
Génie Logiciel Avancé
Cours 6 — Extreme Programming

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire PPS, Université Paris Diderot

2012–2013

URL http://upsilon.cc/zack/teaching/1213/gla/
Copyright © 2011–2013 Stefano Zacchiroli

© 2007 Vikas Hazrati
License Creative Commons Attribution-NonCommcercial-ShareAlike 3.0 Unported

http://creativecommons.org/licenses/by-nc-sa/3.0/

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 1 / 71

http://upsilon.cc/zack/teaching/1213/gla/
http://creativecommons.org/licenses/by-nc-sa/3.0/


Disclaimer

lot of best practices
ñ 50% technical practices
ñ 50% project management practices

lot of “philosophy” (as it often happens in software
engineering. . . )

ñ think it through and compare with different “philosophies”
ñ make up your own mind about it
ñ mix and match

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 2 / 71



Sommaire

1 What is XP ?

2 History and context

3 Values and principles

4 Practices

5 Wrapping up

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 3 / 71



Sommaire

1 What is XP ?

2 History and context

3 Values and principles

4 Practices

5 Wrapping up

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 4 / 71



Reminder : software methodology

A methodology is a formalized process or set of practices for
creating software

a set of rules you have to follow

a set of conventions the organization decides to follow

a systematical, engineering approach for organizing software
projects

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 5 / 71



What is XP ?

XP is a methodology of software development based on well laid
out values, principles and practices.

Goal of XP is outstanding software development at lower cost,
with fewer defects, high productivity and much higher return on
investment.

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 6 / 71



Reminder : waterfall

Définition
des besoins

Conception

Implémentation
et tests uni-

taires

Intégration
et test du
système

Livraison et
maintenance

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 7 / 71



What is XP ?

Why yet another methodology ?

Social Change — Giving up defences

Based on Excellent programming techniques, clear
communication and teamwork

Lightweight — only do whatever adds value to the customer

Addresses constraints in software development

Adapts to rapidly changing requirements

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 8 / 71



What is XP ?

XP addresses risks at all levels of development process

schedule slips

defect rate

business misunderstood

business changes

false feature list

staff turnover

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 9 / 71



Sommaire

1 What is XP ?

2 History and context

3 Values and principles

4 Practices

5 Wrapping up

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 10 / 71



History

Early Influences
ñ Incremental, stakeholder-driven design process from Alexander
ñ Programming as learning from Papert, Kay

Kent Beck & Ward Cunningham
ñ Mid-80s — Pair programming at Tektronix
ñ 80s, 90s — Smalltalk culture produces refactoring, continuous

integration, constant testing, close customer involvement
ñ Generalized to other environments
ñ Early 90s — Core values developed within patterns community,

Hillside Group

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 11 / 71



History

Scrum practices incorporated and adapted as planning game

1999 — Extreme Programming Explained

1999 — Fowler publishes Refactoring

1999 — XP Immersion held, e-group formed

2000 — more books, first conferences

Evolution continues through today

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 12 / 71



Agile

We are uncovering better ways of developing software
by doing it and helping others do it.

Through this work we have come to value :

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we
value the items on the left more.

Manifesto for Agile Software Development
http://agilemanifesto.org/

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 13 / 71

http://agilemanifesto.org/


XP and Agile

Agile methodologies :

eXtreme Programming

Scrum

Crystal family

Feature-Driven Development (FDD)

Adaptive Software Development (ASD)

Dynamic System Development Model (DSDM)

Agile Unified Process (AUP)

. . .

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 14 / 71



XP and Agile

Agile methodologies :

eXtreme Programming

Scrum

Crystal family

Feature-Driven Development (FDD)

Adaptive Software Development (ASD)

Dynamic System Development Model (DSDM)

Agile Unified Process (AUP)

. . .

XP is just one among several others Agile methodologies.
It’s likely the most popular and the only one we will discuss today.

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 14 / 71



Sommaire

1 What is XP ?

2 History and context

3 Values and principles

4 Practices

5 Wrapping up

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 15 / 71



Core components

values bring purpose to practices

practices are evidence of values

principles are domain specific guidelines

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 16 / 71



Core values

1 communication

2 simplicity

3 feedback
4 courage
5 respect

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 17 / 71



#1 — Communication

Often problem that arise in SW project can be tracked back to
lack of communication.

XP enforces the Communication Value by employing many
practices that could not be carried without communicating

ñ e.g. pair programming, unit testing, etc.

XP employs a Coach whose job is that of noticing when people
are not communicating and reinforce communication.

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 18 / 71



#2 — Simplicity

“Do the simplest thing that could possibly work” (DTSTTCPW)
principle (elsewhere known as KISS).

ñ An XP coach may say DTSTTCPW when he sees an XP developer
doing something that is needlessly complicated.

YAGNI principle (“You ain’t gonna need it”)

Simplicity and Communication support each other mutually.

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 19 / 71



#3 — Feedback

Feedback works in XP at different time scales.

Programmers have feedback on a minutes time scale on the
status of the system thanks to unit tests.

When customers write new stories the programmers estimate
those immediately to give prompt feedback to the customer
about the quality of the stories.

The customer review the schedule every 2–3 weeks and provide
prompt feedback to the developer.

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 20 / 71



#4 — Courage

XP team should have the courage of throwing code away.

XP team should have the courage of massively refactor the
architecture of the system, if architectural flaw are detected.

Courage without counterbalancing values is dangerous. Doing
something without regard for consequences is not effective
teamwork.

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 21 / 71



#5 — Respect

respect for team members

respect for the project

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 22 / 71



Principles

Humanity People, What do people need to become good
developers ?

Economics Every action should have business value

Mutual Benefit Most important and most difficult to adhere to.
Extensive internal documentation

Self Similarity You can copy structure of one solution to a new
context. Theme, story, tests

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 23 / 71



Principles (cont.)

Improvement In software development “perfect” is a verb not an
adjective

Diversity Teams need diversity

Reflection How and Why of working

Flow Steady flow of valuable software

Opportunities Problems are opportunities

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 24 / 71



Principles (cont.)

Redundancy Do not remove redundancy that serves a valid purpose

Failure Is failure a waste ?

Quality Cost of quality ? Quality ≈ Productivity

Baby Steps Rapid small steps = leap

Accepted Responsibility Responsibility cannot be assigned

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 25 / 71



Sommaire

1 What is XP ?

2 History and context

3 Values and principles

4 Practices

5 Wrapping up

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 26 / 71



Primary Practices

1 Metaphor

2 Whole team

3 Informative workspace
4 Cycles
5 Release planning

6 Small releases
7 Testing

8 Pair programming

9 Refactoring

10 Simple, incremental design
11 Collective code ownership

12 Continuous integration

13 Customer involvement
14 Energized work
15 Coding standards

16 Stand up meeting

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 27 / 71



Practice : Metaphor

Guide all development and conversations with a simple shared
story of how the whole system works

ñ Gives the team a whole picture of describing the system, where
new parts fit, etc.

Words used to identify technical entities should be chosen from
the metaphor

The default metaphor is the business domain, and it’s usually
just fine

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 28 / 71



Metaphor — discussion

good idea in general

comes naturally (but should be informed)

people should know the business needs and how their work fits
in the project

non-default metaphors must be correct

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 29 / 71



Practice : Sit together / whole team

the whole team sits together in the same room
ñ ideally around the same table or several tables
ñ whole team : programmers, testers, interaction designers,

architects, customers, project managers, product managers,
executives, technical writers, . . .

emphasizes that the goal is shared and reduce conflicts
ñ i.e. “whole team” goal is actually bigger than just “sit together”

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 30 / 71



Sit together — discussion

require team to be co-located in the same geographical area
ñ not always a possibility

poses an upper bound to the size of XP teams
ñ one of the most common criticism of XP

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 31 / 71



Practice : Informative workspace

make your workspace about your work

an observer should be able to walk into team space
and get a general idea of how the project is going in 15
seconds

— Kent Beck

common sub-practices
ñ user stories (more on this later) on the walls
ñ monitor progress (e.g. using burn down charts)
ñ take care of human needs (snacks, beverages, etc.)

« they encourage social interaction (good both to get the job done
and for whole team integration)

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 32 / 71



Informative workspace (cont.)

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 33 / 71



Informative workspace (cont.)

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 33 / 71



Informative workspace (cont.)

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 33 / 71



Informative workspace (cont.)

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 33 / 71



Practice : Cycles

Weekly cycles Start week by writing automated tests and then spend
the week implementing them. Mainly about stories and
tasks.

Quarterly cycles plan for releases which cover them. Themes can be
broken down into stories for weekly cycles.

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 34 / 71



Practice : Release planning

Requirements via User Stories
ñ Short cards with natural language description of what a

customer wants
ñ Prioritized by customer

Resources and risk estimated by developers

Via “The Planning Game”

Play the Planning Game after each increment

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 35 / 71



User stories

units of customer visible functionality

should be on the story wall for everyone to look at, always

Example

Search and Replace
A user realizes she mis-capitalized a word everywhere in

her document, so she tells the word processor to search for
all occurrences of it and replace them with the correct
word.

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 36 / 71



User stories ≠ use cases

A use case defines functional requirements in total

Set of use cases define breadth and depth of system behaviour,
augmented with non-functional requirements

A story points to a portion of breadth and depth

Stories incrementally build up full scope

Usually 2–3 days of work

Further broken down into tasks

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 37 / 71



The planning game

planning is emotional, thanks to conflicting requirements
ñ developers would like to program faster
ñ project managers want guaranteed deadlines
ñ customers would like to be able to say exactly what they want
ñ business would like not to change their mind

the planning game tries to reduce the emotional tension turning
planning into a game

in the planning game there are pieces, goals, players, and
moves

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 38 / 71



The planning game (cont.)

pieces : user stories
ñ each user story can get associated to a value and a cost

goal : put the greatest possible values of stories into production
players : developers, customers, and business representatives
moves :

ñ write a story (customer) and assigns a value to it (business)
ñ estimate the cost of a story (developer)
ñ make commitment : decide release date and addressed stories

(joint business/developer)
« story driven commitment : business add stories incrementally ;

developers compute release date (incrementally)
« date driven commitment : business pick a date ; developers

announce manageable overall cost ; business pick stories up to it
ñ value and risk first : development order stories so that

« a fully working, but sketchy, system can be delivered ASAP
« more valuable stories are moved earlier in the schedule
« riskier stories are moved earlier in the schedule

ñ split story so that part of it can fit in a release (business)
ñ other moves. . . (see http://c2.com/cgi/wiki?PlanningGame)

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 39 / 71

http://c2.com/cgi/wiki?PlanningGame


Release planning — discussion

user stories vs requirements specification
ñ user stories are way simpler and less detailed
ñ intuition : the details (in general) are subject to change
ñ but : written documentation might work well for large projects

yet another alternative : prototyping user interface

estimate required resources is hard, might work well only with
very experienced developers

small releases are less risky in general

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 40 / 71



Practice : Small releases

Timeboxed

As small as possible, but still delivering business value
ñ e.g. no release to “implement the database”

Get customer feedback early and often

Do the planning game after each iteration
ñ Do they want something different ?
ñ Have their priorities changed ?

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 41 / 71



Small releases — discussion

Small releases are really valuable
ñ Manage the risk of delivering something wrong
ñ Helps the customer to define better requirements

Release every few weeks

Large projects are not so flexible
ñ Try to release something, even if you know it will be changed

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 42 / 71



Practice : Testing

Test-Driven Development (TDD)
ñ Write tests before code
ñ Tests are automated
ñ Rely on some unit testing framework
ñ Must run at 100% before proceeding

Acceptance Tests
ñ Written with the customer
ñ Acts as “contract”
ñ Measure of progress

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 43 / 71



Test-Driven Development

Developers write unit tests before coding

Motivates coding
ñ Improves design : cohesion and coupling
ñ Provides regression tests
ñ Provides specification by example

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 44 / 71



TDD — an example

Implement a stack.
Which tests would you design before coding ?

When I create a stack it should be empty

When I push an element on an empty stack the size should be 1

When I push 3 elements on an empty stack the size should be 3

When I pop an element from a stack with one element, the stack
should be empty

When I pop an element from a stack with 3 elements, the size should
be 2

When I pop an element from an empty stack, it should result in
underflow condition

When I push 5 elements on a stack of capacity 4, it should result in
overflow condition

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 45 / 71



TDD — an example

Implement a stack.
Which tests would you design before coding ?

When I create a stack it should be empty

When I push an element on an empty stack the size should be 1

When I push 3 elements on an empty stack the size should be 3

When I pop an element from a stack with one element, the stack
should be empty

When I pop an element from a stack with 3 elements, the size should
be 2

When I pop an element from an empty stack, it should result in
underflow condition

When I push 5 elements on a stack of capacity 4, it should result in
overflow condition

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 45 / 71



TDD — discussion

TDD is good for most projects, not for all
ñ The real world is different : you always need the functionality

“for tomorrow” !

one might argue that testing simple logic is overhead and hence
write unit testing for complex logic only

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 46 / 71



Practice : Pair programming

Two software engineers work on one task at one computer

The driver has control of the keyboard and mouse and writes the
implementation

The observer watches the driver’s implementation

identifies defects and participates in on-demand
brainstorming
performs “on the fly” code review
has more time than the driver to think at the big
picture

The roles of driver and observer are periodically rotated

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 47 / 71



Pair programming — expected benefits

Pairs produce higher quality code

Pairs complete their tasks faster
ñ to be worth : at least twice as fast

Pairs enjoy their work more

Pairs feel more confident in their work

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 48 / 71



Pair programming — discussion

Pair programming is great for complex and critical logic
ñ When developers need good concentration
ñ Where quality is really important
ñ Especially during design
ñ Reduces time wasting, e.g. on line chatting, social network

Trivial tasks can be done alone

Code review among peers is often a viable alternative

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 49 / 71



Practice : Refactoring

Improve the design of existing code without changing its
functionality

ñ Relies on unit testing to ensure the code is not broken

Bad smells in code :
ñ Long method / class
ñ Duplicate code
ñ Method does several different things (bad cohesion)
ñ Too many dependencies (bad coupling)
ñ Complex / hard-to-read code

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 50 / 71



Refactoring — discussion

Delivering working software faster is important !
ñ You can write the code to run somehow

« With simple design
« With less effort

ñ Later you can refactor the code if necessary

Refactoring is not a reason to intentionally write bad code !
ñ Good coding style is always important

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 51 / 71



Practice : Simple, incremental design

No Big Design Up Front (BDUF)
ñ Reduces the overhead
ñ Ship working functionality faster and get feedback early

“Do The Simplest Thing That Could Possibly Work”
ñ Later use refactoring to change it

Not too much formal documentation

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 52 / 71



Simple design — discussion

Simple design does not mean “no design”

It is about establishing priorities

It’s a set of tradeoffs you make

If something is important for this release and for the whole
system, it should be designed well

Don’t lose time to design something you will not use soon !

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 53 / 71



Practice : Collective code ownership

Code do belong to the project, not to an individual engineer !

Any engineer can modify any code

Better quality of the code

Engineers are not required to work around deficiencies in code
they do not own

ñ No need to wait for someone else to fix something
ñ Faster progress

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 54 / 71



Collective code ownership — discussion

Collective code ownership is absolutely indispensable

You need to fight the people who don’t agree with this !

Fire people writing unreadable and unmaintainable code

Don’t allow somebody to own some module and be
irreplaceable

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 55 / 71



Practice : Continuous integration

1 Pair writes up unit test cases and code for a task (part of a user
story)

2 Pair unit tests code to 100%

3 Pair integrates
4 Pair runs ALL acceptance test cases to 100%
5 Pair moves on to next task with clean slate and clear mind

Should happen once or twice a day

Requirements :

“(≤) 10 minutes build”

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 56 / 71



Continuous integration — discussion

Integrating often is really valuable

Sometimes you cannot finish a task for one day and integrate it

For small projects with small teams integration is not an issue

For large and complex projects it’s crucial
ñ Think of automated build environment

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 57 / 71



Practice : Customer involvement

Customer available on site
ñ Clarify user stories
ñ Make critical business decisions

Developers don’t make assumptions

Developers don’t have to wait for decisions

Face to face communication minimizes the chances of
misunderstanding

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 58 / 71



Customer involvement — discussion

On-site customer does not work ! (or does it ?)

Customers are busy
ñ Meetings every day might work better

Customers are not competent !
ñ Customers always say “Yes, this is what I want” and later say the

opposite
ñ You need to think instead of them
ñ Use prototyping

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 59 / 71



Practice : Energized work

Work only as many hours as productive

fresh and eager every morning, and
tired and satisfied every night

Burning the midnight oil kills performance
ñ Programmer productivity is seen to be 4-5 hours a day
ñ Upper limit : 40 hours a week (i.e. crunch is a bad idea)

Tired developers make more mistakes
ñ Slows you down more in the long run

If you mess with people’s personal lives (by taking it over), in
the long run the project will pay the consequences

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 60 / 71



Energized work — discussion

40 hours a week or 40 hours without a sleep ?
ñ Come back to the real world !
ñ Overtime is not recommendable but often can not be avoided

Better planning can help

Highly skilled senior engineers always suffer of overtime and
high pressure

ñ That’s how the business works !

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 61 / 71



Practice : Coding standards

Use coding conventions
ñ Rules for naming, formatting, etc.
ñ Write readable and maintainable code

Method commenting
ñ Self-documenting code
ñ Don’t comment bad code, rewrite it !

Refactor to improve the design

Use code audit tools

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 62 / 71



Coding standards — discussion

Coding standards are important
ñ Enforce good practices to whole the team — tools, code reviews,

etc.

Standards should be simple
ñ Complex standards are not followed
ñ Standards should be more strict for larger teams
ñ Developers don’t like utter rules like “comment any class

member”

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 63 / 71



Practice : Stand up meeting

Start the day with 15-minute meeting

Everyone stands up (so the meeting stays short) in circle

Going around the room everyone says specifically :
ñ What they did the day before
ñ What they plan to do today
ñ Any obstacles they are experiencing

Can be the way pairs are formed

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 64 / 71



Scaling XP

XP seems to allow smaller teams to accomplish an awful lot

XP seems to hit single-team challenges around 12-16 developers

XP can scale by building recursive teams

Recommended to build small team first, incrementally grow,
and use first team to seed recursive teams

XP has been used on teams of 40–50

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 65 / 71



Documentation

XP is a minimalist process

Many teams successful with index cards and large Post-It

XP is not anti-documentation, but encourages doing the least
amount that is really needed

Document when needed for distributed sharing, historical
needs, summarizing, etc.

Documentation “surrogates” are always present
ñ tests
ñ prototypes
ñ involved customers

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 66 / 71



Sommaire

1 What is XP ?

2 History and context

3 Values and principles

4 Practices

5 Wrapping up

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 67 / 71



How XP (tries to) solve some sw.eng. problems

Problem Solution
slipped schedule short development cycles
cancelled project intensive customer presence
cost of changes extensive ongoing testing,

systems always running
defect rates unit tests, acceptance tests
misunderstand the
business

customer involvement

business changes changes are welcome
staff turnover intensive teamwork,

collective code ownership

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 68 / 71



Applicability of XP

domains with changing requirements

high-risk project (e.g. tight schedule)

small project team

extended development team
ñ developers, managers, and customers together
ñ co-located

automated testability

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 69 / 71



Mix and match

The practices in different agile methods can be extracted and
combined

Establish your own process
ñ Build it step-by-step
ñ Adapt good practices one by one

Example :
1 Pair programming and its variation
2 Daily 15-minutes meeting
3 Test-driven development

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 70 / 71



References

Kent Beck
Extreme Programming Explained : Embrace Change.
Addison-Wesley, 2nd edition, 2004.

Martin Fowler
Refactoring : Improving the Design of Existing Code
Addison-Wesley, 1st edition, 1999.

Stefano Zacchiroli (Paris Diderot) Extreme Programming 2012–2013 71 / 71


	What is XP?
	History and context
	Values and principles
	Practices
	Wrapping up

