% dh: 41%

Which one should I learn?
I Probably a bit of all of them
I You need to know debhelper to use dh and CDBS
I You might have to modify CDBS packages

Which one should I use for a new package?
I dh (only solution with an increasing mind share)

11/2009 05/2010 12/2010 06/2011 01/2012
0

20

40

60

Time

M
ar

ke
ts

ha
re

(%
) debhelper

dh
CDBS

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 25 / 69

Packaging tutorial — outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Advanced packaging topics

5 Maintaining packages in Debian

6 Conclusion

7 Answers to practical sessions

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 26 / 69

Building packages

apt-get build-dep mypackage

Installs the build-dependencies (for a package already in Debian)
Or mk-build-deps -ir (inside the package source tree)

debuild: build, test with lintian, sign with GPG

Also possible to call dpkg-buildpackage directly
I Usually with dpkg-buildpackage -us -uc

It is better to build packages in a clean & minimal environment
I pbuilder – helper to build packages in a chroot

Good documentation: https://wiki.ubuntu.com/PbuilderHowto
(optimization: cowbuilder ccache distcc)

I schroot and sbuild: used on the Debian build daemons
(not as simple as pbuilder, but allows LVM snapshots
see: https://help.ubuntu.com/community/SbuildLVMHowto)

Generates .deb files and a .changes file
I .changes: describes what was built; used to upload the package

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 27 / 69

Installing and testing packages

Install the package locally: debi (will use .changes to know what to
install)

List the content of the package: debc ../mypackage<TAB>.changes

Compare the package with a previous version:
debdiff ../mypackage_1_*.changes ../mypackage_2_*.changes

or to compare the sources:
debdiff ../mypackage_1_*.dsc ../mypackage_2_*.dsc

Check the package with lintian (static analyzer):
lintian ../mypackage<TAB>.changes

lintian -i: gives more information about the errors

Upload the package to Debian (dput) (needs configuration)

Manage a private Debian archive with reprepro

Documentation: http://mirrorer.alioth.debian.org/

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 28 / 69

Practical session 1: modifying the grep package
1 Go to http://ftp.debian.org/debian/pool/main/g/grep/ and

download version 2.6.3-3 of the package (if you use Ubuntu 11.10 or
later, or Debian testing or unstable, use version 2.9-1 or 2.9-2 instead)

I If the source package is not unpacked automatically, unpack it with
dpkg-source -x grep_*.dsc

2 Look at the files in debian/.
I How many binary packages are generated by this source package?
I Which packaging helper does this package use?

3 Build the package
4 We are now going to modify the package. Add a changelog entry and

increase the version number.
5 Now disable perl-regexp support (it is a ./configure option)
6 Rebuild the package
7 Compare the original and the new package with debdiff
8 Install the newly built package
9 Cry if you messed up ;)

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 29 / 69

Packaging tutorial — outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Advanced packaging topics

5 Maintaining packages in Debian

6 Conclusion

7 Answers to practical sessions

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 30 / 69

debian/copyright

Copyright and license information for the source and the packaging
Traditionally written as a text file
New machine-readable format:
http://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

Format: http ://www.debian.org/doc/packaging -manuals/copyright -format /1.0/
Upstream -Name: X Solitaire
Source: ftp://ftp.example.com/pub/games

Files: *
Copyright: Copyright 1998 John Doe <jdoe@example.com >
License: GPL -2+
This program is free software; you can redistribute it
[...]
.
On Debian systems , the full text of the GNU General Public
License version 2 can be found in the file
‘/usr/share/common -licenses/GPL -2’.

Files: debian /*
Copyright: Copyright 1998 Jane Smith <jsmith@example.net >
License:
[LICENSE TEXT]

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 31 / 69

Modifying the upstream source

Often needed:
Fix bugs or add customizations that are specific to Debian

Backport fixes from a newer upstream release

Several methods to do it:
Modifying the files directly

I Simple
I But no way to track and document the changes

Using patch systems
I Eases contributing your changes to upstream
I Helps sharing the fixes with derivatives
I Gives more exposure to the changes

http://patch-tracker.debian.org/

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 32 / 69

Patch systems

Principle: changes are stored as patches in debian/patches/

Applied and unapplied during build

Past: several implementations – simple-patchsys (cdbs), dpatch, quilt
I Each supports two debian/rules targets:

F debian/rules patch: apply all patches
F debian/rules unpatch: de-apply all patches

I More documentation: http://wiki.debian.org/debian/patches

New source package format with built-in patch system: 3.0 (quilt)
I Recommended solution

I You need to learn quilt
http://pkg-perl.alioth.debian.org/howto/quilt.html

I Patch-system-agnostic tool in devscripts: edit-patch

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 33 / 69

Documentation of patches

Standard headers at the beginning of the patch

Documented in DEP-3 - Patch Tagging Guidelines
http://dep.debian.net/deps/dep3/

Description: Fix widget frobnication speeds

Frobnicating widgets too quickly tended to cause explosions.

Forwarded: http :// lists.example.com /2010/03/1234. html

Author: John Doe <johndoe -guest@users.alioth.debian.org >

Applied -Upstream: 1.2, http ://bzr.foo.com/frobnicator/revision /123

Last -Update: 2010 -03 -29

--- a/src/widgets.c

+++ b/src/widgets.c

@@ -101,9 +101,6 @@ struct {

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 34 / 69

Doing things during installation and removal

Decompressing the package is sometimes not enough

Create/remove system users, start/stop services, manage alternatives

Done in maintainer scripts
preinst, postinst, prerm, postrm

I Snippets for common actions can be generated by debhelper

Documentation:
I Debian Policy Manual, chapter 6

http://www.debian.org/doc/debian-policy/ch-maintainerscripts.html

I Debian Developer’s Reference, chapter 6.4
http://www.debian.org/doc/developers-reference/best-pkging-practices.html

I http://people.debian.org/~srivasta/MaintainerScripts.html

Prompting the user
I Must be done with debconf
I Documentation: debconf-devel(7) (debconf-doc package)

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 35 / 69

Monitoring upstream versions

Specify where to look in debian/watch (see uscan(1))

version =3

http :// tmrc.mit.edu/mirror/twisted/Twisted /(\d\.\d)/ \

Twisted -([\d\.]*)\. tar\.bz2

Debian infrastructure that makes use of debian/watch:
Debian External Health Status
http://dehs.alioth.debian.org/

Maintainer warned by emails sent to the Package Tracking System
http://packages.qa.debian.org/

uscan: run a manual check

uupdate: try to update your package to the latest upstream version

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 36 / 69

Packaging with a Version Control System

Several tools to help manage branches and tags for your packaging work:
svn-buildpackage, git-buildpackage

Example: git-buildpackage
I upstream branch to track upstream with upstream/version tags
I master branch tracks the Debian package
I debian/version tags for each upload
I pristine-tar branch to be able to rebuild the upstream tarball

Vcs-* fields in debian/control to locate the repository
I http://wiki.debian.org/Alioth/Git
I http://wiki.debian.org/Alioth/Svn

Vcs -Browser: http ://git.debian.org/?p=devscripts/devscripts.git

Vcs -Git: git://git.debian.org/devscripts/devscripts.git

Vcs -Browser: http ://svn.debian.org/viewsvn/pkg -perl/trunk/libwww -perl/

Vcs -Svn: svn://svn.debian.org/pkg -perl/trunk/libwww -perl

VCS-agnostic interface: debcheckout, debcommit, debrelease
I debcheckout grep → checks out the source package from Git

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 37 / 69

Backporting packages

Goal: use a newer version of a package on an older system
e.g use mutt from Debian unstable on Debian stable

General idea:
I Take the source package from Debian unstable
I Modify it so that it builds and works fine on Debian stable

F Sometimes trivial (no changes needed)
F Sometimes difficult
F Sometimes impossible (many unavailable dependencies)

Some backports are provided and supported by the Debian project
http://backports.debian.org/

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 38 / 69

Packaging tutorial — outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Advanced packaging topics

5 Maintaining packages in Debian

6 Conclusion

7 Answers to practical sessions

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 39 / 69

Several ways to contribute to Debian

Worst way to contribute:
1 Package your own application
2 Get it into Debian
3 Disappear

Better ways to contribute:
I Get involved in packaging teams

F Many teams that focus on set of packages, and need help
F List available at http://wiki.debian.org/Teams
F An excellent way to learn from more experienced contributors

I Adopt existing unmaintained packages (orphaned packages)

I Bring new software to Debian
F Only if it’s interesting/useful enough, please
F Are there alternatives already packaged in Debian?

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 40 / 69

Adopting orphaned packages

Many unmaintained packages in Debian

Full list + process: http://www.debian.org/devel/wnpp/

Installed on your machine: wnpp-alert

Different states:
I Orphaned: the package is unmaintained

Feel free to adopt it

I RFA: Request For Adopter
Maintainer looking for adopter, but continues work in the meantime
Feel free to adopt it. A mail to the current maintainer is polite

I ITA: Intent To Adopt
Someone intends to adopt the package
You could propose your help!

I RFH: Request For Help
The maintainer is looking for help

Some unmaintained packages not detected → not orphaned yet

When in doubt, ask debian-qa@lists.debian.org

or #debian-qa on irc.debian.org
Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 41 / 69

Adopting a package: example

From: You <you@yourdomain >

To: 640454 @bugs.debian.org , control@bugs.debian.org

Cc: Francois Marier <francois@debian.org >

Subject: ITA: verbiste -- French conjugator

retitle 640454 ITA: verbiste -- French conjugator

owner 640454 !

thanks

Hi,

I am using verbiste and I am willing to take care of the package.

Cheers ,

You

Polite to contact the previous maintainer (especially if the package was
RFAed, not orphaned)
Very good idea to contact the upstream project

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 42 / 69

Getting your package in Debian

You do not need any official status to get your package into Debian
1 Prepare a source package
2 Find a Debian Developer that will sponsor your package

Official status (when you are already experienced):
I Debian Maintainer (DM):

Permission to upload your own packages
See http://wiki.debian.org/DebianMaintainer

I Debian Developer (DD):
Debian project members; can vote and upload any package

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 43 / 69

Where to find help?

Help you will need:
Advice and answers to your questions, code reviews
Sponsorship for your uploads, once your package is ready

You can get help from:
Other members of a packaging team

I They know the specifics of your package
I You can become a member of the team

The Debian Mentors group (if your package doesn’t fit in a team)
I http://wiki.debian.org/DebianMentorsFaq
I Mailing list: debian-mentors@lists.debian.org

(also a good way to learn by accident)
I IRC: #debian-mentors on irc.debian.org
I http://mentors.debian.net/

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 44 / 69

Official documentation

Debian Developers’ Corner
http://www.debian.org/devel/

Links to many resources about Debian development

Debian New Maintainers’ Guide
http://www.debian.org/doc/maint-guide/

An introduction to Debian packaging, but could use an update

Debian Developer’s Reference
http://www.debian.org/doc/developers-reference/

Mostly about Debian procedures, but also some best packaging practices (part 6)

Debian Policy
http://www.debian.org/doc/debian-policy/

I All the requirements that every package must satisfy
I Specific policies for Perl, Java, Python, . . .

Ubuntu Packaging Guide
https://wiki.ubuntu.com/PackagingGuide

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 45 / 69

Debian dashboards for maintainers

Source package centric: Package Tracking System (PTS)
http://packages.qa.debian.org/dpkg

Maintainer/team centric: Developer’s Packages Overview (DDPO)
http://qa.debian.org/developer.php?login=

pkg-ruby-extras-maintainers@lists.alioth.debian.org

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 46 / 69

More interested in Ubuntu?

Ubuntu mainly manages the divergence with Debian

No real focus on specific packages
Instead, collaboration with Debian teams

Usually recommend uploading new packages to Debian first
https://wiki.ubuntu.com/UbuntuDevelopment/NewPackages

Possibly a better plan:
I Get involved in a Debian team and act as a bridge with Ubuntu

I Help reduce divergence, triage bugs in Launchpad
I Many Debian tools can help:

F Ubuntu column on the Developer’s packages overview
F Ubuntu box on the Package Tracking System
F Receive launchpad bugmail via the PTS

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 47 / 69

Packaging tutorial — outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Advanced packaging topics

5 Maintaining packages in Debian

6 Conclusion

7 Answers to practical sessions

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 48 / 69

Conclusion

You now have a full overview of Debian packaging

But you will need to read more documentation

Best practices have evolved over the years
I If not sure, use the dh packaging helper, and the 3.0 (quilt) format

Things that were not covered in this tutorial:
I UCF – manage user changes to configuration files when upgrading

I dpkg triggers – group similar maintainer scripts actions together
I Debian development organization:

F Bug Tracking System (BTS)
F Suites: stable, testing, unstable, experimental, security, *-updates, backports, . . .
F Debian Blends – subsets of Debian targeting specific groups

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 49 / 69

Practical session 2: packaging GNUjump

1 Download GNUjump 1.0.6 from
http://ftp.gnu.org/gnu/gnujump/1.0.6/gnujump-1.0.6.tar.gz

2 Create a Debian package for it
I Install build-dependencies so that you can build the package
I Get a basic working package
I Finish filling debian/control and other files

3 Enjoy

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 50 / 69

Practical session 3: packaging a Java library

1 Take a quick look at some documentation about Java packaging:
I http://wiki.debian.org/Java

I http://wiki.debian.org/Java/Packaging

I http://www.debian.org/doc/packaging-manuals/java-policy/

I http://pkg-java.alioth.debian.org/docs/tutorial.html

I Paper and slides from a Debconf10 talk about javahelper:
http://pkg-java.alioth.debian.org/docs/debconf10-javahelper-paper.pdf

http://pkg-java.alioth.debian.org/docs/debconf10-javahelper-slides.pdf

2 Download IRClib from http://moepii.sourceforge.net/

3 Package it

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 51 / 69

Practical session 4: packaging a Ruby gem

1 Take a quick look at some documentation about Ruby packaging:
I http://wiki.debian.org/Ruby

I http://wiki.debian.org/Teams/Ruby

I http://wiki.debian.org/Teams/Ruby/Packaging

I gem2deb(1), dh_ruby(1) (in the gem2deb package)

2 Create a basic Debian source package from the net-ssh gem:
gem2deb net-ssh

3 Improve it so that it becomes a proper Debian package

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 52 / 69

Packaging tutorial — outline

1 Introduction

2 Creating source packages

3 Building and testing packages

4 Advanced packaging topics

5 Maintaining packages in Debian

6 Conclusion

7 Answers to practical sessions

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 53 / 69

Practical session 1: modifying the grep package

1 Go to http://ftp.debian.org/debian/pool/main/g/grep/ and
download version 2.6.3-3 of the package (if you use Ubuntu 11.10 or
later, or Debian testing or unstable, use version 2.9-1 or 2.9-2 instead)

2 Look at the files in debian/.
I How many binary packages are generated by this source package?
I Which packaging helper does this package use?

3 Build the package
4 We are now going to modify the package. Add a changelog entry and

increase the version number.
5 Now disable perl-regexp support (it is a ./configure option)
6 Rebuild the package
7 Compare the original and the new package with debdiff
8 Install the newly built package
9 Cry if you messed up ;)

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 54 / 69

Fetching the source
1 Go to http://ftp.debian.org/debian/pool/main/g/grep/ and

download version 2.6.3-3 of the package

Use dget to download the .dsc file:
dget http://cdn.debian.net/debian/pool/main/g/grep/grep_2.6.3-3.dsc

According to http://packages.qa.debian.org/grep, grep version
2.6.3-3 is currently in stable (squeeze). If you have deb-src lines for
squeeze in your /etc/apt/sources.list, you can use:
apt-get source grep=2.6.3-3

or apt-get source grep/stable

or, if you feel lucky: apt-get source grep

The grep source package is composed of three files:
I grep_2.6.3-3.dsc
I grep_2.6.3-3.debian.tar.bz2
I grep_2.6.3.orig.tar.bz2

This is typical of the "3.0 (quilt)" format.

If needed, uncompress the source with
dpkg-source -x grep_2.6.3-3.dsc

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 55 / 69

Looking around and building the package

2 Look at the files in debian/.
I How many binary packages are generated by this source package?
I Which packaging helper does this package use?

According to debian/control, this package only generates one binary
package, named grep.

According to debian/rules, this package is typical of classic debhelper
packaging, without using CDBS or dh. One can see the various calls to
dh_* commands in debian/rules.

3 Build the package

Use apt-get build-dep grep to fetch the build-dependencies
Then debuild or dpkg-buildpackage -us -uc (Takes about 1 min)

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 56 / 69

Editing the changelog

4 We are now going to modify the package. Add a changelog entry and
increase the version number.

debian/changelog is a text file. You could edit it and add a new entry
manually.

Or you can use dch -i, which will add an entry and open the editor

The name and email can be defined using the DEBFULLNAME and
DEBEMAIL environment variables

After that, rebuild the package: a new version of the package is built

Package versioning is detailed in section 5.6.12 of the Debian policy
http://www.debian.org/doc/debian-policy/ch-controlfields.html

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 57 / 69

Disabling Perl regexp support and rebuilding

5 Now disable perl-regexp support (it is a ./configure option)
6 Rebuild the package

Check with ./configure --help: the option to disable Perl regexp is
--disable-perl-regexp

Edit debian/rules and find the ./configure line

Add --disable-perl-regexp

Rebuild with debuild or dpkg-buildpackage -us -uc

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 58 / 69

Comparing and testing the packages

7 Compare the original and the new package with debdiff
8 Install the newly built package

Compare the binary packages: debdiff ../*changes

Compare the source packages: debdiff ../*dsc

Install the newly built package: debi
Or dpkg -i ../grep_<TAB>

grep -P foo no longer works!

9 Cry if you messed up ;)

Or not: reinstall the previous version of the package:
apt-get install --reinstall grep=2.6.3-3 (= previous version)

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 59 / 69

Practical session 2: packaging GNUjump

1 Download GNUjump 1.0.6 from
http://ftp.gnu.org/gnu/gnujump/1.0.6/gnujump-1.0.6.tar.gz

2 Create a Debian package for it
I Install build-dependencies so that you can build the package
I Get a basic working package
I Finish filling debian/control and other files

3 Enjoy

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 60 / 69

Step by step. . .

wget

http://ftp.gnu.org/gnu/gnujump/1.0.6/gnujump-1.0.6.tar.gz

mv gnujump-1.0.6.tar.gz gnujump_1.0.6.orig.tar.gz

tar xf gnujump_1.0.6.orig.tar.gz

cd gnujump-1.0.6/

dh_make
I Type of package: single binary (for now)

gnujump -1.0.6$ ls debian/

changelog gnujump.default.ex preinst.ex

compat gnujump.doc -base.EX prerm.ex

control init.d.ex README.Debian

copyright manpage .1.ex README.source

docs manpage.sgml.ex rules

emacsen -install.ex manpage.xml.ex source

emacsen -remove.ex menu.ex watch.ex

emacsen -startup.ex postinst.ex

gnujump.cron.d.ex postrm.ex

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 61 / 69

Step by step. . . (2)

Look at debian/changelog, debian/rules, debian/control
(auto-filled by dh_make)

In debian/control:
Build-Depends: debhelper (>= 7.0.50), autotools-dev

Lists the build-dependencies = packages needed to build the package

Try to build the package as-is (thanks to dh magic)
I And add build-dependencies, until it builds
I Hint: use apt-cache search and apt-file to find the packages
I Example:

checking for sdl -config ... no

checking for SDL - version >= 1.2.0... no

[...]

configure: error: *** SDL version 1.2.0 not found!

→ Add libsdl1.2-dev to Build-Depends and install it.

I Better: use pbuilder to build in a clean environment

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 62 / 69

Step by step. . . (3)

After installing libsdl1.2-dev, libsdl-image1.2-dev,

libsdl-mixer1.2-dev, the package builds fine.

Use debc to list the content of the generated package.

Use debi to install it and test it.

Fill in debian/control using
http://www.debian.org/doc/debian-policy/ch-controlfields.html

Test the package with lintian

Remove the files that you don’t need in debian/

Compare your package with the one already packaged in Debian:
I It splits the data files to a second package, that is the same across all

architectures (→ saves space in the Debian archive)
I It installs a .desktop file (for the GNOME/KDE menus) and also integrates

into the Debian menu
I It fixes a few minor problems using patches

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 63 / 69

Practical session 3: packaging a Java library

1 Take a quick look at some documentation about Java packaging:
I http://wiki.debian.org/Java

I http://wiki.debian.org/Java/Packaging

I http://www.debian.org/doc/packaging-manuals/java-policy/

I http://pkg-java.alioth.debian.org/docs/tutorial.html

I Paper and slides from a Debconf10 talk about javahelper:
http://pkg-java.alioth.debian.org/docs/debconf10-javahelper-paper.pdf

http://pkg-java.alioth.debian.org/docs/debconf10-javahelper-slides.pdf

2 Download IRClib from http://moepii.sourceforge.net/

3 Package it

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 64 / 69

Step by step. . .

apt-get install javahelper

Create a basic source package: jh_makepkg
I Library
I None
I Default Free compiler/runtime

Look at and fix debian/*

dpkg-buildpackage -us -uc or debuild

lintian, debc, etc.

Compare your result with the libirclib-java source package

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 65 / 69

Practical session 4: packaging a Ruby gem

1 Take a quick look at some documentation about Ruby packaging:
I http://wiki.debian.org/Ruby

I http://wiki.debian.org/Teams/Ruby

I http://wiki.debian.org/Teams/Ruby/Packaging

I gem2deb(1), dh_ruby(1) (in the gem2deb package)

2 Create a basic Debian source package from the net-ssh gem:
gem2deb net-ssh

3 Improve it so that it becomes a proper Debian package

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 66 / 69

Step by step. . .

gem2deb net-ssh:
Downloads the gem from rubygems.org
Creates a suitable .orig.tar.gz archive, and untar it
Initializes a Debian source package based on the gem’s metadata

I Named ruby-gemname

Tries to build the Debian binary package (this might fail)

dh_ruby (included in gem2deb) does the Ruby-specific tasks:
Build C extensions for each Ruby version
Copy files to their destination directory
Update shebangs in executable scripts
Run tests defined in debian/ruby-tests.rb or
debian/ruby-test-files.yaml, as well as various other checks

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 67 / 69

Step by step. . . (2)

Improve the generated package:
Run debclean to clean the source tree. Look at debian/.

changelog and compat should be correct

Edit debian/control: uncomment Homepage, improve Description

Write a proper copyright file based on the upstream files

ruby-net-ssh.docs: install README.rdoc

ruby-tests.rb: run the tests. In that case, it is enough to do:
$: << ’test’ << ’lib’ << ’.’

require ’test/test_all.rb’

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 68 / 69

Step by step. . . (3)

Build the package. It fails to build. There are two problems:
You need to disable the gem call in the test suite.
In test/common.rb, remove the gem "test-unit" line:

I edit-patch disable-gem.patch
I Edit test/common.rb, remove the gem line. Exit the sub-shell
I Describe the changes in debian/changelog
I Document the patch in debian/patches/disable-gem.patch

The package lacks a build-dependency on ruby-mocha, which is used by
the test suite (you might need to build your package in a clean
environment, using pbuilder, to reproduce that problem)

I Add ruby-mocha to the package’s Build-Depends
I gem2deb copies the dependencies documented in the gem as comments in

debian/control, but mocha is not listed as a development dependency by
the gem (that’s a bug in the gem)

Compare your package with the ruby-net-ssh package in the Debian archive

Stefano Zacchiroli (Debian) Debian Packaging Tutorial Como, Italy 69 / 69

Outline

1 FOSS concepts

2 Debian overview

3 Philosophy

4 Organization

5 Processes

6 Derivatives

7 Appendix: packaging tutorial

8 Appendix: contribute

Stefano Zacchiroli (Debian) Debian Como, Italy 107 / 112

Contributing — donate to Debian

even if completely volunteer-driven, Debian uses resources

hardware for essential services
ñ archive, buildds, devel. machines, . . .

money for hw-related services
ñ guarantees, shipments, hosting, . . .

money to sponsor developer meetings
ñ strengthen the community
ñ get work done

Donations
donations: http://www.debian.org/donations

partners program: http://www.debian.org/partners

Stefano Zacchiroli (Debian) Debian Como, Italy 108 / 112

http://www.debian.org/donations
http://www.debian.org/partners

Contributing — work with Debian

test, report, triage, fix bugs
ñ reportbug on your Debian
ñ http://bugs.debian.org

translation (e.g.: in Italian)
ñ http://wiki.debian.org/it/DebianWiki
ñ http://wiki.debian.org/L10n/Italian
ñ http://lists.debian.org/debian-l10n-italian/

documentation

help with packaging

http://wiki.debian.org/HelpDebian

Stefano Zacchiroli (Debian) Debian Como, Italy 109 / 112

http://bugs.debian.org
http://wiki.debian.org/it/DebianWiki
http://wiki.debian.org/L10n/Italian
http://lists.debian.org/debian-l10n-italian/
http://wiki.debian.org/HelpDebian

Contributing — join Debian

choose your commitment:

package maintainer maintain packages, via sponsoring

Debian Maintainer (DM) upload your own packages

advocacies required

Debian Project Member (DD) become a Debian “citizen”

http://nm.debian.org
upload access to all the archive for packagers
voting rights
all kinds of contributions are equally welcome!

Zack’s tips for wannabe Debianers
1 choose a team: http://wiki.debian.org/Teams

2 stay on their mailing list and IRC channel

3 triage bugs, test patches, etc. for packagers

4 . . . the rest will come!

Stefano Zacchiroli (Debian) Debian Como, Italy 110 / 112

http://nm.debian.org
http://wiki.debian.org/Teams

Want to know more?

web starting points:
ñ http://www.debian.org
ñ http://wiki.debian.org

mailing lists: http://lists.debian.org

IRC: #debian-* channels on irc.debian.org

ask me!

Stefano Zacchiroli (Debian) Debian Como, Italy 111 / 112

http://www.debian.org
http://wiki.debian.org
http://lists.debian.org

Thanks!

Questions?
Stefano Zacchiroli

zack@pps.univ-paris-diderot.fr

http://upsilon.cc/zack

http://identi.ca/zack

about the main slides:
available at https://gitorious.org/zacchiro/talks/trees/master/2012/20120621-iiosss
copyright © 2010–2012 Stefano Zacchiroli
license CC BY-SA 3.0 — Creative Commons Attribution-ShareAlike 3.0

about the packaging tutorial slides:
available at http://www.debian.org/doc/devel-manuals#packaging-tutorial
copyright © 2011 Lucas Nussbaum
license GNU GPL version 3, or above; or CC BY-SA 3.0
adapted for this class by Stefano Zacchiroli

Stefano Zacchiroli (Debian) Debian Como, Italy 112 / 112

http://upsilon.cc/zack
http://identi.ca/zack
https://gitorious.org/zacchiro/talks/trees/master/2012/20120621-iiosss
http://creativecommons.org/licenses/by-sa/3.0/
http://www.debian.org/doc/devel-manuals#packaging-tutorial

	FOSS concepts
	Debian overview
	Philosophy
	Organization
	Processes
	Derivatives
	Appendix: packaging tutorial
	Appendix: contribute

