

Introduction to HOT languages
(no, sorry, not X-rated, but rather “higher order & typed”)

[with more than a bit of OCaml]
slides at: http://www.bononia.it/~zack/courses/somfosset0607/ocaml_hot.pdf

Master in Tecnologie del

Software Libero ed Open Source
http://www.almaweb.unibo.it/os_presentazione.html

Claudio Sacerdoti Coen <sacerdot@cs.unibo.it>

Stefano Zacchiroli <zack@cs.unibo.it>

Alma Graduate School – Università degli Studi di Bologna

13/10/2007

http://www.bononia.it/~zack/courses/somfosset0607/ocaml_hot.pdf
http://www.almaweb.unibo.it/os_presentazione.html
mailto:sacerdot@cs.unibo.it
mailto:zack@cs.unibo.it

Outline

1. biodiversity in programming

2. why learn HOT programming languages

3. an OCaml tutorial (live)

4. (some) functional programming concepts

5. what's next?

Biodiversity in programming

● There is more than one way to skin a cat!
– most of them in academia only ...
– neither macho nor commercially supported

● If all you have is an hammer, everything
becomes a nail!
– but with a big hammer with many spare parts

you do not miss the screwdriver

● Languages constrain the way we think!
● Everything is obvious... after you see it!

Biodiversity != niches

● Niches require ad-hoc languages
– Operating systems and C
– Interactive theorem provers and ML/Haskell
– Artificial intelligence and Prolog/Lisp

● But most programs are outside niches!
– Most (all?) languages can compete
– Correctness and safety are the problems,

not control and efficiency

The “commercial” world ...

● C, Pascal:
– imperative, almost alike, same weak type

system

● C++, Java, C#, Visual Basic, Delphi:
– class based

● C++, Java:
– templates/generics (recently)

● Scripting languages: even less typing
● Good language == bad language with
large library

HOT languages

● HOT = Higher Order and Typed
● Higher Order == functional

– Untyped: Lisp, Scheme, Miranda, ...
– Typed: Standard ML, OCaml, Haskell, ...
– Dependently typed: DML, Cayenne, Epigram,

...

● Typed ==
– strongly typed, really!
– highly polymorphic

Why Learn OCaml?
Or, Why Your Current Programming Language Sucks

This part of the talk is based on the slides of Brian Hurt, available here:
http://www.bogonomicon.org/bblog/ocaml.sxi

Copyright © 2004, Brian Hurt
Copyright © 2005-2007, Stefano Zacchiroli

This work is licensed under the Creative Commons ShareAlike License.

To view a copy of this license, visit
http://creativecommons.org/licenses/sa/1.0/
or send a letter to:
Creative Commons
559 Nathan Abbott Way
Stanford, California 94305, USA.

http://www.bogonomicon.org/bblog/ocaml.sxi
http://creativecommons.org/licenses/sa/1.0/

Parental Advisory:

Contains Strong Opinions

OCaml brochure

● OCaml (i.e. Objective Caml)
– is an advanced, pragmatic, programming

language
– uses theoretic advances that have happened in the

last 30 years
– is not a theoretical/experimental language — it

was designed to do real work in
● References

– http://caml.inria.fr
– Debian binary package “ocaml”

http://caml.inria.fr/

OCaml pedigree

1950

1960

1970

1980

2000

1990

FORTRAN

LISP

Meta-Language

CAML

OCaml

Algol

C

C++

Java

OCaml is not ...

● ... a scripting language
– doesn't compete with: Perl, Shell script,

TCL/TK, ...

● ... a systems language
– things not to write in OCaml:

● operating systems
– even if crazy people do that http://dst.purevoid.org/ :-)

● device drivers
● embedded software

– where space is a real concern
● hard realtime systems
● anything that needs to talk directly to hardware

http://dst.purevoid.org/

OCaml is ...

● ... an applications language ...
– compete with: Java, C++, C#, Python, C

(when used for apps)

● ... for writing large-scale apps

Use the Right
Tool (tm)

for the Job

(This is the best advice I will give you
[several times] in this part of the talk)

Why large-scale apps are
different?

Large-Scale Apps

● Lots of Code (30KLOC or more)
● Lots of Developers (> 5 ?)
● Maintenance is a real concern

– Application will have a long life
– New developers will need to maintain code

written by developers who left the project,
company, continent, planet, and/or plane of
existence

Lots of Code

● Lots of code makes it difficult to navigate
– More screens to be looked at to figure

anything out
– Easy to lose or duplicate code

● Short is better
– @LANGUAGE@ should help expressing

algorithms in as few lines as possible
– caveat: code still needs to be readable

● remember Perl adagio “write once, read never”?

● Two further aspects: complexity &
immutability

Lots of Code — Complexity

● complexity
– Is a function of the number of possible

interactions the programmer needs to worry
about

– Number of possible interactions goes up with
the square of the number of lines of code

● We've already addressed this

– Side effects cause unexpected interactions
(aka bugs)

● @LANGUAGE@ should help avoiding
side effects

Lots of Code — Immutability

● changing other code's data behind it's
back is not playing nice
– creates a dependency on change

presence/absence
– violates OO good design principles

(encapsulation)

● cloning/copying is not a valid work around
– Too much memory wasted
– Too much CPU wasted

● @LANGUAGE@ should enforce (or at least
enable) immutability

Maintenance

● the only thing constant is change
– programs are never complete, just

abandoned

● incomplete/inconsistent changes make
for bugs
– you've found 461 places you needed to fix —

are there 462?

● @LANGUAGE@ should enforce complete
and consistent changes

Use the Right
Tool (tm)

for the Job
(I said you'd see this again)

Executive Summary

● @LANGUAGE@ = OCaml
● OCaml allows you to:

– write code faster
– spend less time debugging
– have more maintainable code
– without sacrificing performance!

This leaves us with one question...

How?

OCaml Features
(We'll explain all of them and why they're good in a bit)

– Garbage Collection
– Exceptions
– Bounds checking

on Arrays
– References, not

Pointers
– Everything is a

Reference

– Strong static typing
● Expressive Type

System
● Type Inference

– Three different
ways to run code

● Interpreted
● Virtual Machine
● Compiled to Native

– Immutability as
default

OCaml Features (cont.)

– Multi-paradigm
support

● Functional
● Object Oriented
● Imperative/Procedur

al

– Higher Order
Functions

– Variant types (no
null)

– Builtin types- tuple,
list, record

– Pattern Matching

Manual Memory Management

● free/malloc-like memory management
– does not interact well with large scale-apps

● increases complexity of code
● takes large part of development time (~ 40%)

– can be slow
● free/malloc are O(heapsize) on the average
● increases cache misses (heap fragmentation)

– wastes memory
● heap fragmentation
● blocks book-keeping

Garbage Collection

● reference counting GC
– easy to implement, so popular (perl, python,

ruby, ...)
– issues with circular data structures
– expensive in terms of CPU cycles

● reference counters book-keeping

– heap still fragmented

Garbage Collection (cont.)

● generational copying GC
– based on the “generational hypothesis”

● the objects most recently created in the runtime
system are also those most likely to quickly
become unreachable

– fast allocation
– heap is always compact
– cache conscious data placement

Garbage Collection (cont.)

● Java GC (generational copying)
– Java: only “popular” language with decent GC
– allocation still expensive — at least according

to all the Java programmers I talk to
– long GC pauses

● OCaml GC (generational copying)
– very fast allocation

● common case is 5 assembly instructions on x86

– no long GC pauses

Exceptions

● same basic capabilities as Java, C++
● way faster — ~20 clock cycles total

between setting up the try block, and
doing the throw
– C++ exceptions are slow — you have to

unwind the stack
– Java's stack trace requirement means you

can't do tail call optimization

● GC picks up the garbage

Bounds Checking on Array
Accesses

● Fencepost (off-by-1) errors are very
common

● Bounds checking is often very cheap
– Most checks can be eliminated by the

compiler
for i = 1 to (Array.length a) – 1 do

a.(i) <­ 0
done

● Of course OCaml bounds checks it's array
accesses!

OCaml has references, not
pointers

● No pointer arithmetic
● This is why you can't use it to bang on hardware

● No random memory corruption either
● Same as Java Objects

Everything is a Reference

● Any type can be added to any data
structure
– no more Java-like Int, Double, etc.
– the same object code works for all types

● no code bloat like C++ templates

– OCaml automatically “unboxes” the
fundamental types- ints, chars, etc., and
stores them in place of their pointers

● efficiency is not lost

● Allows for true universal types (-types)∀
– works like void * tricks ... but is type safe!

Strong Compile-time Type
Checking

● Finding bugs at compile time cheap,
debugging code expensive (time
consuming)
– Especially since type checking tells you the

file and line the bug is at
– Simply firing up a debugger and recreating

the problem takes longer than fixing a bug
detected at compile time

● OCaml gives you strong static type
checking, but without the bondage and
discipline aspects.

It's not quite true that once your
OCaml code compiles, it's correct

● ... but it's surprisingly close to being true!
– OCaml detects many logic errors as type

errors
● forgotten cases
● conditions not checked for
● incorrect function arguments
● violated constraints (especially with modules)

– all code gets checked
● all branches, even not taken ones
● code gets checked automatically

– compiler does checks — no extra work for the
programmer

“ of ” relationship

● Like “is-a” or “has-a”, objects can have
“of” relationships
– e.g.: list of foo, tree of array of float, etc.
– can express “universal types”

● OCaml can easily express types like
– “for any types a and b (which can be the same or

different types), this function takes a list of type a's, and
a function which converts a type a to a type b, and
returns a list of type b's”

– In OCaml, that type would look like:

'a list ­> ('a ­> 'b) ­> 'b list
– OCaml allows you to express complex types concisely

● Universal types are the default, not the exception

C++ and Java type checking

● Little more advanced than Algol-68
● Java: cast to/from Object pattern sucks

● Totally defeats static type checking
● Run time type checking -> CPU/memory penalties
● Allows programmer to hide errors
● Verbose to boot
● (now fairly better with generics)

● C++ templates suck
● Horrid syntax
● Templates the exception, not the rule
● Still verbose

OCaml has type inference

● compiler can figure out what type a
variable has from context
– programmer does not need to specify the

types of (most) variables and functions
● clearer code (not confused by redundant type

specifications)
● more likely to be correct
● compiler can even generate type annotations for

those types which need them (you, lazy guys!)

– this is considered a major advantage of run
time type checking

● but keeps the benefits of static type checking!

Running OCaml code

● 3 different ways to run OCaml code

1.interpreted

2.compiled to bytecode + virtual machine

3.compiled to native executable

OCaml Toplevel Interpreter

– Lisp/Python-like
– Advantages

● Fast turn around (no
need to build/run)

– Can be used for
scripts

● Instant feedback
– Good for

experiments,
exploration, and
one-off programs

– Disadvantages
● Customer needs

OCaml installed to
run the code

● Slow
– Interpreter needs to

compile code
constantly

– No optimizations
● More memory

needed
– Compiler/UI needed

The OCaml Virtual Machine

– Like Java, C# (.NET)
– Advantages

● Byte code highly
portable

● Byte code is small
● Compiles faster

than native
● Don't need to ship

source
● Don't need to

compile source at
runtime (faster than
interpreted)

– Disadvantages
● Customer needs to

have OCaml
runtime installed

● Slower than native

Compiling to Native Code

– Like C/C++
– Advantages

● Fastest way to
execute OCaml
code

– Close to C
performance

● Customer doesn't
need anything of
OCaml installed to
run OCaml code

– Disadvantages
● Not all systems

support compiling
to native code

– currently: alpha,
amd64, arm, hppa,
x86, ia64, ppc, sparc

● Native code not
very portable

– Can't run code
compiled for x86 on
a Sparc

– Can't run Windows
code (natively) on
Linux

OCaml native code
performance

● Official statement — within a factor of 2
of C's
– Hard to measure — lies, damned lies, and

benchmarks

● Yes, C++ does have a performance hit
– Need to add code to handle exceptions

wether you use them or not (someone else
might have to - like operator::new())

– more C++ features -> less performance
● Virtual functions == indirect calls
● Templates == code bloat == more cache misses

OCaml native code
performance (cont.)

● OCaml code sometimes faster than C
– Better algorithms
– Copying garbage collection reduces cache

misses, and is a negative performance cost
(it speeds the program up)

Immutability is the Default

● Decreases code inter-dependencies
– A function can not “accidentally” change it's

arguments
● Use tuples to return multiple values — say what

you mean

● Eliminates the need for deep copies
– Just pass the data structure around
– Reusing objects isn't always faster — what

you gain in the straight aways (not allocating
new objects) you lose in the turns (needing to
clone objects to prevent modifications)

Immutability and Allocation

– Instead of changing a data structure, allocate
a new data structure just like the old, except
for the one change

– Since the old data structure can not change, you can
resuse most of it.

– Functions can return the new, modified, data structure,
and let the caller decide which (new or old) to use.

– Immutability means you allocate a lot
– Allocate new objects, instead of reusing old ones
– statistics: OCaml programs allocate about 1 word every 6

instructions -- an insane amount of allocations!

– This means speed of allocation is important
– Fortunately, OCaml has an insanely fast allocator, so this

isn't a performance hit.

OCaml is a Multi-paradigm
Language

● Supports:
– functional (Lisp, ML)
– Object Oriented (Java, C++, C#, Python, ...)
– procedural (C, Pascal)

● No one paradigm is right for all problems
– If all you have is a hammer, everything looks

like a nail

Use the Right
Tool (tm)

for the Job
(This means use the right paradigm for the job too!)

Higher Order Functions

● Fifty-cent word for some simple concepts:
– Partial function evaluation

● If a function has n arguments, you can supply k<n
values and get a function with n-k arguments

– Inner functions (like Pascal, Algol, GCC)
– Anonymous local functions easy to define
– Functions can be passed around like variables

● Inner functions can be returned, and they keep
the stack frame they execute in

● AKA continuations

Higher Order Functions
Combine State and Functions

● Replaces “doit” classes popular with Java
– MouseClickEvent, KeypressEvent, etc.
– An interface with a single function (“doit”)

which the caller implements and instantiates
– The class is the state associated with the

function

● Good C programmers pass state pointers
to callbacks
– These are void *'s which are passed,

uninspected, to the callback function
– Works like the this pointer for a “doit” class

Higher Order Functions
Simplify APIs

● No need to define special classes for
every call back

● Easier to “glue” disseperate APIs together
– any function can be a call back
– easy to overcome mismatched argument lists

● Say what you mean

Data Structure Comprehensions

– Functions which do something to the entire
data structure

● Iter- call a function on every member
– Example use: printing the data structure

● Fold- accumulate a value over the data structure
– Example use: Vector length function

● Map- convert the data structure
– Example use: Vector scale function

– Many algorithms can be expressed entirely as
comprehensions

● Why keep writing the same loops?

– Easy to write and use if you have HOF,
painful otherwise

Variant (or algebraic) datatypes

● C's enums on steroids
– They are not ints!

● Typesafe- can not cast to/from ints
● What does APPLE + ORANGE mean? BANANAs?

– Can contain data
● Work like Eckel's Java Enums
● Easy way to do simple data structures

– How OCaml does nulls
– Not all data types can have nulls- programmer chooses

which
– It's a compile-time error if you don't handle the null case

● Bye bye null pointer exception!

How do you hold different types
in the same data structures?

● common question asked by people used
to run time type checking
– often because they use lists when they

should use tuples, structures, or objects

● answer: use a variant type!
– Tag each element with what type it is
– Compiler makes sure you handle all cases

● A huge help in maintainance when adding new
cases

– If all types can not exist in all locations, you
are using the wrong data structure!

OCaml Has Rich Data
Structures

Built-in support:
– Tuples
– Lists
– Records
– Arrays
– Objects
– Modules

Standard Library:
– Hash Tables
– Maps
– Sets
– Queues
– Stacks

“Use the right tool for the job”
means use the right data

structure!
● Many programming languages encourage

you to use only one data structure
– Lists (Lisp)
– Associative Arrays (Perl)
– Objects (Java)

● By supplying multiple data structures
(and making it easy to add your own),
OCaml encourages you to use the right
data structure
– But you have to know your data structures!

Pattern Matching

● Switch/case statements on steroids
● Syntactic sugar, but...
● Allows you to express complicated

algorithms compactly
– Balancing algorithm for red-black trees

becomes simple enough to use as an
example

Nice song and
dance, but what

proof do you
have?

The Computer Language
Shootout Benchmarks

● collection of micro-benchmarks written in
many different languages
– http://shootout.alioth.debian.org/
– compares LOC, run times, and memory

● not a perfect comparison
● small benchmarks are not represenitive of large

projects
● lies, damned lies, and benchmarks
● we will show you 2004 data

● results are surprising
– scores in brackets

http://shootout.alioth.debian.org/

Top 10 Fastest Languages
(least CPU usage overall)

1. C (GCC) [752]

2. OCaml (native code) [751]

3. SML (mlton) [751]

4. C++ (G++) [743]

5. SML (smlnj) [736]

6. Common Lisp (cmucl) [734]

7. Scheme (bigloo) [730]

8. OCaml (bytecode) [718]

9. Java (Blackdown/Sun) [703]

10. Pike [647]

13. Python [578]

14. Perl [577]

15. Ruby [546]

Top 10 Concise Languages
(fewest lines of code overall)

1. OCaml (both) [584]

2. Ruby [582]

3. Scheme (guile) [578]

4. Python [559]

5. Pike [556]

6. Perl [556]

7. Common Lisp (cmucl) [514]

8. Scheme (bigloo) [506]

9. Lua [492]

10. TCL [478]

11. Java [468]

16. C++ [435]

23. C [315]

Top 10 Smallest Footprints
(least memory usage overall)

1. C (GCC) [739]

2. OCaml (native code) [719]

3. C++ (G++) [715]

4. SML (mlton) [713]

5. OCaml (byte code) [709]

6. Forth [649]

7. Python [643]

8. Lua [626]

9. Perl [624]

10. Pike [611]

11. Ruby [609]

27. Java (Blackdown/Sun) [290]

An OCaml tutorial
(live)

have fun () ->

All that glitters is not gold

Good reasons not to use OCaml

● ... no, we are not going crazy
– ... but in some respects far better than OCaml

can be done, let's see some of them

● OCaml is HOT, but doesn't know the
meaning of “marketing”

1.open source, but bound to the (INRIA) cathedral
development model

● external patches are seldomly considered (strong
opinions there as well) and philosophical/design change
proposals are never

● the standard library is ridiculously small
● paradox: in OCaml is damned easy to code complex

tasks and sometimes damned tedious to code simple
ones

Good reasons not to use OCaml
(cont.)

● lack of “marketing” (cont.):

2.(practically) no dynamic linking

3.ABI compatibility breaks with every release /
interface change (including comments!)

● not such a big deal, but entails a source based
distribution

4.no (GNU) team player
● e.g.: hard to mix with autotools, no cooperation w

gcc pipeline, ...

5.concrete syntax is important: other
languages have got this, why we haven't?

Good reasons not to use OCaml
(cont.)

● some technical and philosophical
deficiencies:

1.no real concurrency of OCaml code, since the
garbage collector is not distributed and has a
global lock

2.TIMTOWTDI ... (yet another Perl's adagio:
there is more than one way to do it),
... but There Are Too Many Ways To Do It

● but still ... OCaml is HOT :-)

A Functional Programmer's
Toolkit

Functional programming
techniques

● as imperative programming, functional
programming (FP) has its well-established
techniques

● a minimal functional programmer toolkit
necessarily includes:

1.(tail) recursion

2.“container” manipulation
● iteration, transformation, filtering, ...

3.“container” folding

Recursion: beware of the stack!

● we all (now) know recursion
let rec mk_list = function
 | 0 -> []
 | n -> n :: mk_list (n-1)
val mk_list : int -> int list

– let's try it on a (not so) large input
mk_list 1_000_000;;
Stack overflow during evaluation (looping
recursion?).

– “bug”: each time fact is recursively invoked,
the activation record of the previos
invocation can't be removed from the stack

● sooner or later the stack will explode

Tail recursion

● recursive calls can be in tail position
– i.e. the return value of the whole function is

the same of that particular recursive
invocation (or tail call)

● tail calls can be optimized by the
compiler: the generated code can reuse
the current activation record
– recursive invocations no longer require more

stack space than a single function invocation

Tail recursion (cont.)

● tail recursive version of mk_list
let rec mk_list acc = function
 | 0 -> acc
 | n -> mk_list (n::acc) (n-1)
val mk_list : int list -> int -> int list

– where has the base case value gone?
you have to provide it at 1st invocation time
(have a look at the inferred type ...)

– now the following does work:
mk_list [] 1_000_000;;
(* long output snipped *)

– beware: the result is in reverse order!

Tail recursion (cont.)

● a frequent idiom is to bundle the base
case value together with an auxiliary
function
– encapsulation and the desired type are back
– yet another version of mk_list
let mk_list n =
 let rec aux acc = function
 | 0 -> acc
 | n -> aux (n::acc) (n-1) in
 List.rev (aux []) n

● a posteriori processing before returning is possible
● -contraction is quite commonη

Containers vs inductive types

● “containers” are mirrored in HOT
languages by inductive datatypes
– container manipulation (often) asks the

programmer to follow explicit flow control
patterns, e.g.:

● to visit an array use an indexed for loop
● to visit a list/set/bag/... use a while on an iterator

– inductive datatypes are conceptually
associated to recursors on them

● using recursors the control flow is implicit and the
programmer only needs to care about the actual
operation she wants to perform on containees

Iterators (iter)

– iterators: the simplest recursors
● they apply a function returning unit to each

containee
● the functional version of a for(each) loop

List.iter : ('a -> unit) -> 'a list -> unit
List.iter print_int [1;2;3;4;5]

● iterators are provided for built-in types, but you
can do them by yourself (and for your own types!)
type 'a my_list = Nil | Cons of 'a * my_list
let rec my_iter f = function
 | Nil -> ()
 | Cons (hd, tl) -> f hd ; my_iter f tl

● ... in fact they can even be automatically
generated ...

Containee transformation (map)

● a “map” recursor transforms a container
to an isomorphic one, applying a local
transformation to each containee
– functional version of a container copy (on

steroids)
List.map : ('a -> 'b) -> 'a list -> 'b list

List.map (fun x -> x+1) [1;2;3;4;5] ;;

List.map ((+) 1) [1;2;3;4;5] ;; (* how elegant ... *)

let rec my_map f = function
| [] -> []
| hd :: tl -> f hd :: my_map f tl
(* question: is this tail recursive? *)

Selection (filter)

● a predicate on a value of type t can be
represented as a function f: t -> bool

● intuition: applying a predicate to a value returns
true if the value satisfies the predicate

● a filter recursor selects all values
satisfying a given predicate

List.filter : ('a -> bool) -> 'a list -> 'a list

List.filter (fun x -> x mod 2 =0) [1;2;3;4;5]

let rec my_filter p =
| [] -> []
| hd :: tl when p hd -> hd :: my_filter p tl
| hd :: tl -> my_filter p tl

Predicate algebra

● when working with predicates some
predicate operators can come handy

let (&~) p1 p2 = fun x -> p1 x && p2 x

val (&~): ('a -> bool) -> ('a -> bool) -> ('a -> bool)

let (|~) p1 p2 = fun x -> p1 x || p2 x

val (|~): ('a -> bool) -> ('a -> bool) -> ('a -> bool)

let (!~) p = fun x -> not (p x)

val (!~): ('a -> bool) -> ('a -> bool)

– e.g.
let even = fun x -> x mod 2 = 0

let div_by n = fun x -> x mod n = 0

List.filter (even &~ !~ (div_by 5)) [5;6;7;8;9;10]

Container folding (fold)

● the recursors we have seen so far are
unable to compute aggregate values
dependent on containees
– but this is a frequent need, e.g.:

● List.length: given an 'a list, compute its length
● list_sum: given an int list, sum up all its elements
● or even List.rev: given a list, reverse it

– though we can write recursive functions for
all the above needs (but we are back to
explicit flow control!), a generic recursors on
top of which implement them does exist: fold

Fold

● intuition
– a fold recursor “consumes” a container one

step at a time (with one step for each
containee), building incrementally the final
result

– at each step the new “final” result is built
using the current element and the previous
“final” result

● how the incremental construction is actually
implemented is a (functional) parameter of fold ...

● ... as well as the initial “final” result, which is
needed to bootstrap the process

Fold (cont.)

● common variants of (list) fold: left/right
– fold on lists

List.fold_left: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
● intuition

fold_left f init [e1; e2; ...; en] = (f ... (f (f init e1) e2) ... en)
● sample usage

let list_sum =
List.fold_left (fun acc e -> acc + e) 0 [1;2;3;4;5]

let list_sum = List.fold_left (+) 0 [1;2;3;4;5] (* elegance? *)
let list_length l = List.fold_left (fun acc _ -> acc + 1) 0 l
let list_iter f l = List.fold_left (fun _ e -> f e ; ()) () l
let list_rev l = List.fold_left (fun acc e -> e :: acc) [] l
let list_map f l =

List.rev (List.fold_left (fun acc e -> f e :: acc) [] l)

Fold (cont.)

– fold on lists
List.fold_left: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
● do it by yourself

let rec my_fold_left f curr = function
| [] -> curr
| hd :: tl -> my_fold_left f (f curr hd) tl

Fold (cont.)

– fold on lists
List.fold_right: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
● intuition

fold_right f [e1; e2; ...; en] init = (f e1 (f e2 (... (f en init) ...)
● sample usage

let list_sum = List.fold_right (+) [1;2;3;4;5] 0
let list_map f l =

List.fold_right (fun e acc -> f e :: acc) l [] (* no List.rev *)
● do it by yourself

let rec my_fold_right f l init =
match l with
| [] -> curr
| hd :: tl -> f hd (my_fold_right f tl init)

(* beware: not tail recursive [like many implementation] *)

Recursors as a concept

● Remember: recursors is a concept, not a
specific implementation of them in some
library
– you can (and should!) develop your own

recursors
● as a specialized version of the usual recursors on

some built-in or available inductive datatypes
● for your home made inductive datatypes

– benefit: keep separate the visit logics from
the business logics of doing what you want
with containees

Funct. data structures and algo.
● How can I go back & forth in a list in O(1)?
● Answer: use a zipper!

type 'a zipper = 'a list * 'a list (* past, future *)

let next = function
l,[] -> assert false

 | l,he::tl -> he::l,tl

 let prev = function
 [],l -> assert false
 | he::tl,l -> tl,he::l

 let z = [5;4;3;2;1],[6;7;8;9;10]
next (next z) = [7;6;5;4;3;2;1],[8;9;10]

CSC' mantras

● Avoid cluttering the namespace!
● Scope hides functions needed only once
● Scope avoids passing too many

parameters to auxiliary functions
● Scope avoids passing constant

parameters around
● let f k1 k2 x1 x2 =

 let rec aux1 x1 x2 = ... in
 ...
 let rec auxn x1 x2= ... in

auxn x1 x2

CSC' mantras

● Only high-level meaningful functions
(even with large types) should be
exported

● There should be no more than a few ways
to compose functions together

● Compound functions should not be
exported
– array_of_list: 'a list -> 'a array
– optimize_list: data list -> data list
– optimize_array: data array -> data array

The many shapes of
Polymorphism

What is polymorphism?

● polymorphic = that does different things
● but what does it mean, really?

– overloading
– generic/templates
– late binding

(in class based object oriented languages)

What is polymorphism?

● overloading (C++, Java, ...)
– int plus(int x, int y) != float plus(float x, float y)

– “totally unrelated” code in different memory
locations

– not unrelated for the human being: lack of
abstraction? (cfr. Haskell type classes)

– resolved at compile time
– resolution can be schizophrenic
– prevents type inference

What is polymorphism?

● generics/templates:

static <T>
void fromArrayToCollection(T[] a, Collection<T> c)
{ for (T o : a) { c.add(o); } }

– one source code that works on different
types (any type?)

– no more safe/unsafe down-casts
– do we need such an horrible syntax?
– how are they implemented?

Implementation of
generics/templates

● C++ templates:
– different data types have different memory

representations
– impossible to have compiled code that works

uniformly on every type
– at compile time, one compiled code for every

type instance in the source code
– large executables, horribly long symbol

names, performance penalties (cache misses)

Implementation of
generics/templates

● Java generics:
– primitive data types have ad-hoc memory

representations
– all objects represented uniformly via

references
– one compiled code that works uniformly on

every class type
– small executables, no performance penalties
– int vs Int

Typing of generics/templates

● Late addition to Algol68 type system
● Late addition to Algol68/C/Pascal/Modula

syntax
● Requires type abstraction and partial

application
– List <Int> l;

● Academic type systems got it right in the
70s!

System-F polymorphism
● Typing a la System-F:

id (A: Type, a: A) : A { return a; }

smap (A: Type, f: forall B:Type. B -> B, l: list A) : list A

smap (int, id, [1; 2; 3]) = [1; 2; 3]

● Explicit type abstractions/applications in
terms

● No type-inference

– all variables should be typed

Hindley-Milner polymorphism
● Abstractions can be everywhere in

System-F:
– smap: forall A:Type. list A -> (forall B:Type. B -> B) -> list B

● Hindley-Milner polymorphism:

– quantifications on types only in front
– map: forall A,B:Type. list A -> (A -> B) -> list B

map: list 'A -> ('A -> 'B) -> list 'B

– no type abstractions/applications in
terms

– type inference is decidable
● variables need not be typed

OCaml polymorphism

● OCaml implements Hindley-Milner
● Most functions are typable in Hindley-

Milner
● System-F types

– available when needed
– require explicit quantification
– only in record fields/object methods (why?)

Example:

● type ('a,'b) r = {label: 'b -> 'a * 'b }
let mk_r x = {label = fun y -> x,y }
let o = mk_r 2 (* o has type (int,_'b) r *)
let x = o.label 5 (* x = 2,5
 o has type (int,int) r*)
let y = o.label “ciao” (* ERROR!!! *)

● type 'a doit = { label: 'b. 'b -> 'a * 'b };
let mk_r x = {label = fun y -> x,y }
let o = mk_r 2 (* o has type int r *)
let x = o.label 5 (* x = 2,5 *)
let y = o.label “ciao” (* y = 2,”ciao” *)

What is polymorphism?

● In class-based object oriented languages:
– OOP = state + incapsulation + inheritance +

overriding + subtyping + late binding
– class Point { method move() { ... } }

class ColoredPoint inherits Point
{ method move() { ... } }

void force(Point c) { c.move(); }
ColoredPoint c = new ColoredPoint;
force(c);

– do we need all ingredients together?

Incapsulation + Late binding

● (Private) data and methods that act on
the data are put in a first class object

● First class objects can be stored, passed
around, etc.

● Methods code is related to the instance
● In functional programming:

– functions are first class objects
– they can be assembled in containers
– they can share (immutable) private data
– we can invoke a function in a container

Example

● type tower = (float -> float) * (float -> float)
 (* volume *) (* lateral surface *)

● let new_circle r =
 (fun h -> pi *. r *. r *. h), (* volume *)
 (fun h -> 2. *. pi *. r *. h) (* lateral surface *)
new_circle : float -> tower

● let new_square r =
 (fun h -> r *. r *. h), (* volume *)
 (fun h -> 4.0 *. r *. h) (* lateral surface *)
new_square : float -> tower

● let c = new_circle 8.0 (* c: tower *)
let s = new_square 3.0 (* s: tower *)
let res = fst c 10. -. fst s 10. (* volume *)

Inheritance + code reusal +
overriding + subtyping

● Two uses of inheritance:
– to reuse code

● in functional programming: just copy a container,
changing the fields that must be overridden

● let o = (fun () -> “Hello”), (fun () -> “World”)
let o' = fst o, (fun () -> “Mom”)

● efficient, because of sharing

Inheritance + code reusal +
overriding + subtyping

● Two uses of inheritance:
– for inheritance

● why?
– let f o =

 “Object “ ^ o.print ^ “ holds “ ^ string_of_int o.value
– o.print must make sense; o.value must make sense
– why do we need interface printable and valuable?
– why do we inherit from interfaces if NO CODE must be

reused?
● with generic polymorphism:

– f has type < print : string; value : int; ... >
where ... stands for any list of other method

– e.g. we can use an object of type
< save: unit; print: string; move: unit; value: int>

State + Incapsulation

● Global variables are bad, bad, bad
● Protect mutable variables inside objects
● In functional languages:

– incapsulation is given by scope
– state (= mutable variable) can be added
– let new_account () =

let password = ref “change me” in
(fun p -> password := p) (* set password *),
(fun p -> !password = p) (* check password *)

new_account: unit -> (string -> unit)*(string -> bool)

Mutable status

Mutable status: why?

● Mutable status is bad
– less correct code, harder to debug
– no sharing, not reentrant, complex

backtracking
– less intuitive code (e.g. w.r.t. fold, map, etc.)

● So why?
– for reactive programming

(to store data between events/commands)
– for non algebraic data structures

(e.g. graphs)

Mutable status: how?
● Do NOT make everything mutable
● Introduce the type of mutable cells:

let x = ref 0 (* x has type int ref *)
– x is a constant (a reference) to “ref 0”
– “ref 0” is a memory cell that currently holds

the value 0

● Assignment via a reference: x := 1
– x is unchanged: it still points to the same cell
– the content of the cell is changed

● Dereferencing: x := !x + 1

Mutable status: how?

● let x = ref 0
let y = x
– x and y are equal constant references to the

same cell “ref 0”

● let f c = c := !c + 1 in f x
– the constant x is passed by value to f
– everything is passed by value in OCaml!
– the cell can be equally reached by x and c
– this is C++/Java call-by-reference
– THIS IS BAD!

Mutable status: how?
● Functions should be side-effect free
● In C++/Java side-effects used to return

multiple values
● Say what you mean!
● Instead of

let f c d =
d := !c + !d;
c := !c + 1;

in f x y
use

let f c d = c+d, c+1 in
let x',y' = f !x !y in

x := x'; y := y'

Mutable status: how?

● Wait a minute! If functions should be side-
effect free, where can I use mutable cells?

● Answer 1: only a few mutable cells to
store the status between different
callback invocations!
– let status = ref 0

let button_pressed () =
status := do_something(!status)

Mutable status: how?

● Wait a minute! If functions should be side-
effect free, where can I use mutable cells?

● Answer 2: inside cells to implement non
algebraic data structures
– Example 1 (|3| <===> |5|):

type cell = { v: int; neighbours: cell list ref }
let c1 = {v = 3; neighbours = ref [] }
let c2 = {v = 5; neighbours = ref [c1] }
c1.neighbours := [c2]

Mutable status: how?

● Wait a minute! If functions should be side-
effect free, where can I use mutable cells?

● Answer 2: inside cells to implement non
algebraic data structures
– Example 2 (fixed number of arcs):

type cell = { v: int; neighbours: cell ref list}
let ref c1 = { v = 3; neighbours = [ref c2] }
and c2 = { v = 5; neighbours = [ref c1] }
c1.neighbours := [] (* ERROR! *)
(fst c1.neighbours) := c1 (* OK! *)

Mutable status: how?

● Wait a minute! If functions should be side-
effect free, where can I use mutable cells?

● Answer 3: to implement static shared
function variables / friend functions
– let new_option () =

let value = ref 0 in
(fun v -> value := v), (* set *)
(fun () -> !value) (* get *)

let set, get = new_option ()
(* set : int -> unit ; get : unit -> int *)

Modules

Abstract Data Types

● Abstract Data Type = data type whose
representation is unknow

● No ADTs, no modularity
– When the implementation changes, all the

code changes

● OO languages: objects are ADTs because
fields (and methods) can be private ==
not in the interface

● ADTs without objects are possible!

Modules

● A module is made of an implementation
and an interface (module type)

● The module type restricts the interface of
the implementation
– module M = module type M =

struct sig
type set = int list type set
let empty = []
let add1 x l = x::l val add1 : int -> t -> t
let addn l l' = l @ l' val addn: int list -> t -> t
let union = addn val union: t -> t -> t

end end

When concrete data types are
more handy

● Pattern matching is only allowed on
algebraic data types

● Views: functions from an ADT T to an
algebraic data type T'
– module type M = sig - let rec iter f s=

 type set match
 type set' = set'_of_set s

Choice of int * set with
 val set'_of_set : set -> set' Choice(a,s') =>
 val empty: set f a;
 val add: int -> set -> set iter f s'
end

When concrete data types are
more handy

● Pattern matching is only allowed on
algebraic data types

● Private types: semi-abstract data types
– private type ordered_list :=

Nil
 | Cons of int * ordered_list
val nil : ordered_list
val cons : int -> ordered_list -> ordered_list

– let nil = Nil
let cons x l =
 match l with

 [] -> [x]
 | he::_ -> if x <= he then Cons (x,l) else raise E

Modules as Namespaces
● Modules can also define a namespace
● module HashTable = struct

module Key = struct
type t = int
let hash n = n mod 10

end
let table = ([| |] : Key.t list)
let add x v =

let h = Key.hash x in
table.(h) <- (x,v)::table.(h)

end
let hash_13 = HashTable.Key.hash 13

Functors

Verbosity of generic
polymorphism

● H.o. generic functions very good for code
reusal...

● ... but too verbose!
hashtable_add:

('key -> 'key -> 'bool) ->
 ('key -> int) ->
 ('key,'value) hashtable ->
 'key -> 'value -> ('key,'value) hashtable

● Partial solution:
let htbl_add = hashtable_add inteq inthash
let htbl_del = hashtable_del inteq inthash
...

Functors

● Instead of abstracting many functions one
at a time, abstract all of them AT ONCE

module type Key = sig
type t
val eq: t -> t -> bool
val hash: t -> int

end
module HashTbl(K: Key) = struct

let hashtable_add tbl k v =
let hash = Key.hash k in
...

end
 module String = type t = string let eq = ... end

module StringHash = HashTbl(String)

Functors = H.O. Modules

● A functor is a function from a module to
another module

● As functions, functors are typed
● Unlike functions, functors are not first

class objects
● Many details on the type system omitted

here

What's next?

We do NOT need more
functions!

● Keep it simple, stupid!
Aka Adding new operators / instructions /
expressions is bad!
– Perl: write once, read never => throw away

soon

● Higher order functions, recursion,
algebraic data types, references and data
hiding is already too much

● Syntax and semantics of OCaml already
too cluttered

We DO need more types!
● More/better types mean:

– more polymorphism => more code reusal,
more abstract code, easier to understand

● type 'a list = Nil | Cons of 'a * 'a list
type 'a tree = Empty | Node of 'a * 'a tree * 'a tree
super_map: forall 'a 'T. ('a -> 'b) -> 'a 'T -> 'b 'T

● System-F types (require type annotations)

– more properties checked at compile-time
● type list n =

Nil : list 0
| Cons : int * list m -> list (m+1)

● hd Nil (* ERROR: Nil has type list 0, hd requires
 list (m+1) for some m *)

● List.nth n l (* ERROR if l has type list m, m < n)

Status of the art

● Languages with stronger type disciplines
are among us...
– let rec f = function

 `A -> `B
 | `B y -> `C (f y)
 | x -> `D x

● ... but they do not speak to us
– f : ([> `A | `B of 'a] as 'a) ->

 ([> `B | `C of 'b | `D of 'a] as 'b)

Status of the art

● Or type checking becomes undecidable
– because when the type totally captures the

specification, type checking becomes proving
that the program is correct

– E.g.:
append: list n -> list m -> list (n + m)
tl: list (n + 1) -> list n
fun (l : list n) -> tl (append l (Cons 5 l))

well typed iff exists m s.t.
m + 1 = n + (n + 1)

Dependent types

● What is the type of
“if x = 0 then 3 else true” ?

Dependent types

● What is the type of
“if x = 0 then 3 else true” ?

● That's simple:
“if x = 0 then nat else bool” !

● Types can depend on the value of terms!
● Aka Dependent Types
● DML, Cayenne, Epigram
● Coq, PVS, Matita, ... (even more

dependent types)

Dependently typed programs

● The type of the output of a function may
depend on the value of the input
– split:

 forall l: list int.
 if even (length l) then

list int * list int
else

list int * int * list int
– hd:

forall l: list int.
if l = [] then unit else int

– cfr. hd: list int -> int option

Dependently typed programs

● The type of the second element of a pair
can depend on the value of the first
element

● c : exists n: int. list n
(0, []) : exists n: int. list n
(1, [4]): exists n: int. list n
...

● fun ((x,l) : exists n:int. list n) ->
match x,l with

0,[] -> 0
 | n,he::tl -> he

Dependently typed programs

● Proofs are programs
– a proof of A => B is a transformation of a

proof of A into a proof of B
– a proof of A => B is a function of type

proof A -> proof B

● Dependent types can fully capture a
specification

● certified_sort:
forall l: list int.

exists l': list int.
(same_elements l l' &&

 ordered l')

Dependently typed programs

● certified_sort:
forall l: list int.

exists l': list int.
(same_elements l l' &&

 ordered l')

● let sort l = fst (certified_sort l)
sort : list int -> list int

● But: writing by hand the function that
proves (same_elements l l' && ordered l') is
extremely difficult (> 10x man-month)

Conclusions

Wrap-up

● bottom line(s):

1.diversity is good: use the right tool
programming language for the right job

2.a compiler is a programmer's best friend: let
him does as much as he can

● some references
● http://caml.inria.fr
● Elements of Functional Programming, Chris Reade
● Developing applications with Objective Caml,

Emmanuel Chailloux et al.
● Practical OCaml, Joshua B. Smith

http://caml.inria.fr/

Thank you.

