Introduction to HOT languages

(no, sorry, not X-rated, but rather “higher order & typed”)
[with more than a bit of OCaml]

slides at: http://www.bononia.it/~zack/courses/somfosset0607/ocaml_hot.pdf

Master in Tecnologie del
Software Libero ed Open Source

http://www.almaweb.unibo.it/os_presentazione.html

Claudio Sacerdoti Coen <sacerdot@cs.unibo.it>

Stefano Zacchiroli <zack@cs.unibo.it>

Alma Graduate School - Universita degli Studi di Bologna
13/10/2007

http://www.bononia.it/~zack/courses/somfosset0607/ocaml_hot.pdf
http://www.almaweb.unibo.it/os_presentazione.html
mailto:sacerdot@cs.unibo.it
mailto:zack@cs.unibo.it

oo b W N

Outline

. what's next?

. biodiversity in programming

. why learn HOT programming languages
..an OCaml tutoria
. (some) functiona

(live)
programming concepts

Biodiversity in programming

 There is more than one way to skin a cat!

- most of them in academia only ...
- neither macho nor commercially supported

 If all you have is an hammer, everything
becomes a nail!

- but with a big hammer with many spare parts
you do not miss the screwdriver

 Languages constrain the way we think!

 Everything is obvious... after you see it!

Biodiversity !'= niches

* Niches require ad-hoc languages

- Operating systems and C
- Interactive theorem provers and ML/Haskell
- Artificial intelligence and Prolog/Lisp

 But most programs are outside niches!

- Most (all?) languages can compete

- Correctness and safety are the problems,
not control and efficiency

The “commercial” world ...

e C, Pascal:

- Imperative, almost alike, same weak type
system

« C++, Java, C#, Visual Basic, Delphi:
- class based

« C++, Java:
- templates/generics (recently)

» Scripting languages: even less typing

 Good language == bad language with
large library

HOT languages

« HOT = Higher Order and Typed

 Higher Order == functional

- Untyped: Lisp, Scheme, Miranda, ...
- Typed: Standard ML, OCaml, Haskell, ...
- Dependently typed: DML, Cayenne, Epigram,

» Typed ==
- strongly typed, really!
- highly polymorphic

Why Learn OCaml?

Or, Why Your Current Programming Language Sucks

This part of the talk is based on the slides of Brian Hurt, available here:
http://www.bogonomicon.org/bblog/ocaml.sxi

Copyright © 2004, Brian Hurt
Copyright © 2005-2007, Stefano Zacchiroli

This work is licensed under the Creative Commons ShareAlike License.

To view a copy of this license, visit
http://creativecommons.org/licenses/sa/1.0/
or send a letter to:

Creative Commons

559 Nathan Abbott Way

Stanford, California 94305, USA.

http://www.bogonomicon.org/bblog/ocaml.sxi
http://creativecommons.org/licenses/sa/1.0/

Parental Advisory:

Contains Strong Opinions

OCaml brochure

* OCaml (1.e. Objective Caml)
—1s an advanced, pragmatic, programming
language
— uses theoretic advances that have happened 1n the
last 30 years
— 1s not a theoretical/experimental language — 1t
was designed to do real work in
* References
— http://caml.inria.fr
— Debian binary package “ocaml”

http://caml.inria.fr/

1950

1960

1970

1980

1990

2000

OCaml pedigree

‘/////

LISP

\/
Meta-Language

i

CAML

v

OCaml

FORTRAN

Algol

C++

Java

OCaml is not ...

e ... a scripting language

- doesn't compete with: Perl, Shell script,
TCL/TK, ...

e ... a systems language

- things not to write in OCaml:

e operating systems
- even if crazy people do that http://dst.purevoid.org/ :-)
» device drivers

 embedded software
- where space is a real concern
* hard realtime systems

e anything that needs to talk directly to hardware

http://dst.purevoid.org/

OCaml is ...

... an applications language ...

- compete with: Java, C++, C#, Python, C
(when used for apps)

o ... for writing large-scale apps

Use the Right
Tool (tm)
for the Job

(This is the best advice | will give you
[several times] in this part of the talk)

Why large-scale apps are
different?

Large-Scale Apps

e [ots of Code (30KLOC or more)
« [ots of Developers (> 5 7?)

e Maintenance is a real concern

- Application will have a long life

- New developers will need to maintain code
written by developers who left the project,
company, continent, planet, and/or plane of
existence

Lots of Code

« Lots of code makes it difficult to navigate

- More screens to be looked at to figure
anything out

- Easy to lose or duplicate code

e Short Is better

- @LANGUAGE@ should help expressing
algorithms in as few lines as possible

- caveat: code still needs to be readable
« remember Perl adagio “write once, read never”?

« Two further aspects: complexity &
immutability

Lots of Code — Complexity

« complexity

- |Is a function of the number of possible
interactions the programmer needs to worry
about

- Number of possible interactions goes up with
the square of the number of lines of code

« We've already addressed this
- Side effects cause unexpected interactions
(aka bugs)

« @LANGUAGE@ should help avoiding
side effects

Lots of Code — Immutability

 changing other code's data behind it's
back is not playing nice

- Ccreates a dependency on change
presence/absence

- violates ©0 good design principles
(encapsulation)

« cloning/copying is not a valid work around

- Too much memory wasted
- Too much CPU wasted

« @LANGUAGE®@ should enforce (or at least
enable) immutability

Maintenance

* the only thing constant is change

- programs are never complete, just
abandoned

* incomplete/inconsistent changes make
for bugs

- you've found 461 places you needed to fix —
are there 4627

« @LANGUAGE@ should enforce complete
and consistent changes

Use the Right
Tool (tm)
for the Job

Executive Summary

« @LANGUAGE@ = OCamli

« OCaml allows you to:

- write code faster

- spend less time debugging

- have more maintainable code

- without sacrificing performance!

This leaves us with one question...

How?

OCaml Features

(We'll explain all of them and why they're good in a bit)

- Garbage Collection - Strong static typing
- Exceptions * Expressive Type
. Syst
- Bounds checking . Tys elmf
on Arrays ype r.1erence
Ref ¢ - Three different
- NEIErences, no ways to run code
Pointers
, , Interpreted
- Everything is a e Virtual Machine
Reference

« Compiled to Native

- Immutability as
default

OCaml Features (cont.)

- Multi-paradigm - Builtin types- tuple,
support list, record
* Functional - Pattern Matching

* Object Oriented

* Imperative/Procedur
al

- Higher Order
Functions

- Variant types (no
null)

Manual Memory Management

* free/malloc-like memory management

- does not interact well with large scale-apps

* InCcreases complexity of code
 takes large part of development time (~ 40%)

- can be slow

« free/malloc are O(heapsize) on the average

* Increases cache misses (heap fragmentation)
- wastes memory

* heap fragmentation
 blocks book-keeping

Garbage Collection

e reference counting GC

- easy to implement, so popular (perl, python,
ruby, ...)

- Issues with circular data structures

- expensive in terms of CPU cycles
» reference counters book-keeping
- heap still fragmented

Garbage Collection (cont.)

e generational copying GC

- based on the “generational hypothesis”

» the objects most recently created in the runtime
system are also those most likely to quickly
become unreachable

- fast allocation
- heap Is always compact
- cache conscious data placement

Garbage Collection (cont.)

* Java GC (generational copying)

- Java: only “popular” language with decent GC

- allocation still expensive — at least according
to all the Java programmers | talk to

- long GC pauses
« OCaml GC (generational copying)

- very fast allocation
e common case is 5 assembly instructions on x86
- no long GC pauses

Exceptions

 same basic capabillities as Java, C++

« way faster — ~20 clock cycles total
between setting up the try block, and
doing the throw

- C++ exceptions are slow — you have to
unwind the stack

- Java's stack trace requirement means you
can't do tail call optimization

 GC picks up the garbage

Bounds Checking on Array
Accesses

* Fencepost (off-by-1) errors are very
common

« Bounds checking is often very cheap

- Most checks can be eliminated by the
compiler

for 1 = 1 to (Array.length a) - 1 do
a. (1) <=0

done

« Of course OCaml bounds checks it's array
accesses!

OCaml has references, not
pointers

 No pointer arithmetic
* This is why you can't use it to bang on hardware
« No random memory corruption either

« Same as Java Objects

Everything Is a Reference

 Any type can be added to any data
structure

- no more Java-like Int, Double, etc.

- the same object code works for all types
* N0 code bloat like C++ templates

- OCaml automatically “unboxes” the
fundamental types- ints, chars, etc., and
stores them In place of their pointers

« efficiency is not lost
* Allows for true universal types (V-types)

- works like void * tricks ... but is type safe!

Strong Compile-time Type
Checking

* Finding bugs at compile time cheap,
debugging code expensive (time
consuming)

- Especially since type checking tells you the
file and line the bug is at

- Simply firing up a debugger and recreating
the problem takes longer than fixing a bug
detected at compile time

« OCaml gives you strong static type
checking, but without the bondage and

discipline aspects.

It's not quite true that once your
OCaml code compiles, it's correct

e ... but it's surprisingly close to being true!

- OCaml detects many logic errors as type
errors
 forgotten cases
« conditions not checked for
 iIncorrect function arguments
 violated constraints (especially with modules)

- all code gets checked

e all branches, even not taken ones

e code gets checked automatically

- compiler does checks — no extra work for the
programmer

“of ” relationship

« Like “is-a” or “has-a”, objects can have
“of” relationships

- e.qg.: list of foo, tree of array of float, etc.

- can express “universal types”

« OCaml can easily express types like

- “for any types a and b (which can be the same or
different types), this function takes a list of type a's, and
a function which converts a type a to a type b, and
returns a list of type b's”

- In OCaml, that type would look like:
'a list -> ('a -> 'b) -> 'b list
- OCaml allows you to express complex types concisely
* Universal types are the default, not the exception

C++ and Java type checking

 Little more advanced than Algol-68

* Java: cast to/from Object pattern sucks

 Totally defeats static type checking

 Run time type checking -> CPU/memory penalties
» Allows programmer to hide errors

* Verbose to boot

* (now fairly better with generics)

« C++ templates suck

* Horrid syntax
« Templates the exception, not the rule
e Still verbose

OCaml has type inference

« compiler can figure out what type a
variable has from context

- programmer does not need to specify the
types of (most) variables and functions

 clearer code (not confused by redundant type
specifications)

« more likely to be correct

« compiler can even generate type annotations for
those types which need them (you, lazy guys!)

- this is considered a major advantage of run
time type checking

* but keeps the benefits of static type checking!

Running OCaml code

« 3 different ways to run OCaml code

1.interpreted
2.compiled to bytecode + virtual machine
3.compiled to native executable

OCaml Toplevel Interpreter

- Lisp/Python-like - Disadvantages

- Advantages - Customer needs

» Fast turn around (no OCaml installed to

need to build/run) run the code

- Can be used for * Slow
scripts - Interpreter needs to

e Instant feedback compile code

constantly
- Good for - No optimizations
experiments,
exploration, and * More memory
one-off programs needed

- Compiler/Ul needed

The OCaml Virtual Machine

- Like Java, C# (.NET) - Disadvantages
- Advantages « Customer needs to
have OCaml

» Byte code highly
portable

* Byte code is small

« Compiles faster
than native

* Don't need to ship
source

 Don't need to
compile source at
runtime (faster than
Interpreted)

runtime installed
 Slower than native

Compiling to Native Code

- Like C/C++ - Disadvantages

- Advantages * Not all systems
support compiling

 Fastest way to to native code

execute OCaml

- currently: alpha,
code amdo64, arm, hppa,
- Close to C x86, 1a64, ppc, sparc
performance Native code not
» Customer doesn't very portable

need ar)ythlng of - Can't run code
OCaml installed to compiled for x86 on
run OCaml code a Sparc

- Can't run Windows

code (natively) on
Linux

OCaml native code
performance

e Official statement — within a factor of 2
of C's

- Hard to measure — lies, damned lies, and
benchmarks

* Yes, C++ does have a performance hit

- Need to add code to handle exceptions
wether you use them or not (someone else
might have to - like operator::new())

- more C++ features -> less performance

 Virtual functions == indirect calls
 Templates == code bloat == more cache misses

OCaml native code
performance (cont.)

e« OCaml code sometimes faster than C

- Better algorithms

- Copying garbage collection reduces cache
misses, and Is a negative performance cost
(it speeds the program up)

Immutability is the Default

 Decreases code inter-dependencies
- A function can not “accidentally” change it's
arguments

» Use tuples to return multiple values — say what
you mean

 Eliminates the need for deep copies

- Just pass the data structure around

- Reusing objects isn't always faster — what
you gain in the straight aways (not allocating
new objects) you lose in the turns (needing to
clone objects to prevent modifications)

Immutability and Allocation

- Instead of changing a data structure, allocate
a new data structure just like the old, except
for the one change

- Since the old data structure can not change, you can
resuse most of it.

- Functions can return the new, modified, data structure,
and let the caller decide which (new or old) to use.

- Immutability means you allocate a lot

- Allocate new objects, instead of reusing old ones

- statistics: OCaml programs allocate about 1 word every 6
instructions -- an insane amount of allocations!

- This means speed of allocation is important

- Fortunately, OCaml has an insanely fast allocator, so this
iIsn't a performance hit.

OCaml is a Multi-paradigm
Language
o Supports:
- functional (Lisp, ML)
- Object Oriented (Java, C++, C#, Python, ...)
- procedural (C, Pascal)
« No one paradigm is right for all problems

- If all you have is a hammer, everything looks
like a nall

Use the Right
Tool (tm)
for the Job

the right paradigm for the job to

Higher Order Functions

 Fifty-cent word for some simple concepts:

- Partial function evaluation

* If a function has n arguments, you can supply k<n
values and get a function with n-k arguments

- Inner functions (like Pascal, Algol, GCC)
- Anonymous local functions easy to define

- Functions can be passed around like variables

* Inner functions can be returned, and they keep
the stack frame they execute in

« AKA continuations

Higher Order Functions
Combine State and Functions

 Replaces “doit” classes popular with Java

- MouseClickEvent, KeypressEvent, etc.

- An interface with a single function (“doit”)
which the caller implements and instantiates

- The class Is the state associated with the
function

 Good C programmers pass state pointers
to callbacks

- These are void *'s which are passed,
uninspected, to the callback function

- Works like the this pointer for a “doit” class

Higher Order Functions
Simplify APIs

 No need to define special classes for
every call back

e Easier to “glue” disseperate APIs together

- any function can be a call back
- easy to overcome mismatched argument lists

 Say what you mean

Data Structure Comprehensions

- Functions which do something to the entire
data structure

e Iter- call a function on every member
- Example use: printing the data structure

* Fold- accumulate a value over the data structure
- Example use: Vector length function

 Map- convert the data structure
- Example use: Vector scale function

- Many algorithms can be expressed entirely as
comprehensions

 Why keep writing the same loops?

- Easy to write and use if you have HOF,
painful otherwise

Variant (or algebraic) datatypes

e C's enums on steroids

- They are not ints!

« Typesafe- can not cast to/from ints
 What does APPLE + ORANGE mean? BANANAS?

- Can contain data

« Work like Eckel's Java Enums
« Easy way to do simple data structures

- How OCaml does nulls

- Not all data types can have nulls- programmer chooses
which
- It's a compile-time error if you don't handle the null case

* Bye bye null pointer exception!

How do you hold different types
IN the same data structures?

« common question asked by people used
to run time type checking

- often because they use lists when they
should use tuples, structures, or objects

* answer: use a variant type!

- Tag each element with what type it is

- Compiler makes sure you handle all cases

A huge help in maintainance when adding new
cases

- If all types can not exist in all locations, you
are using the wrong data structure!

OCaml Has Rich Data

Structures
Built-in support: Standard Library:
- Tuples - Hash Tables
- Lists - Maps
- Records - Sets
- Arrays - Queues
- Objects - Stacks

- Modules

“Use the right tool for the job”
means use the right data

structure!
« Many programming languages encourage

you to use only one data structure
- Lists (Lisp)

- Associative Arrays (Perl)

- Objects (Java)

* By supplying multiple data structures
(and making it easy to add your own),
OCaml encourages you to use the right
data structure

- But you have to know your data structures!

Pattern Matching

« Switch/case statements on steroids
e Syntactic sugar, but...

» Allows you to express complicated
algorithms compactly

- Balancing algorithm for red-black trees
becomes simple enough to use as an
example

Nice song and
dance, but what
proof do you
have?

The Computer Language
Shootout Benchmarks

e collection of micro-benchmarks written in
many different languages

- http://shootout.alioth.debian.org/
- compares LOC, run times, and memory

* not a perfect comparison

« small benchmarks are not represenitive of large
projects

e lies, damned lies, and benchmarks
« we will show you 2004 data

e results are surprising
- scores in brackets

http://shootout.alioth.debian.org/

Top 10 Fastest Languages

(least CPU usage overall)

1. C (GCCQ) [752]
2. OCaml (native code) [751]
3. SML (mlton) [751]
4. C++ (G++) [743]
5. SML (sminj) [736]
6. Common Lisp (cmucl) [734]
7. Scheme (bigloo) [730]
8. OCaml (bytecode) [718]
9. Java (Blackdown/Sun) [703]
10. Pike [647]
13. Python [578]
14. Perl [577]

15. Ruby [546]

Top 10 Concise Languages
(fewest lines of code overall)

1. OCaml (both) [584]
2. Ruby [582]
3. Scheme (quile) [578]
4. Python [559]
5. Pike [556]
6. Perl [556]
7. Common Lisp (cmucl) [514]
8. Scheme (bigloo) [506]
9. Lua [492]
10. TCL [478]
11. Java [468]
16. C++ [435]

23. C [315]

Top 10 Smallest Footprints

(least memory usage overall)

1. C (GCCQ) [739]
2. OCaml (native code) [719]
3. C++ (G++) [715]
4. SML (mlton) [713]
5. OCaml (byte code) [709]
6. Forth [649]
7. Python [643]
8. Lua [626]
9. Perl [624]
10. Pike [611]
11. Ruby [609]

27. Java (Blackdown/Sun) [290]

An OCaml tutorial
(live)

have fun () ->

All that glitters is not gold

Good reasons not to use OCaml

* ... NO, We are not going crazy

- ... but in some respects far better than OCaml|
can be done, let's see some of them

« OCaml is HOT, but doesn't know the
meaning of “marketing”

1.open source, but bound to the (INRIA) cathedral
development model
« external patches are seldomly considered (strong

opinions there as well) and philosophical/design change
proposals are never

« the standard library is ridiculously small

« paradox: in OCaml is damned easy to code complex
tasks and sometimes damned tedious to code simple
ones

Good reasons not to use OCam|
(cont.)

« lack of “marketing” (cont.):

2.(practically) no dynamic linking
3.ABI compatibility breaks with every release /
Interface change (including comments!)

« not such a big deal, but entails a source based
distribution

4.no (GNU) team player

* e.0.: hard to mix with autotools, no cooperation w
gcc pipeline, ...

5.concrete syntax is important: other
languages have got this, why we haven't?

Good reasons not to use OCam|
(cont.)

 some technical and philosophical
deficiencies:

1.no real concurrency of OCaml code, since the
garbage collector is not distributed and has a
global lock

2. TIMTOWTDI ... (yet another Perl's adagio:
there is more than one way to do it),
... but There Are Too Many Ways To Do It

e but still ... OCaml is HOT :-)

A Functional Programmer's
Toolkit

Functional programming
techniques

e as imperative programming, functional
programming (FP) has its well-established
techniques

* a minimal functional programmer toolkit
necessarily includes:
1.(tail) recursion

2.“container” manipulation
e teration, transformation, filtering, ...
3.“container” folding

Recursion: beware of the stack!

« we all (now) know recursion
let rec mk list = function
| 0 -> []
| n ->n :: mk list (n-1)
val mk list : int -> 1int Llist

- let's try it on a (not so) large input
mk list 1 000 000;;
Stack overflow during evaluation (looping
recursion?).

- “bug”: each time fact is recursively invoked,
the activation record of the previos
Invocation can't be removed from the stack

« sooner or later the stack will explode

Tall recursion

e recursive calls can be in tail position

- l.e. the return value of the whole function is
the same of that particular recursive
Invocation (or tail call)

 tail calls can be optimized by the
compiler: the generated code can reuse
the current activation record

- recursive invocations no longer require more
stack space than a single function invocation

Tail recursion (cont.)

» tail recursive version of mk_list
let rec mk list acc = function
| @ -> acc
| n -> mk list (n::acc) (n-1)
val mk list : int list -> int -> int list

- where has the base case value gone?
you have to provide it at 1*" invocation time
(have a look at the inferred type ...)

- now the following does work:
mk list [] 1 000 000;;
(* long output snipped *)

- beware: the result is in reverse order!

Taill recursion (cont.)

« a frequent idiom iIs to bundle the base
case value together with an auxiliary
function

- encapsulation and the desired type are back

- yet another version of mk list
let mk list n =
let rec aux acc = function
| @ -> acc
| n -> aux (n::acc) (n-1) 1in
List.rev (aux []) n

e 3 posteriori processing before returning is possible
* N-contraction is quite common

Containers vs inductive types

e “containers” are mirrored in HOT
languages by inductive datatypes

- container manipulation (often) asks the
programmer to follow explicit flow control

patterns, e.q.:
 to visit an array use an indexed for loop
 to visit a list/set/bag/... use a while on an iterator

- Inductive datatypes are conceptually
assocliated to recursors on them

 using recursors the control flow is implicit and the
programmer only needs to care about the actual
operation she wants to perform on containees

lterators (iter)

- Iterators: the simplest recursors

» they apply a function returning unit to each
containee

« the functional version of a for(each) loop
List.iter : (‘a -> unit) -> 'a list -> unit
List.iter print_int [1;2;3;4;5]

e iterators are provided for built-in types, but you
can do them by yourself (and for your own types!)
type 'a my list = Nil | Cons of 'a * my list
let rec my iter f = function

| Nil -> ()
| Cons (hd, tl) -> f hd ; my iter f tl

» ... in fact they can even be automatically
generated ...

Containee transformation (map)

* a “map” recursor transforms a container
to an isomorphic one, applying a local
transformation to each containee

- functional version of a container copy (on
steroids)

List.map : (‘a ->'b) -> 'a list -> 'b list

List.map (fun x -> x+1) [1,;2;3;4,;5] ;;

List.map ((+) 1) [1;2;3;4;5];; (* how elegant ... *)
let rec my _map f = function

| [1->1]
| hd :: tl-> fhd :: my _ map f tl
(* question: is this tail recursive? *)

Selection (filter)

* a predicate on a value of type t can be
represented as a function f: t -> bool

e intuition: applying a predicate to a value returns
true if the value satisfies the predicate

 a filter recursor selects all values
satisfying a given predicate
List.filter : ('a -> bool) -> 'a list -> 'a list
List.filter (fun x -> x mod 2 =0) [1;2;3;4,;5]
let rec my filter p =

] ->]
nd :: tl when p hd -> hd :: my filter p tl
Nd :: tl -> my filter p tl

Predicate algebra

« when working with predicates some
predicate operators can come handy

let (&~) pl p2 = fun X -> pl x && p2 X
val (&~): (‘a -> bool) -> (‘a -> bool) -> (‘a -> bool)
let (|~) pl p2 = fun x-> pl x || p2 X
val (|~): (‘a -> bool) -> (‘a -> bool) -> (‘a -> bool)
let (!~) p = fun x -> not (p x)
val (I~): (‘a -> bool) -> (‘a -> bool)
- e.q.
let even = fun x->xmod 2 =0
let div by n=funx->xmodn=20
List.filter (even &~ !~ (div_by 5)) [5;6;7;8;9;10]

Container folding (fold)

« the recursors we have seen so far are
unable to compute aggregate values
dependent on containees

- but this is a frequent need, e.q.:

o List.length: given an 'a list, compute its length
e list sum: given an int list, sum up all its elements
e Or even List.rev: given a list, reverse it
- though we can write recursive functions for
all the above needs (but we are back to

explicit flow control!), a generic recursors on
top of which implement them does exist: fold

Fold

e Intuition

- a fold recursor “consumes” a container one
step at a time (with one step for each
containee), building incrementally the final
result

- at each step the new “final” result is built
using the current element and the previous
“final” result

 how the incremental construction is actually
Implemented is a (functional) parameter of fold ...

... as well as the initial “final” result, which is
needed to bootstrap the process

Fold (cont.)

« common variants of (list) fold: left/right

- fold on lists
List.fold left: (‘a -> 'b -> 'a) -> 'a -> 'b list -> 'a
e intuition
fold left finit [el; e2; ...; en] = (f ... (f (finit el) e2) ... en)
 sample usage

let list sum =
List.fold left (fun acc e -> acc + e) 0 [1;2;3;4;5]

let list sum = List.fold left (+) 0[1;2;3;4;5] (* elegance? *)
let list_length | = List.fold_left (funacc _->acc+1)0I

let list_iter f | = List.fold _left (fun _e->fe; ()) ()|

let list rev | = List.fold_left (funacce-> e :: acc)[]l

let list map fl =
List.rev (List.fold left (funacce->fe::acc)[]l)

Fold (cont.)

- fold on lists
List.fold left: (‘a -> 'b -> 'a) -> 'a -> 'b list -> 'a
e do it by yourself

let rec my fold_left f curr = function
| [1-> curr
| hd :: tl -> my fold_left f (f curr hd) tl

Fold (cont.)

- fold on lists
List.fold right: (‘a -> 'b -> 'b) -> 'a list -> 'b -> 'b
* intuition
fold right f [el; e2; ...; en] init = (fel (fe2 (... (fen init) ...)
« sample usage

let list sum = List.fold _right (+) [1;2;3;4;5] 0
let list map fl =
List.fold right (fun e acc -> f e :: acc) | [] (* no List.rev *)
* do it by yourself

let rec my_fold_right f | init =
match | with
| [1-> curr
| hd :: tl -> f hd (my_fold_right f tl init)

(* beware: not tail recursive [like many implementation] *)

Recursors as a concept

« Remember: recursors is a concept, not a
specific implementation of them in some
library

- you can (and should!) develop your own
recursors

* aS a specialized version of the usual recursors on
some built-in or available inductive datatypes

« for your home made inductive datatypes
- benefit: keep separate the visit logics from

the business logics of doing what you want
with containees

Funct. data structures and algo.

« How can | go back & forth in a list in O(1)?

 Answer: use a zipper!
type 'a zipper = 'a list * 'a list (* past, future *)

let next = function
|,[] -> assert false
| I,he::tl -> he::ltl

let prev = function
[1,| -> assert false
| he::tl,| -> tl,he::l

let z =1[5:4:3:2:11,[6:7:8:9:10]
next (nextz) =[7:6:5:4:3:2:11,[8:9:10]

CSC' mantras

« Avoid cluttering the namespace!
« Scope hides functions needed only once

« Scope avoids passing too many
parameters to auxiliary functions

e Scope avoids passing constant
parameters around
e letf kl k2 x1 x2 =
let rec aux1l x1 x2 = ... In

let rec auxn X1 x2= ... 1n
auxn x1 x2

CSC' mantras

* Only high-level meaningful functions
(even with large types) should be
exported

 There should be no more than a few ways
to compose functions together

« Compound functions should not be
exported

- array_of list: 'a list -> 'a array
- optimize_list: data list -> data list
- optimize_array: data array -> data array

The many shapes of
Polymorphism

What is polymorphism?

« polymorphic = that does different things

* put what does it mean, really?

- overloading
- generic/templates

- late binding
(In class based object oriented languages)

What is polymorphism?

« overloading (C++, Java, ...)
- Int plus(int x, int y) !'= float plus(float x, float y)

- “totally unrelated” code in different memory
locations

- not unrelated for the human being: lack of
abstraction? (cfr. Haskell type classes)

- resolved at compile time
- resolution can be schizophrenic
- prevents type inference

What Is polymorphism?

* generics/templates:

static <T>
void fromArrayToCollection(T[] a, Collection<T> ()
{ for (T o:a) { c.add(o); } }

- one source code that works on different
types (any type?)

- Nno more safe/unsafe down-casts

- do we need such an horrible syntax?

- how are they implemented?

Implementation of
generics/templates

e C++ templates:

- different data types have different memory
representations

- Impossible to have compiled code that works
uniformly on every type

- at compile time, one compiled code for every
type instance in the source code

- large executables, horribly long symbol
names, performance penalties (cache misses)

Implementation of
generics/templates

e Java generics:

- primitive data types have ad-hoc memory
representations

- all objects represented uniformly via
references

- one compiled code that works uniformly on
every class type

- small executables, no performance penalties
- Int vs Int

Typing of generics/templates

Late addition to Algol68 type system

Late addition to Algol68/C/Pascal/Modula
syntax

Requires type abstraction and partial
application

- List <Int> I;

Academic type systems got it right in the
70s!

System-F polymorphism
» Typing a la System-F:
id (A: Type, a: A) : A { return a; }

smap (A: Type, f: forall B:Type. B -> B, I: list A) : list A

smap (int, id, [1; 2; 3]) = [1; 2; 3]

» Explicit type abstractions/applications in
terms

 No type-inference
- all variables should be typed

Hindley-Milner polymorphism
* Abstractions can be everywhere in

System-F:

- smap: forall A:Type. list A -> (forall B:Type. B -> B) -> list B

* Hindley-Milner polymorphism:

- gquantifications on types only in front

- map: forall A,B:Type. list A-> (A->B) -> list B
map: list ‘A -> ('A->'B) -> list 'B

- no type abstractions/applications in
terms

- type inference is decidable
 variables need not be typed

OCaml polymorphism

« OCaml implements Hindley-Milner

 Most functions are typable in Hindley-
Milner

e System-F types
- available when needed
- require explicit quantification
- only in record fields/object methods (why?)

Example:

« type (‘a,'b) r = {label: 'b->"'a*'b }
et mk rx = {label = funy -> x,y }
eto=mk r2 (*ohastype (int, 'b) r*)
et x = o.label 5 (* x = 2,5

0 has type (int,int) r*)
let y = o.label “ciao” (* ERROR!!! *)

» type 'a doit = { label: 'b. 'b -> 'a *'b };
et mk rx = {label = funy -> x,y }
eto=mk r2 (*ohastypeintr*)
et x =o.label 5 (* x = 2,5 %)

et y = o.label “cia0” (* y = 2,”ciao” *)

What Is polymorphism?

* |n class-based object oriented languages:

- OOP = state + incapsulation + inheritance +
overriding + subtyping + late binding

- class Point { method move() { ... } }
class ColoredPoint inherits Point
{ method move() { ... } }
void force(Point c) { c.movel(); }
ColoredPoint ¢ = new ColoredPoint;
force(c);

- do we need all ingredients together?

Incapsulation + Late binding

* (Private) data and methods that act on
the data are put in a first class object

 First class objects can be stored, passed
around, etc.

e Methods code is related to the instance

* In functional programming:

- functions are first class objects

- they can be assembled in containers

- they can share (immutable) private data
- we can invoke a function in a container

Example

type tower = (float -> float) * (float -> float)
(* volume *) (* lateral surface *)

let new _circle r =

(fun h -> pi*. r*. r* h), (*volume *)

(fun h -> 2. *, pi *. r *, h) (* lateral surface *)
new circle : float -> tower

let new_squarer =

(fun h->r*.r* h), (*volume *)

(fun h -> 4.0 *. r *, h) (* lateral surface *)
new _square : float -> tower

et c = new circle 8.0 (* c: tower *)
et s = new _square 3.0 (* s: tower *)
et res = fst ¢ 10. -. fst s 10. (* volume *)

Inheritance + code reusal +
overriding + subtyping

« Two uses of inheritance:

- to reuse code

 In functional programming: just copy a container,
changing the fields that must be overridden

e let 0 = (fun () -> “Hello”), (fun () -> “World")
let o' = fst o, (fun () -> “Mom”)

 efficient, because of sharing

Inheritance + code reusal +
overriding + subtyping

« Two uses of inheritance:

- for inheritance
« Why?

- letfo =

“Object “ ~ o.print ™ “ holds “ © string_of int o.value
- 0.print must make sense; o.value must make sense
- why do we need interface printable and valuable?

- why do we inherit from interfaces if NO CODE must be
reused?

« with generic polymorphism:
- f has type < print : string; value : int; ... >
where ... stands for any list of other method

- €.g. we can use an object of type
< save: unit; print: string; move: unit; value: int>

State + Incapsulation

* Global variables are bad, bad, bad
* Protect mutable variables inside objects

 In functional languages:
- incapsulation is given by scope
- state (= mutable variable) can be added

- let new_account () =
let password = ref “change me” in
(fun p -> password := p) (* set password *),
(fun p -> Ipassword = p) (* check password *)
new_account: unit -> (string -> unit)*(string -> bool)

Mutable status

Mutable status: why?

« Mutable status is bad

- less correct code, harder to debug

- no sharing, not reentrant, complex
backtracking

- less intuitive code (e.g. w.r.t. fold, map, etc.)
« SO why?

- for reactive programming
(to store data between events/commands)

- for non algebraic data structures
(e.g. graphs)

Mutable status: how?

Do NOT make everything mutable

Introduce the type of mutable cells:
let x =ref0 (* x has type int ref *)

- X IS a constant (a reference) to “ref 0”

- “ref 0” is a memory cell that currently holds
the value O

Assignment via a reference: x :=1

- X IS unchanged: it still points to the same cell
- the content of the cell is changed

Dereferencing: X :=!x+ 1

Mutable status: how?

ref O
X

e let X
let y

- X and y are equal constant references to the
same cell “ref 0”

eletfc=c:=!lc+1infxX
- the constant x is passed by value to f
- everything is passed by value in OCaml!
- the cell can be equally reached by x and c

- this is C++/Java call-by-reference
- THIS IS BAD!

Mutable status: how?
Functions should be side-effect free

In C++/Java side-effects used to return
multiple values

Say what you mean!

Instead of
letfcd=
d:=!c+ !d;
c:=l1lc+ 1;
In f x
use
letfcd=c+d, c+1 In
let X',y' =fIxlyin
X:=xy:=yYy

<II II

Mutable status: how?

« Wait a minute! If functions should be side-
effect free, where can | use mutable cells?

« Answer 1: only a few mutable cells to
store the status between different
callback invocations!

- let status = ref O
let button pressed () =
status := do_something(!status)

Mutable status: how?

« Wait a minute! If functions should be side-
effect free, where can | use mutable cells?

« Answer 2: inside cells to implement non
algebraic data structures

- Example 1 (|3| <===>|5]):
type cell = { v: int; neighbours: cell list ref }
let c1 = {v = 3; neighbours = ref [] }

let c2 = {v = 5; neighbours = ref [cl] }
cl.neighbours := [c2]

Mutable status: how?

« Wait a minute! If functions should be side-
effect free, where can | use mutable cells?

« Answer 2: inside cells to implement non
algebraic data structures

- Example 2 (fixed number of arcs):
type cell = { v: Iint; neighbours: cell ref list}
let ref c1 = { v = 3; neighbours = [ref c2] }
and c¢2 = { v =D5; neighbours = [ref cl] }
cl.neighbours =[] (* ERROR! *)
(fst cl.neighbours) := cl (* OK! *)

Mutable status: how?

« Wait a minute! If functions should be side-
effect free, where can | use mutable cells?

« Answer 3: to implement static shared
function variables / friend functions

- let new_option () =
let value = ref 0 Iin
(fun v -> value :=v), (*set¥*)
(fun () -> 'value) (* get *)

let set, get = new option ()
(* set: int-> unit; get: unit -> Int *)

Modules

Abstract Data Types

« Abstract Data Type = data type whose
representation is unknow

 No ADTs, no modularity

- When the implementation changes, all the
code changes

OO languages: objects are ADTs because
fields (and methods) can be private ==
not in the interface

 ADTs without objects are possible!

Modules

« A module is made of an implementation
and an interface (module type)

 The module type restricts the interface of

the implementation

- module M =
struct
type set = int list

end

et empty =[]

et addl x | = x::I
etaddnll'=1@ I'
et union = addn

module type M =
Sig
type set

valaddl : int->t-> t
val addn: int list-> t-> t
val union: t->t->t

end

When concrete data types are
more handy

« Pattern matching is only allowed on
algebraic data types

e Views: functions from an ADT T to an
algebraic data type T'

- module type M = sig - let rec iter f s=
type set match
type set' = set' of sets
Choice of int * set with
val set' of set: set -> set' Choice(a,s') =>
val empty: set f a;
val add: int -> set -> set iter f '

end

When concrete data types are
more handy

« Pattern matching is only allowed on
algebraic data types

* Private types: semi-abstract data types

- private type ordered list :=
Nil
| Cons of int * ordered list
val nil : ordered list
val cons : int -> ordered list -> ordered list
- let nil = Nil
let cons x | =
match | with
[1-> [x]

| he:: -> if x <= he then Cons (x,]) else raise E

Modules as Namespaces

 Modules can also define a namespace

« module HashTable = struct
module Key = struct

type t = Int

let hash n = n mod 10
end
let table = ([| |] : Key.t list)
let add x v =

let h = Key.hash x In
table.(h) <- (x,v)::table.(h)
end
let hash 13 = HashTable.Key.hash 13

Functors

Verbosity of generic
polymorphism

 H.0. generic functions very good for code
reusal...

. but too verbose!
hashtable add:

(
(I
(I

ey -> 'key -> 'bool) ->
ey -> int) ->

<ey,'value) hashtable ->

'key -> 'value -> ('key,'value) hashtable

 Partial solution:
let htbl_add = hashtable _add inteq inthash
let htbl_del = hashtable del inteq inthash

Functors

* Instead of abstracting many functions one

at a time, abstract all of them AT ONCE
module type Key = sig
type t
val eq: t->t -> bool
val hash: t -> Iint
end
module HashTbl(K: Key) = struct
let hashtable add tbl kv =
let hash = Key.hash k in

end
module String = type t = string leteq = ... end
module StringHash = HashTbl(String)

Functors = H.O. Modules

« A functor is a function from a module to
another module

« As functions, functors are typed

« Unlike functions, functors are not first
class objects

« Many details on the type system omitted
here

What's next?

We do NOT need more
functions!

« Keep it simple, stupid!
Aka Adding new operators / instructions /
expressions is bad!

- Perl: write once, read never => throw away
soon

 Higher order functions, recursion,

algebraic data types, references and data
hiding is already too much

 Syntax and semantics of OCaml already
too cluttered

We DO need more types!

« More/better types mean:

- more polymorphism => more code reusal,
more abstract code, easier to understand
» type 'a list = Nil | Cons of 'a * 'a list
type 'a tree = Empty | Node of 'a * 'a tree * 'a tree
super map: forall '‘a 'T. ('a -> 'b) ->'a'T->"'b 'T
« System-F types (require type annotations)
- more properties checked at compile-time
» type list n =
Nil : list O
| Cons :int * list m -> list (m+1)

« hd Nil (* ERROR: Nil has type list 0, hd requires
list (mM+1) for some m *)

e List.nth n| (* ERROR if | has type list m, m < n)

Status of the art

 Languages with stronger type disciplines
are among us...

- let rec f = function
"A-> B
| 'By->"C(fy)
| X-> "Dx

e ... but they do not speak to us

-f:([> A| Bof'al]as'a)->
([> B| Cof'b| Dof'a]as'b)

Status of the art

* Or type checking becomes undecidable

- because when the type totally captures the
specification, type checking becomes proving
that the program is correct

- E.g.:
append: list n -> list m -> list (n + m)
tl: list (n + 1) -> list n
fun (I : list n) -> tl (append | (Cons 5 1))

well typed iff exists m s.t.
Mm+1l=n+(n+1)

Dependent types

« What is the type of
“If Xx = 0 then 3 else true” ?

Dependent types

« What is the type of
“If Xx = 0 then 3 else true” ?

e That's simple:
“If x = 0 then nat else bool” !

» Types can depend on the value of terms!
» Aka Dependent Types
« DML, Cayenne, Epigram

 Coq, PVS, Matita, ... (even more
dependent types)

Dependently typed programs

 The type of the output of a function may
depend on the value of the input

- split:
forall I: list int.
If even (length |) then
list int * list int
else
list int * int * list Iint

- hd:
forall I: list int.
If | =[] then unit else Int

- cfr. hd: list int -> int option

Dependently typed programs

 The type of the second element of a pair
can depend on the value of the first
element

e C: exists n: Int. list n
(0, []) : exists n: iInt. list n
(1, [4]): exists n: Int. list n

e fun ((x,l) : exists n:int. list n) ->
match x,I with
0,[]->0
| n,he::tl -> he

Dependently typed programs

* Proofs are programs

- a proof of A => B is a transformation of a
proof of A into a proof of B

- a proof of A => B iIs a function of type
proof A -> proof B

 Dependent types can fully capture a
specification

» certified sort:
forall |: list Int.
exists I': list int.
(same_elements | |' &&
ordered |')

Dependently typed programs

« certified sort:
forall I: list int.
exists I': list int.
(same_elements | |' &&
ordered |')

» |let sort | = fst (certified sort)
sort : list int -> list int

« But: writing by hand the function that
proves (same_elements | I' && ordered I') IS
extremely difficult (> 10x man-month)

Conclusions

Wrap-up

e« pbottom line(s):

1.diversity is good: use the right teel
programming language for the right job

2.a compiler is a programmer's best friend: let
him does as much as he can

e some references

* http://caml.inria.fr
 Elements of Functional Programming, Chris Reade

« Developing applications with Objective Caml,
Emmanuel Chailloux et al.

* Practical OCaml, Joshua B. Smith

http://caml.inria.fr/

Thank you.

