
Programmation Systèmes
Cours 2 — Process Management Basics

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire PPS, Université Paris Diderot

2012–2013

URL http://upsilon.cc/zack/teaching/1213/progsyst/
Copyright © 2011–2012 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-sa/3.0/

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 1 / 60

http://upsilon.cc/zack/teaching/1213/progsyst/
http://creativecommons.org/licenses/by-sa/3.0/

Outline

1 Process startup and termination

2 Memory layout

3 Process control

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 2 / 60

Programs

Definition (programs and processes — 2nd approximation)

A program is an executable file residing on the filesystem.

A process is an abstract entity known by the kernel, to which
system resources are allocated in order to execute a program.

A program contains all information needed to create a process at
runtime:

binary format (nowadays: ELF; once upon a time: a.out, COFF)

machine instructions

entry-point: address of the first instruction

data

symbol-/relocation- tables (for debugging, dynamic linking, etc.)

shared library information

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 3 / 60

Processes — as viewed by the kernel

A process is an abstract entity known by the kernel, to which
system resources are allocated in order to execute a program.

From the point of view of the kernel, a process consists of:

a portion of user-space memory
ñ program code
ñ variables accessed by the code

kernel data structures to maintain state about the process, e.g.:
ñ table of open file descriptors
ñ virtual memory table
ñ signal accounting and masks
ñ process limits
ñ current working directory
ñ . . .

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 4 / 60

Process IDs

How can the kernel index process-related data structures?

Definition (process ID)

Each process has a process ID (PID): a positive integer that uniquely
identify processes on the system.

typical usages:

internal reference by the kernel (e.g. indexing process-related
data structures)

external reference by other processes or the admin (e.g. kill)

embedding in derived unique names, e.g. process-unique
filenames

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 5 / 60

Process IDs — demo

1 (a view on) internal process reference: /proc

2 external reference: ps(1), kill(1)

3 unique filenames, e.g.

$ ls /tmp | grep aptitude
aptitude−zack.20871:pUkqOd
$

Demo

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 6 / 60

Process ID reuse

Although unique, process IDs are reused. (why?)

as soon as a process terminate, its process ID become candidate
for reuse
UNIX kernels implement algorithms to delay reuse

ñ this prevents addressing by mistake new processes who took the
place of recently terminated processes

$ ps −C mutt
PID TTY TIME CMD

17262 pts/3 00:00:00 mutt
$ k i l l 17262

What have you killed?

ñ the simplest effective algorithm is to allocate process IDs
sequentially, wrapping around

Don’t assume PIDs are stable forever. With caution, you can assume
they are stable “for a while”.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 7 / 60

Process ID reuse (cont.)

How long it is “for a while”? It depends on:
1 process creation ratio
2 PID max value

#include <stdio .h>
#include <sys/types .h>

int main ()
{

pr in t f (" pid_t :\ t%ld\n" , sizeof (pid_t)) ; // process IDs type
pr int f (" in t : \ t%ld\n" , sizeof (int)) ;
pr in t f (" long :\ t%ld\n" , sizeof (long)) ;

}

$./ pid−size # on a Linux , x86−64 bi t system
pid_t : 4
int : 4
long : 8
$

but see also /proc/sys/kernel/pid_max . . .
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 8 / 60

getpid

Each process can retrieve its own PID at runtime using the syscall:

#include <unistd.h>

pid_t getpid(void);
Returns: always return PID of calling process

Accessing PID values:

pid_t is an abstract type

according to POSIX, process IDs shall be signed integer types
ñ but they wrap to 0, according to PID definition

we can use pid_t values as signed integers

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 9 / 60

getpid — demo

#include <stdio .h>
#include <stdl ib .h>
#include <unistd .h>

int main (int argc , char **argv) {
pr in t f (" hello , world from process %d\n" , getpid ()) ;
exit (EXIT_SUCCESS) ;

}

$ gcc -Wall -o hello-pid hello-pid.c
$./hello-pid
hello, world from process 21195
$./hello-pid
hello, world from process 21196
$./hello-pid
hello, world from process 21199

Note: we print PIDs using %d conversion specifier

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 10 / 60

main

A C program starts with the execution of its main function:

int main (int argc , char *argv []) ;

argc number of command line arguments

argv array of pointers to arguments

It is the kernel who initiative program execution.1

Before main execution, a startup routine—inserted by the link editor
at “compile” time and specified in the binary program—is executed.
The startup routine fills in:

argc/argv (copying from exec arguments in kernel space)

environment

1usually in response to an exec syscall
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 11 / 60

argv (by the standards)

not only:

#include <stdio .h>
#include <stdl ib .h>
int main (int argc , char *argv []) {

int i ;
for (i =0; i <argc ; i ++)

pr int f (" argv [%d] = %s\n" , i , argv [i]) ;
exit (EXIT_SUCCESS) ;

}

but also:

#include <stdio .h>
#include <stdl ib .h>
int main (int argc , char *argv []) {

int i ;
for (i =0; argv [i] != NULL; i ++)

// POSIX.1 and ISO guarantee argv [argc] == NULL
pr int f (" argv [%d] = %s\n" , i , argv [i]) ;

exit (EXIT_SUCCESS) ;
}

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 12 / 60

Process termination

There are many ways for a program to terminate.
Normal termination

1 return from main (“falls off the end”)
2 exit
3 _exit or _Exit
4 as (1) and (2), but for thread-related purposes

Abnormal termination
5 abort (signal-related)
6 receipt of a signal
7 fulfillment of a thread-cancellation request

Falling off the end implicitly invokes exit.
Intuition: it is as if the startup routine calls main as

exit(main(argc, argv));

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 13 / 60

Normal termination — clean shutdown

#include <stdlib.h>

void exit(int status);
Returns: does not return

Clean shutdown cleans up standard library resources before
terminating the process:

invoke fclose on all open streams

invoke exit handlers

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 14 / 60

Normal termination — abrupt shutdown

#include <stdlib.h>

void _Exit(int status);

#include <unistd.h>

void _exit(int status);
Returns: does not return

(for our purposes, the two are equivalent)

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 15 / 60

Exit status

All exit-like functions expect an integer argument: the exit status.2

The exit status provides a way to communicate to other processes
why the process has (voluntarily) terminated.

UNIX convention
Programs terminating with a 0 exit status have terminated
successfully; programs terminating with a ! = 0 exit status have
failed.
The convention is heavily relied upon by shells.

To avoid magic numbers in your code:

#include <std l ib .h>

exit (EXIT_SUCCESS) ;
// or ex i t (EXIT_FAILURE) ;

2exit status ≠ termination status. The latter accounts for both normal
and abnormal termination; the former only for normal termination
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 16 / 60

Exit status (cont.)

You shall always declare main of type int and return an integer
value; barring standards evolution uncertainty:

#include <stdio .h>
main () {

pr in t f (" hello , world !\n") ;
}

$ gcc -o fall-off fall-off.c
$./fall-off
hello, world!
$ echo $?
14

$ gcc -o fall-off -std=c99 fall-off.c
$./fall-off
hello, world!
$ echo $?
0

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 17 / 60

Exit handlers

A process can register handlers that will be executed upon clean
shutdown:

#include <stdlib.h>

int atexit(void (*func)(void));
Returns: 0 if OK, nonzero on error

Notes:

handlers will be invoked last-registered-first

ISO C guarantees that the system supports at least a maximum
of 32 handlers

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 18 / 60

Exit handlers — example

#include <stdio .h>
#include <stdl ib .h>
#include " helpers .h"

void my_exit1 (void) { pr int f (" f i r s t exit handler\n") ; }
void my_exit2 (void) { pr int f (" second exit handler\n") ; }

int main (void) {
i f (atexi t (my_exit2) != 0)

err_sys (" can ’ t register my_exit2 ") ;
i f (atexi t (my_exit1) != 0)

err_sys (" can ’ t register my_exit1 ") ;
i f (atexi t (my_exit1) != 0)

err_sys (" can ’ t register my_exit1 ") ;
pr in t f ("main is done\n") ;
return (0) ;

} // APUE, Figure 7.3

$./ atexi t
main is done
f i r s t exit handler
f i r s t exit handler
second exit handler
$
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 19 / 60

Startup and termination — putting it all together

APUE, Figure 7.2

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 20 / 60

Environment list

Each process is passed, upon startup an environment list, i.e. a list
of 〈key , value〉 pairs called environment variables.
The environment list can be accessed via the global variable:

extern char **environ ;

APUE, Figure 7.5

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 21 / 60

getenv & putenv

Environment variables can also be accessed via specific functions
from the standard library:

#include <stdlib.h>

char *getenv(const char *name);
Returns: pointer to value if name is found, NULL otherwise

int putenv(char *name);
Returns: 0 if OK, nonzero on error

getenv performs key-based lookup

putenv adds a key/value pair given in "key=value" format,
possibly overwriting previous values

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 22 / 60

The complete getenv family

#include <stdlib.h>

int setenv(const char *name, const char *value, int rewrite);

int unsetenv(const char *name);
Returns: 0 if OK, -1 on error

setenv is similar to putenv, but allows to tune its overwrite
behavior
unsetenv removes existing environment variables

ñ relevant use case: cleaning up an environment before spawning
a new process

only getenv is ISO C and widely supported; support for the
other functions varies

Note: getenv & friends are not expressive enough to browse the
entire environment list; the only way to do that is via environ

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 23 / 60

A typical environment list

#include <stdio .h>
#include <stdl ib .h>

extern char **environ ;

int main () {
int i ;
for (i =0; environ [i] != NULL; i ++)

pr int f ("%s\n" , environ [i]) ;
exit (EXIT_SUCCESS) ;

}
// end of getenv . c

Demo

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 24 / 60

Standard environment variables

UNIX kernels ignore environment variables. Interpretation of the
meaning of environment variables is left to applications.

POSIX.1 and SUS define some standard environment variables and
their meaning. Some of them are:

COLUMNS

HOME

LANG

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MESSAGES

LC_MONETARY

LC_NUMERIC

LC_TIME

LINES

LOGNAME

PATH

PWD

SHELL

TERM

TMPDIR

TZ

See APUE 7.7 and environ(7).

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 25 / 60

Outline

1 Process startup and termination

2 Memory layout

3 Process control

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 26 / 60

Process address space

Each process executes by default in its own address space and
cannot access the address spaces of other processes — barring a
segmentation fault error.

The memory corresponding to a process address space is allocated
to the process by the kernel upon process creation. It can be
extended during execution.

The address space of a program in execution is partitioned into
parts called segments.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 27 / 60

Segments

text segment machine instructions that the CPU executes. It is read
from disk upon process creation. The instruction
pointer points within this segment.

stack dynamically growing and shrinking segment made of
stack frames. One stack frame is allocated for each
currently called function. Each frame contains
automatic variables, i.e. function’s local variables,
arguments, and return value.

can also be used for small allocations; see alloca

heap dynamically growing and shrinking segment, for
dynamic memory allocation (see malloc and friends).
The top of the heap is called program break

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 28 / 60

Stack and stack frames

The stack pointer register always points
to the top of the stack. Each time a
function is called a new frame is
allocated; each time a function returns,
one is removed.

Each stack frame contains:

call linkage information: saved
copies of various CPU registers. In
particular: the instruction pointer, to
know where to resume execution of
the previous function in the call
stack

(x86-32 bit Linux)

TLPI, Figure 6-3

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 29 / 60

Stack and stack frames (cont.)

Each stack frame contains (cont.):

automatic variables
ñ function arguments
ñ function return values
ñ function local variables
ñ variables allocated via alloca

Automatic variables disappear shortly
after the function call corresponding to
the containing stack frame returns.

Note: stack frames are per-function-call,
not per-function. Why?

(x86-32 bit Linux)

TLPI, Figure 6-3

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 29 / 60

Segments (cont.)

initialized data segment (AKA “data segment”) global variables
explicitly initialized, e.g.:

int magic = 42; // outside any function

uninitialized data segment (AKA “bss segment”) global variables not
explicitly initialized, e.g.:

char crap [1024]; // outside any function

doesn’t take any space in the on-disk binary
will be initialized by the kernel at 0 / NULL
can be initialized efficiently using copy-on-write

Static memory
The imprecise expression “static memory” refers to memory allocated in the data
or bss segments. Such memory is static wrt program execution (which is not the
case for stack/heap-allocated memory).

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 30 / 60

Segments (cont.)

initialized data segment (AKA “data segment”) global variables
explicitly initialized, e.g.:

int magic = 42; // outside any function

uninitialized data segment (AKA “bss segment”) global variables not
explicitly initialized, e.g.:

char crap [1024]; // outside any function

doesn’t take any space in the on-disk binary
will be initialized by the kernel at 0 / NULL
can be initialized efficiently using copy-on-write

Static memory
The imprecise expression “static memory” refers to memory allocated in the data
or bss segments. Such memory is static wrt program execution (which is not the
case for stack/heap-allocated memory).

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 30 / 60

Typical segment arrangement

APUE, Figure 7.6

Exercise
Can we
experimentally
verify segment
placement in a
given process?

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 31 / 60

Typical segment arrangement

APUE, Figure 7.6

Exercise
Can we
experimentally
verify segment
placement in a
given process?

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 31 / 60

Segment arrangement — demo

#include <stdio .h>
#include <stdl ib .h>

int magic = 42;
char crap [1024];

void func (int arg) {
pr in t f (" stack segment near\ t%p\n" , &arg) ;

}
int main (int argc , char **argv) {

char *ptr ;
ptr = malloc (1) ;
func (42) ;
pr in t f ("heap segment near\ t%p\n" , ptr) ;
pr in t f (" bss segment near\ t%p\n" , crap) ;
pr in t f (" text segment near\ t%p\n" , &magic) ;

free (ptr) ;
exit (EXIT_SUCCESS) ;

}

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 32 / 60

Segment arrangement — demo (cont.)

$./segments
stack segment near 0x7ffff53ecccc
heap segment near 0x 1c52010
bss segment near 0x 600b00
text segment near 0x 600ad0
$

(output edited for alignment)

Also, size(1) displays segment sizes for on-disk binaries:

$ size segments
text data bss dec hex filename
1657 596 1056 3309 ced segments

$

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 33 / 60

Virtual memory

Segments are conceptual entities not necessarily corresponding to
physical memory layout. In particular, segments are about the layout
of virtual memory.

Virtual Memory Management (VMM) is a technique to make efficient
use of physical memory, by exploiting locality of reference that most
programs show:

spatial locality: tendency to reference memory addresses near
recently addressed addresses

temporal locality: tendency to reference in the near feature
memory addresses that have been addressed in the recent past

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 34 / 60

Virtual memory management in a nutshell

We partition:

address space of each process in fixed-size units called pages

physical memory in frames of the same size

For each process, we maintain a mapping among the two sets.

At any given time, only some of the pages of a program (the resident
set) need to be present in physical frames. Hence the kernel can:

swap out unused pages to a swap area (usually on disk)

when a page fault—i.e. access to page p 6∈ resident set—occurs
1 suspend process execution
2 swap in the corresponding frame
3 resume process execution

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 35 / 60

Virtual memory on UNIX

The kernel maintains a page table for each process:

TLPI, Figure 6-2

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 36 / 60

Virtual memory on UNIX (cont.)

each entry describes a page of the process virtual address space

each entry either points to a physical frame, or indicates that
the page has been swapped out

usually, many pages are unused and lack page table entries
ñ think about the huge gap among stack and heap addresses

accessing unused pages terminates a process delivering a
SIGSEGV signal

The range of valid virtual pages can change overtime:

stack grows past previous limits

memory is (de)allocated by moving the program break

shared memory is attached/detached

memory mappings are established/canceled

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 36 / 60

Benefits of virtual memory

As long as swap in / swap out choose pages that fail locality of
reference, physical memory is used more (space-)efficiently.
Other effects:

processes are isolated from one another and from the kernel

memory access control is easy: capabilities can be attached to
page table entries and verified at each access

processes can share memory
ñ processes can share read-only frames (e.g. text segment)
ñ processes can share arbitrary frames (e.g. mmap, shmget)

programmers (and some toolchain programs—compiler, linker,
etc.) can ignore memory physical layout

lazy loading of programs is possible (and faster)

virtual memory size can exceed RAM capacity

CPU efficiency (thanks to swap out, more processes can stay in
memory, increasing the likelihood that one is runnable)

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 37 / 60

Outline

1 Process startup and termination

2 Memory layout

3 Process control

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 38 / 60

Process families

Processes on UNIX systems are arranged into a tree structure:

each process—other than PID 1—has exactly one parent process

each process can have 0 or more child processes

the process with PID 1—usually init—has no parent and sits at
the root of the process tree

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 39 / 60

Process families — example

$ pstree # output trimmed
in i t−+−NetworkManager−+−dhclient

| ‘−2*[{NetworkManager }]
|−acpid
|−atd
|−chromium−+−2*[chromium]
| |−2*[chromium−−−{chromium }]
| ‘−27*[{chromium }]
|−cpufreq−applet−−−{cpufreq−applet }
|−cron
|−2*[dbus−daemon]
|−dconf−service−−−{dconf−service }
|−dhclient−−−dhclient−script−−−ping
|−emacs23−+−aspel l
| ‘−{emacs23}
|−emacsclient
|−gdm3−+−gdm−simple−slav−+−Xorg
| | |−gdm−session−wor−+−gnome−session−+−awesome
| | | | |−evolution−alarm−−−{evolution−alar }
| | | | |−gnome−panel−−−2*[{gnome−panel }]
| | | | |−gnome−power−man−−−{gnome−power−ma}
| | | | |−nautilus−−−{nauti lus }
| | | | |−nm−applet−−−{nm−applet }
| | | | |−not i f icat ion−da−−−{not i f icat ion−d}
| | | | |−polkit−gnome−au−−−{polkit−gnome−a }
| | | | |−ssh−agent
| | | | ‘−2*[{gnome−session }]
| | | ‘−{gdm−session−wo}
| | ‘−{gdm−simple−sla }
| ‘−{gdm3}
|−6*[getty]

$

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 40 / 60

Knowing your family

How can a process know the (PID of) processes in its own family?

Self
getpid (already seen)

Parent

#include <unistd.h>

pid_t getppid(void);
Returns: parent process ID of calling process

Children
The PID of children processes is usually retrieved at creation time. . .

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 41 / 60

fork

An existing process can create a new child process using fork:

#include <unistd.h>

pid_t fork(void);
Returns: 0 in child, process ID of child in parent, -1 on error

This function is called once but returns twice.

— W. Richard Stevens

1 child process starts execution just after fork

2 parent process continues execution just after fork

Notes:

often, you want to differentiate parent and child behaviors; the
difference in return values allows to do that

child can retrieve parent pid with getppid

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 42 / 60

fork

An existing process can create a new child process using fork:

#include <unistd.h>

pid_t fork(void);
Returns: 0 in child, process ID of child in parent, -1 on error

This function is called once but returns twice.

— W. Richard Stevens

1 child process starts execution just after fork

2 parent process continues execution just after fork

Notes:

often, you want to differentiate parent and child behaviors; the
difference in return values allows to do that

child can retrieve parent pid with getppid

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 42 / 60

fork — example

#include <unistd .h>
#include " helpers .h"

int main (void) {
pid_t pid ;

pr in t f (" before fork (%d)\n" , getpid ()) ;
i f ((pid = fork ()) < 0) {

err_sys (" fork error ") ;
} else i f (pid == 0) { /* chi ld */

pr int f (" hi from child ! (%d −> %d)\n" ,
getpid () , getppid ()) ;

} else { /* parent */
pr int f (" hi from parent ! (%d)\n" , getpid ()) ;

}
pr in t f ("bye (%d)\n" , getpid ()) ;
exit (EXIT_SUCCESS) ;

}

Note: the above if/else-if/else is a common fork pattern.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 43 / 60

fork — example (cont.)

$./ fork
before fork (16804)
hi from parent ! (16804)
bye (16804)
hi from child ! (16805 −> 16804)
bye (16805)
$

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 44 / 60

fork and (virtual) memory

child is a copy of parent
ñ child process gets copies of data, heap, and stack segments
ñ again: they are copies, not shared with the parent

the text segment is shared among parent and child
ñ virtual memory allows to have real sharing (hence reducing

memory usage)
ñ it is enough to map pages of the two processes to the same

frame (which is read-only, in the text segment case)

no upfront copy is needed, copy-on-write (COW) to the rescue!
ñ initially, all pages are shared as above, as if they were read-only
ñ if either process writes to these pages, the kernel copies the

underlying frame and update the VM mapping before returning

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 45 / 60

Copy-on-write — example

Frame
2038

Parent
page table

PT entry 211

Child
page table

PT entry 211

Frame
1998

Physical page
frames

Parent
page table

PT entry 211

Child
page table

PT entry 211

Frame
1998

Physical page
frames

Before modification After modification

Unused
page

frames

TLPI, Figure 24-3

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 46 / 60

Memory after fork — example
#include <unistd .h>
#include " helpers .h"
int glob = 42; /* i n i t i a l i z ed data */

int main (void) {
int var ; /* automatic variable */
pid_t pid ;
var = 88;
i f ((pid = fork ()) < 0) {

err_sys (" fork error ") ;
} else i f (pid == 0) { /* chi ld */

pr int f (" chi ld pid : %d\n" , getpid ()) ;
glob++; /* modify variables */
var++;

} else { /* parent */
pr int f (" parent pid : %d\n" , getpid ()) ;
sleep (1) ;

}
pr in t f (" pid = %d, glob = %d, var = %d\n" , getpid () , glob , var) ;
exit (EXIT_SUCCESS) ;

}
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 47 / 60

Memory after fork — example (cont.)

$./ fork−2
chi ld pid : 19502
pid = 19502, glob = 43, var = 89
parent pid : 19501
pid = 19501, glob = 42, var = 88
$

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 48 / 60

Termination

Upon process termination (no matter if normal/abnormal,
clean/abrupt), the kernel:

closes all open file descriptors (! = I/O streams)

releases the process memory

No matter the kind of termination, we want a mechanism to
communicate how a process terminates to its parent.

for normal termination → we have exit(status) & co.

for abnormal termination → the kernel prepares a termination
status

Either way, the kernel stores the termination status—which might
contain an exit status or not—until the parent collects it.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 49 / 60

Reparenting

We’ve implicitly assumed that there is always a parent process to
collect the termination statuses of its children.

Is it a safe assumption?

Not necessarily.
Parent processes might terminate before their children.

Upon termination of a process, the kernel goes through active
processes to check if the terminated process had children.
If so, init becomes the parent of orphan children.

This way the assumption is made safe.3

3Yes, upon init termination the system crashes
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 50 / 60

Reparenting

We’ve implicitly assumed that there is always a parent process to
collect the termination statuses of its children.

Is it a safe assumption?

Not necessarily.
Parent processes might terminate before their children.

Upon termination of a process, the kernel goes through active
processes to check if the terminated process had children.
If so, init becomes the parent of orphan children.

This way the assumption is made safe.3

3Yes, upon init termination the system crashes
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 50 / 60

wait

The main facility to retrieve termination status of a child process is:

#include <sys/wait.h>

pid_t wait(int *statloc);
Returns: process ID if OK, -1 on error

upon invocation wait:

if no children has recently terminated, blocks until one
terminates

if a children has terminated and its termination status has not
been collected yet, collect it filling statloc

return an error if the calling process has no children

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 51 / 60

wait — inspecting termination status

The various cases of termination can be inspected applying suitable
<sys/wait.h> macros to the integer filled by wait.

WIFEXITED(status) true for normal termination
ñ WEXITSTATUS(status) can then be used to retrieve the exit status

WIFSIGNALED(status) true for abnormal termination due to
uncatched signal, then:

ñ WTERMSIG(status) gives the signal number

Other macros are available for job control.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 52 / 60

wait — example

#include <stdio .h>
#include <unistd .h>
#include <sys/wait .h>
#include " helpers .h"

int main (void) {
pid_t pid ;
int status ;
i f ((pid = fork ()) < 0)

err_sys (" fork error ") ;
else i f (pid == 0) { /* chi ld */

pr int f (" hi from child \n") ;
exit (7) ;

} else { /* parent */
i f (wait (&status) != pid)

err_sys (" wait error ") ;
pr in t f (" hi from parent\n") ;
i f (WIFEXITED (status))

pr in t f ("normal termination , exit status = %d\n" ,
WEXITSTATUS(status)) ;

else i f (WIFSIGNALED(status))
pr in t f ("abnormal termination , signal number = %d\n" ,

WTERMSIG(status)) ;
}
exit (EXIT_SUCCESS) ;

}

$./ wait
hi from child
hi from parent
normal termination , exit status = 7
$

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 53 / 60

wait — example

#include <stdio .h>
#include <unistd .h>
#include <sys/wait .h>
#include " helpers .h"

int main (void) {
pid_t pid ;
int status ;
i f ((pid = fork ()) < 0)

err_sys (" fork error ") ;
else i f (pid == 0) { /* chi ld */

pr int f (" hi from child \n") ;
exit (7) ;

} else { /* parent */
i f (wait (&status) != pid)

err_sys (" wait error ") ;
pr in t f (" hi from parent\n") ;
i f (WIFEXITED (status))

pr in t f ("normal termination , exit status = %d\n" ,
WEXITSTATUS(status)) ;

else i f (WIFSIGNALED(status))
pr in t f ("abnormal termination , signal number = %d\n" ,

WTERMSIG(status)) ;
}
exit (EXIT_SUCCESS) ;

}

$./ wait
hi from child
hi from parent
normal termination , exit status = 7
$

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 53 / 60

Helper — pr_exit

void pr_exit (int status) {
i f (WIFEXITED (status))

pr in t f ("normal termination , exit status = %d\n" ,
WEXITSTATUS(status)) ;

else i f (WIFSIGNALED(status))
pr in t f ("abnormal termination , signal number = %d\n" ,

WTERMSIG(status)) ;
}

/* defined from now on in " helpers .h" */

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 54 / 60

wait — example
#include <stdio .h>
#include <unistd .h>
#include <sys/wait .h>
#include " helpers .h"

int main (void)
{

pid_t pid ;
int status ;

i f ((pid = fork ()) < 0)
err_sys (" fork error ") ;

else i f (pid == 0) /* chi ld */
exit (7) ;

i f (wait (&status) != pid) /* wait for chi ld */
err_sys (" wait error ") ;

pr_exit (status) ; /* and print i t s status */
i f ((pid = fork ()) < 0)

err_sys (" fork error ") ;
else i f (pid == 0) /* chi ld */

abort () ; /* generates SIGABRT */
i f (wait (&status) != pid) /* wait for chi ld */

err_sys (" wait error ") ;
pr_exit (status) ; /* and print i t s status */
i f ((pid = fork ()) < 0)

err_sys (" fork error ") ;
else i f (pid == 0) /* chi ld */

status /= 0; /* divide by 0 generates SIGFPE */
i f (wait (&status) != pid) /* wait for chi ld */

err_sys (" wait error ") ;
pr_exit (status) ; /* and print i t s status */
exit (EXIT_SUCCESS) ;

}

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 55 / 60

wait — example (cont.)

$./ wait−2
normal termination , exit status = 7
abnormal termination , signal number = 6
abnormal termination , signal number = 8
$

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 56 / 60

Zombie

Observation

(i) process termination and (ii) collection of termination status are
not synchronized actions. They are mediated by the kernel that
stores the termination status until it is collected.

Definition (zombie process)

A process that has terminated but whose termination status has not
yet been collected is called a zombie process.

Large amounts of zombie processes are undesirable, as they
consume resources—the (small) amounts of memory for termination
status + entries in the process table.

if you write a long running program that forks a lot, you should
take care of waiting a lot

ñ if you don’t care about termination status, pass statloc=NULL

init automatically collects termination statuses of its children

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 57 / 60

Zombie

Observation

(i) process termination and (ii) collection of termination status are
not synchronized actions. They are mediated by the kernel that
stores the termination status until it is collected.

Definition (zombie process)

A process that has terminated but whose termination status has not
yet been collected is called a zombie process.

Large amounts of zombie processes are undesirable, as they
consume resources—the (small) amounts of memory for termination
status + entries in the process table.

if you write a long running program that forks a lot, you should
take care of waiting a lot

ñ if you don’t care about termination status, pass statloc=NULL

init automatically collects termination statuses of its children

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 57 / 60

Zombie — example
#include <stdio .h>
#include <unistd .h>
#include " helpers .h"

int main (void) {
pid_t pid ;
int i ;

for (i = 0; i <5; i ++) {
i f ((pid = fork ()) < 0) {

err_sys (" fork error ") ;
} else i f (pid == 0) { /* i−th chi ld */

pr int f ("bye from child %d: %d\n" , i , getpid ()) ;
exit (EXIT_SUCCESS) ;

}
/* parent does nothing */

}
sleep (10) ; /* time window to observe zombies */
pr int f ("bye from parent\n") ;
exit (EXIT_SUCCESS) ;

}
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 58 / 60

Zombie — example (cont.)

Using the previous example, ps, and shell job control we can
observe zombie processes:
$./zombie &
[1] 4867
$ bye from child 0: 4868
bye from child 2: 4870
bye from child 3: 4871
bye from child 4: 4872
bye from child 1: 4869

$ ps
PID TTY TIME CMD

2597 pts/3 00:00:00 bash
4867 pts/3 00:00:00 zombie
4868 pts/3 00:00:00 zombie <defunct>
4869 pts/3 00:00:00 zombie <defunct>
4870 pts/3 00:00:00 zombie <defunct>
4871 pts/3 00:00:00 zombie <defunct>
4872 pts/3 00:00:00 zombie <defunct>
4876 pts/3 00:00:00 ps

$
bye from parent

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 59 / 60

Trivia

#include <unistd .h>

int main () {
while (1)

fork () ;
}

What happens when you run the above program?
Try it out! (or not)

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2012–2013 60 / 60

	Process startup and termination
	Memory layout
	Process control

