
Programmation Systèmes
Cours 4 — Runtime user management

Stefano Zacchiroli
zack@pps.jussieu.fr

Laboratoire PPS, Université Paris Diderot - Paris 7

20 Octobre 2011

URL http://upsilon.cc/zack/teaching/1112/progsyst/
Copyright © 2011 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-sa/3.0/

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 1 / 21

http://upsilon.cc/zack/teaching/1112/progsyst/
http://creativecommons.org/licenses/by-sa/3.0/

Access control on UNIX — generalities

Traditionally in UNIX systems, access permissions have been granted
to specific users or groups of users. Each of those realm is identified
by IDs: user IDs and group IDs.

As resources are accessed by processes, processes are associated to
user and group IDs that are used for access control.

Accessing a forbidden resource usually results in a EPERM error.

If a process wants to access a resource which is currently forbidden
to him, it has to change its sets of user and group IDs.

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 2 / 21

Principle of least privilege

Principle of least privilege

Programs should use the least privilege necessary to accomplish any
given task.

The application of this principle reduces the impact of security
breaches to a minimum (by definition) of privileged actions an
attacker will be able to perform.

Example

binding Internet ports < 1024 is a privileged operation on UNIX

a web server that needs to serve on port 80 file system content
should

1 start as a user that can bind port 80 (usually root)
2 bind port 80
3 change its user ID to a non-privileged user that can read the files

it should serve (bonus point: the change is irreversible)

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 3 / 21

User IDs

Every process is associated to 6 or more IDs that are relevant for
user management:

who we really are
1 real user ID

2 real group ID

access permission checks

3 effective user ID
4 effective group ID

. . . supplementary group IDs

“backup” copies
5 saved set-user-ID

6 saved set-group-ID

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 4 / 21

User IDs (cont.)

Real IDs are tied to the identify of the user initiating processes

they are set upon login

retrieved from /etc/passwd

can be changed (by super user)

Effective IDs

used for most kinds of access checks, e.g. file access
permissions

allow to complement user’s primary group ID with
supplementary group IDs

they are usually equal to real IDs, but can diverge from that

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 5 / 21

Set-user-ID

2 of the file access permission bits can be used to change effective
IDs upon execution of a program.

the set-user-ID bit sets the effective user ID of the process to the
owner of the program file

the set-group-ID bit sets the effective group ID of the process to
the owner of the program file

Typical use case: enable non privileged users to perform an action
that requires specific privileges via the usage of a (carefully crafted!)
set-user-ID or set-group-ID program.

Example (passwd)

The passwd program manipulates sensitive files (e.g. /etc/passwd,
/etc/shadow) that should be writable and/or readable only by root.
Still, passwd should allow random users to change their password.

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 6 / 21

Set-user-ID — example

#include <stdio .h>
#include <stdl ib .h>
#include <str ing .h>
#include <sys/wait .h>
#include "apue .h"

int main (int argc , char **argv) {
char cmd[1024];

i f (argc < 2) {
pr in t f ("Usage : grep−shadow USERNAME\n") ;
exit (EXIT_FAILURE) ;

}
/* Retrieve date of last password change ; see shadow(5) . */
/* Do not try this at home! */
i f (snprintf (cmd, sizeof (cmd) ,

"grep ^%s : /etc/shadow | cut −d: −f 3" , argv [1]) < 0)
err_sys (" snprintf error ") ;

i f ((system (cmd)) == −1)
err_sys (" system error ") ;

exit (EXIT_SUCCESS) ;
}

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 7 / 21

Set-user-ID — example (cont.)

$./ grep−shadow zack
grep : /etc/shadow: Permission denied

$ su
Password :
cp grep−shadow grep−shadow2
chown root grep−shadow2
chmod u+s grep−shadow2
exit
$ ls − l grep−shadow grep−shadow2
−rwxr−xr−x 1 zack zack 7907 ott 18 14:56 grep−shadow
−rwsr−xr−x 1 root root 7907 ott 18 14:58 grep−shadow2

$./ grep−shadow2 zack
14611

for grep-shadow, real user ID = effective user ID = zack
ñ not enough to access /etc/shadow, which is -rw-r-----

for grep-shadow2, real user ID = zack, effective user ID = root
ñ it is enough to access /etc/shadow

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 8 / 21

Set-user-ID programs are risky

In some sense, set-user-ID programs adhere to the principle of least
privilege: the user has set-user-ID privileges only for the duration of
program execution and only for that process. Is that enough?

Exercise (unexpected usage of grep-shadow2)

./grep-shadow2 ’‘echo zack‘’

ñ system("grep ’‘echo zack‘’: /etc/shadow | cut ...");

./grep-shadow2 ’‘cat /etc/shadow ; echo zack‘’

ñ system("grep ’‘cat /etc/shadow ; echo zack‘’:
/etc/shadow | cut ...");

./grep-shadow2 ’‘cat /etc/shadow > shadow.txt ; echo zack‘’

ñ system("grep ’‘cat /etc/shadow > shadow.txt ; echo
zack‘’: /etc/shadow | cut ...");

what’s the problem with grep-shadow2?

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 9 / 21

Set-user-ID programs are risky (cont.)

In some sense, set-user-ID programs adhere to the principle of least
privilege: the user has set-user-ID privileges only for the duration of
program execution and only for that process. Is that enough?

Exercise (unexpected usage of grep-shadow2)

./grep-shadow2 ’‘echo zack‘’

ñ system("grep ’‘echo zack‘’: /etc/shadow | cut ...");

./grep-shadow2 ’‘cat /etc/shadow ; echo zack‘’

ñ system("grep ’‘cat /etc/shadow ; echo zack‘’:
/etc/shadow | cut ...");

./grep-shadow2 ’‘cat /etc/shadow > shadow.txt ; echo zack‘’

ñ system("grep ’‘cat /etc/shadow > shadow.txt ; echo
zack‘’: /etc/shadow | cut ...");

what’s the problem with grep-shadow2?

Shell script injection!
Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 9 / 21

Set-user-ID programs are risky (cont.)

The shell language is a very powerful language

Allowing free form user input to be executed with high
privileges as shell snippets it’s a very dangerous security breach

In this specific case, the problem can be solved sanitizing user
input (i.e. argv[1]) before passing it to system, ensuring that:

1 it is a valid user name
2 it does not contain any shell meta-character

in the general case, ensuring set-user-ID (or set-group-ID)
programs won’t be used for purposes other that the intended
ones is very difficult

1 You should avoid set-user-ID architectures whenever possible.

2 You should never call system from a set-user-ID program.

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 10 / 21

Retrieving user/group IDs

#include <unistd.h>

uid_t getuid(void);
Returns: real user ID of calling process

gid_t getgid(void);
Returns: real group ID of calling process

uid_t geteuid(void);
Returns: effective user ID of calling process

gid_t getegid(void);
Returns: effective group ID of calling process

uid_t (gid_t) is an integer type representing user (group) IDs

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 11 / 21

Retrieving user/group IDs — example

#include <stdio .h>
#include <stdl ib .h>
#include <unistd .h>

int main (int argc , char **argv) {
pr in t f (" real user ID :\ t%d\n" , getuid ()) ;
pr in t f (" real group ID :\ t%d\n" , getgid ()) ;
pr in t f (" e f f . user ID :\ t%d\n" , geteuid ()) ;
pr in t f (" e f f . group ID :\ t%d\n" , getegid ()) ;
exit (EXIT_SUCCESS) ;

}

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 12 / 21

Retrieving user/group IDs — example (cont.)

$./ getids
real user ID : 1000
real group ID : 1000
ef f . user ID : 1000
ef f . group ID : 1000

$ su
Password :
cp getids getids2
chgrp root getids2
chmod g+s getids2
exit

$./ getids2
real user ID : 1000
real group ID : 1000
ef f . user ID : 1000
ef f . group ID : 0
$

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 13 / 21

Changing real IDs

Real user (and group) ID can be changed using the system calls:

#include <unistd.h>

int setuid(uid_t uid);

int setgid(gid_t gid);
Returns: 0 if OK, -1 on error

Obviously, we need some safeguard measures:1

if the invoking process has superuser privileges, setuid sets all
3 IDs to uid

otherwise, if uid=real uid or uid=saved set-user-ID, setuid only
sets the effective uid

otherwise, EPERM is raised

1only stated for uid; similar rules exist for gid
Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 14 / 21

Changing real IDs — discussion

A few general rules can be stated about ID maintenance in the
kernel:

1 normally, the real user ID is set upon login and never changes
throughout a session

2 only the superuser can change real user IDs; that is what login
(a superuser process) does upon login

3 exec copies effective uid to saved set-user-ID
ñ in case of set-user-ID programs, the copy happens after having

inherited effective uid from the executable

4 a process can freely change its effective user ID to either its real
user ID or its saved set-user-ID

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 15 / 21

Case study: man

The man utility can be installed set-user-ID to the man user, in order
to maintain a system-wide cache of formatted manual pages.
To format a manual page, man invokes a number of external
programs.

Goals
1 save formatted manual pages to a location writable only by the

man user;

2 execute external programs as the invoking user, to avoid that
problems with them affect man data.

We have to switch among two different privilege realms—man’s
privileges and user’s privileges—in the following order:
man → user → man.

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 16 / 21

Case study: man (cont.)

1 we execute /usr/bin/man, which is set-user-ID man. We have:

real uid = our user ID
effective uid = man

saved set-user-ID = man

2 if needed, man can access restricted data

3 before executing external programs, man calls
setuid(getuid()), which changes only effective uid.2 We now
have:

real uid = our user ID (no change)
effective uid = our user ID

saved set-user-ID = man (no change)

2because we are not a superuser process and setuid’s argument =
real uid

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 17 / 21

Case study: man (cont.)

4 man execute external formatting programs, which are now run
as user processes

5 once done, man calls setuid(manuid). This is allowed because
man’s user ID has been saved in saved set-user-ID. We now have:

real uid = our user ID (no change)
effective uid = man

saved set-user-ID = man (no change)

6 man can now update the cache (which is write-restricted to man)

If setuid didn’t allow to go back to saved set-user-ID, man would be
tempted to retain extra privileges while executing external
programs, increasing security risks.

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 18 / 21

Effective IDs

For more fine grained control (and clearer code), two system calls
allow to change only effective IDs:

#include <unistd.h>

int seteuid(uid_t uid);

int setegid(gid_t gid);
Returns: 0 if OK, -1 on error

A privileged user using them will leave real IDs unaffected.

A non-privileged user can change its effective IDs only to its real
or saved set-user-ID (as it happens with setuid).

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 19 / 21

Supplementary groups

Each user is associated to a primary group ID, according to
/etc/passwd. Additional groups a user is member of are specified
in /etc/group.

In early UNIXes, each user belonged to a single group at any point in
time. The command newgrp was used to change it (choosing among
all allowed groups for the user).

In modern UNIXes users belong at the same time to the primary and
all supplementary groups (up to a maximum). Access permissions
are checked against all those groups.

the need of explicitly changing group is mostly gone
(Which is why you never heard of newgrp)

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 20 / 21

Accessing supplementary groups

Supplementary groups can be retrieved with:

#include <unistd.h>

int getgroups(int size, git_d list []);
Returns: number of supplementary groups if OK, -1 on error

Passing size==0 can be used to evaluate the size of the list.

POSIX offers no way to set supplementary groups. Only superuser
can do that and there is little use of it beside login implementation.
On Linux:

#include <grp.h>

int setgroups(size_t size, const git_t *list);

int initgroups(const char *user, gid_t group);

Stefano Zacchiroli (Paris 7) Runtime user management 20 Octobre 2011 21 / 21

