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Interprocess communication

In the UNIX world, the term InterProcess Communication (IPC) is
used—in its broadest meaning—to refer to various forms of
information exchange among UNIX processes.

UNIX has traditionally made easy for process to communicate,
offering many ways to do so and making them cheap.

On the importance of making IPC easy

the easier it is for processes to communicate
→ the more programmers will be willing to use IPC

encouraging IPC → encouraging breaking down large
applications into separate, well-defined programs

one of the pillars of component reuse on UNIX

UNIX philosophy, abridged:

Write programs that do one thing and do it well.
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IPC facilities

Many forms of IPC are available on UNIX systems.

All forms of IPC are either kernel-mediated (i.e. the kernel is involved
in each usage of the facility) or require kernel intervention to be
setup / torn-down, before / after use.

We can classify IPC facilities into the following categories:

communication facilities concerned with exchanging data among
processes

synchronization facilities concerned with synchronizing actions
among processes

signals facilities concerned with notifying processes of events
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A taxonomy of UNIX IPC facilities
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TLPI, Figure 43-1
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Why so many IPC facilities?

pedigree: different UNIX variants have grown different facilities,
most of which ended up being merged throughout POSIX
evolution

new IPC facilities have been developed to overcome limitations
of old IPC (e.g. POSIX IPC vs System V IPC)

real differences in functionalities and/or communication
paradigms
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Signal facilities

We’ve already discussed UNIX signal handling at length.

Signals show that the categorization is indicative. While standard
signals only permit event notification, real-time signals allow to
exchange data via signal payloads.
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Communication facilities
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Communication facilities — data transfer

Data transfer facilities allow communication between processes via
explicit reads and writes on IPC objects

communication is mediated by the kernel
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Communication facilities — data transfer (cont.)

byte stream facilities offer a file-like abstraction for IPC
(i.e. undelimited streams of bytes)

message facilities offer the abstraction of sending/receiving
delimited messages

ñ reads/writes happen at the message granularity

pseudoterminal facilities permit to interact with processes that
expect to be connected to a terminal, in the absence of it

ñ e.g. remote logins
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Communication facilities — shared memory

Shared memory IPC facilities allow different processes to map parts
of their address spaces to the same memory frames.

After initial setup (by the kernel), communication is implicit. To
“send” data to another process, we simply write data to shared
memory (e.g. by assigning a value to a global variable located in
shared memory); the other process will read from there.

Also: reading does not “consume” data, as it happens with data
transfer.

pro: no kernel mediation after initial setup → shared memory
can be much faster than mediated IPC facilities

cons: synchronization is needed to avoid memory corruption
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Communication facilities — shared memory (cont.)
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Synchronization facilities

Synchronization is needed every time two (or more) processes want
to coordinate their actions. Typical use cases come from race
condition avoidance when dealing with shared resources

such as, but not only as, shared memory. . .
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Synchronization facilities (cont.)

Semaphores are kernel-maintained, global, non-negative integers. A
process can request to decrement a semaphore (usually to reserve
exclusive usage of a resource) or to increment it (to release exclusive
usage, allowing others to go). Decrementing a 0-value semaphore
blocks the caller; unblock is atomic with (future) decrement.

File locks are used to coordinate access to (regions of) a file. At any
given time, multiple processes can hold read locks on (regions of) a
file; but only one process can hold a write lock, which also excludes
other read locks.

Mutexes and condition variables are higher-level synchronization
facilities that can be used for fine-grained and event-driven
coordination, which are normally used between threads.
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IPC comparison — identifiers

How can you choose the IPC facility that best suite your needs?

A first discriminant are the identifiers used to rendez-vous on a IPC
facility and the handles used to reference them once “opened”.

Facility type Name used to
identify object

Handle used to refer to
object in programs

Pipe no name file descriptor
FIFO pathname file descriptor

UNIX domain socket pathname file descriptor
Internet domain socket IP address + port number file descriptor

System V message queue System V IPC key System V IPC identifier
System V semaphore System V IPC key System V IPC identifier
System V shared memory System V IPC key System V IPC identifier

POSIX message queue POSIX IPC pathname mqd_t (message queue descriptor)
POSIX named semaphore POSIX IPC pathname sem_t * (semaphore pointer)
POSIX unnamed semaphore no name sem_t * (semaphore pointer)
POSIX shared memory POSIX IPC pathname file descriptor

Anonymous mapping no name none
Memory-mapped file pathname file descriptor

flock() lock pathname file descriptor
fcntl() lock pathname file descriptor

TLPI, Table 43-1
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IPC comparison — functionalities

Data transfer vs shared memory

data transfer
ñ read/write + “consumable” messages (by the reader)
ñ synchronization is implicit

shared memory
ñ allow sharing with many processes
ñ “communication” is implicit
ñ synchronization is, de facto, mandatory
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IPC comparison — functionalities (cont.)

Which data transfer facility?

byte stream vs message passing
ñ the model might be forced by your application protocol
ñ byte stream can be used to do message passing

pipes, FIFOs, and sockets use file descriptors as handles
ñ many advanced I/O functionalities expect such handles

(e.g. select, poll)

specific needs:
ñ numeric priorities → message queues
ñ message notification → POSIX(!) message queues
ñ networking → UNIX domain sockets easily scale to internet

socket
ñ broadcast/multicast to multiple recipients → UDP sockets
ñ file descriptor passing → UNIX domain sockets
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IPC comparison — portability and System V IPC

Modern UNIX implementations support most of the UNIX IPC
facilities we’ve discussed.

As an exception, POSIX IPC (message queues, sempahores, shared
memory) are still catching up and are less widely available than their
System V counterparts.

e.g. POSIX IPC landed on Linux only from 2.6.x onward

System V IPC design issues

System V IPC are connection-less → there is no way to know
when to garbage collect them (for the kernel), or when it’s safe
to delete them (for an application)

Weird namespace, inconsistent with the traditional “everything
is a file” UNIX model

If you are looking at SysV-like IPC, either choose POSIX IPC or go for
something completely different.

Stefano Zacchiroli (Paris Diderot) IPC & Pipes 2012–2013 15 / 49



IPC comparison — accessibility & persistence

The two last axes for IPC comparison are:

accessibility i.e. which permission mechanism is used to control
access to the IPC facility. Common cases are control by
filesystem permission masks, virtual memory access
control, free access, and access limited to related
processes (for IPC facilities that are meant to be
inherited upon fork).

persistence whether an IPC facility and its content persists as long
as the (last) process who is using it, the kernel, or the
filesystem
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IPC comparison — accessibility & persistence (cont.)

Facility type Accessibility Persistence

Pipe only by related processes process
FIFO permissions mask process

UNIX domain socket permissions mask process
Internet domain socket by any process process

System V message queue permissions mask kernel
System V semaphore permissions mask kernel
System V shared memory permissions mask kernel

POSIX message queue permissions mask kernel
POSIX named semaphore permissions mask kernel
POSIX unnamed semaphore permissions of underlying memory depends
POSIX shared memory permissions mask kernel

Anonymous mapping only by related processes process
Memory-mapped file permissionsmask filesystem

flock() file lock open() of file process
fcntl() file lock open() of file process

TLPI, Table 43-2
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A brief history of UNIX pipes

Pipes are the oldest form of IPC on UNIX systems—pipes are one of
the early defining features of UNIX-es, together with hierarchical file
system and widespread regular expression usage.

late 50’s McIlroy’s seminal work on macros, as powerful
constructs to compose commands

M. Douglas McIlroy
Macro Instruction Extensions of Compiler Languages
Communications of the ACM (3)4: 214–220. 1960.

1969 development of the first UNIX at Bell Labs

1973 first implementation of shell pipes in Bell Labs Unix by
Ken Thompson
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UNIX pipes in the shell — examples

UNIX pipes (i.e. the IPC mechanism) are the main building block of
shell pipes (i.e. the “|” meta-character).

ps auxw | more
ñ no need to implement a pager in every program with long output
ñ write once, use many (consistently)
ñ can fix pager bugs in a central place

ps auxw | less
ñ enable users to choose a different pager
ñ “less is more”

tr -c ’[:alnum:]’ ’[\n*]’ | sort -iu | grep -v ’^[0-9]*$’
ñ enable to express complex tasks concisely, in terms of simple

tools

a pipe-based relational database (!)

Evan Schaffer, Mike Wolf.
The UNIX Shell As a Fourth Generation Language
http://www.rdb.com/lib/4gl.pdf
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Pipes — IPC characteristics

Let’s review UNIX pipes against the general IPC characteristics we
put forward:

pipes are a data transfer, byte stream IPC facility that connect
processes; the byte stream written to one end of the pipe can be
read from the other

no identifier is used to rendez-vous on pipes, they are
requested directly to the kernel

once created, pipes are referenced by file descriptor handles

pipes are accessible only by related processes

pipes are process-persistent; they disappear when related
processes terminate

pipes are highly portable: they are available on all known
UNIX-es
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pipe

The creation of a pipe can be requested to the kernel using the pipe
system call:

#include <unistd.h>

int pipe(int filedes[2]);
Returns: 0 if OK, 1 on error

filedes is an array of file descriptors; it should be allocated by
the caller and will be filled-in by the kernel before returning

filedes[0] is open for reading (read-end),
filedes[1] is open for writing (write-end)

ñ mnemonic: think of usual STDIN/STDOUT values

the output of filedes[1] is the input of filedes[0]
ñ pipes are half-duplex
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Pipes — intuition

APUE, Figure 15.2

on the left, the user process point of view
on the right, the implementation point of view

ñ every read from a pipe copy from kernel space to user space
ñ every write to a pipe copy from user space to kernel space
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Pipes — usage

As they are, pipes seem pretty useless: they only allow a process to
write data to a file descriptor and read it back from another.

Pipes become most useful by exploiting the fact that file descriptors
are inherited through fork.

Half-duplex pipe recipe
1 pipe(fds)

2 fork()

3 parent: close(fds[0])
4 child: close(fds[1])
5 parent can transfer data to child with write(fds[1], ...)

child can receive data from parent with read(fds[0], ...)

(exchange 0 and 1 for child to parent data transfer)
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Pipes — usage (cont.)

after pipe(). . .
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Pipes — usage (cont.)

after fork(). . .

APUE, Figure 15.3
Stefano Zacchiroli (Paris Diderot) IPC & Pipes 2012–2013 24 / 49



Pipes — usage (cont.)

after close()-ing unused ends. . .

APUE, Figure 15.4
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Pipes — example

#include <unistd .h>
#include " helpers .h"

#define MAXLINE 1024
int main ( void ) {

int n, fd [ 2 ] ;
pid_t pid ;
char l ine [MAXLINE ] ;

i f ( pipe ( fd ) < 0)
err_sys ( " pipe error " ) ;

i f ( ( pid = fork ( ) ) < 0) {
err_sys ( " fork error " ) ;

} else i f ( pid > 0) { /* parent */
close ( fd [ 0 ] ) ;
write ( fd [1 ] , " Hello , World !\n" , 14);

} else { /* chi ld */
close ( fd [ 1 ] ) ;
n = read ( fd [0 ] , l ine , MAXLINE ) ;
write (STDOUT_FILENO, l ine , n ) ;

}
exit ( EXIT_SUCCESS ) ;

}
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Pipes — example

Demo
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Pipes — close behavior

The unused ends of a pipe are usually closed before starting to use
a pipe. There are also legitimate reasons for closing the used ends,
e.g. when one process wants to shutdown the communication.

Performing I/O on a pipe with closed end behaves as follows:

read from a pipe whose write end is closed returns 0
ñ intuition: indicate there is nothing else to read; 0 is the standard

way of read to signal end-of-file

write to a pipe whose read end is closed returns -1, with errno
set to EPIPE; additionally, SIGPIPE is sent to the writing
process

ñ this is a new, pipe-specific condition
ñ reminder: SIGPIPE default action is terminate
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Filters

Pipes, as seen thus far, can be used to establish ad-hoc
communication channels (half- or full-duplex) between processes.
Pipes become even more relevant in conjunction with UNIX filters.

Definition (UNIX filter)

In the UNIX jargon, a filter is a program that gets (most of) its input
from standard input and writes (most of) its output to standard
output.

Example

Many of the standard POSIX.1 command-line utilities are filters: awk,
cat, cut, grep, head, sed, sort, strings, tail, tac, tr, uniq, wc, . . .
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Pipes and filters

Consider a program of yours that wants to paginate its output.
Ideally, you want to use the system pager (e.g. more) instead of
writing your own.

How can you do that (with pipe)?
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Pipes and filters

Consider a program of yours that wants to paginate its output.
Ideally, you want to use the system pager (e.g. more) instead of
writing your own.

1 pipe
2 fork

ñ idea: parent will produce the content to be paginated,
ñ child will execute external pager

3 child: duplicate the read end of the pipe on STDIN
ñ when reading from STDIN, child will in fact read from the pipe

4 child: exec the pager
ñ as the pager is a filter, it will read from STDIN by default

5 parent: write output to the write end of the pipe

Note: this is possible thanks to the fork/exec separation that
allows to manipulate file descriptors in between.
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Pipes and filters — example

#include <stdio .h>
#include <str ing .h>
#include <sys/wait .h>
#include <unistd .h>
#include " helpers .h"

#define DEF_PAGER " /bin/more"
#define MAXLINE 1024
int main ( int argc , char *argv [ ] ) {

int n, fd [ 2 ] ;
pid_t pid ;
char *pager , *argv0 ;
char l ine [MAXLINE ] ;
FILE *fp ;

i f ( argc != 2)
err_quit ( "Usage : pager−pipe FILE " ) ;

i f ( ( fp = fopen ( argv [1 ] , " r " ) ) == NULL)
err_sys ( " fopen error " ) ;

i f ( pipe ( fd ) < 0)
err_sys ( " pipe error " ) ;

i f ( ( pid = fork ( ) ) < 0)
err_sys ( " fork error " ) ;
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Pipes and filters — example (cont.)

else i f ( pid > 0) { /* parent */
close ( fd [ 0 ] ) ; /* close read end */
/* parent copies from argv [1 ] to pipe */
while ( fgets ( l ine , MAXLINE, fp ) != NULL) {

n = str len ( l ine ) ;
i f ( write ( fd [1 ] , l ine , n ) != n)

err_sys ( " write error " ) ;
}
i f ( ferror ( fp ) )

err_sys ( " fgets error " ) ;
close ( fd [ 1 ] ) ; /* close write end of pipe for reader */
i f ( waitpid ( pid , NULL, 0) < 0) err_sys ( " waitpid error " ) ;

}
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Pipes and filters — example (cont.)

else { /* chi ld */
close ( fd [ 1 ] ) ; /* close write end */
i f ( fd [0 ] != STDIN_FILENO ) {

i f (dup2( fd [0 ] , STDIN_FILENO ) != STDIN_FILENO )
err_sys ( "dup2 error " ) ;

close ( fd [ 0 ] ) ; /* no longer needed */
}
/* get arguments for execl ( ) */
i f ( ( pager = getenv ( "PAGER" ) ) == NULL)

pager = DEF_PAGER;
i f ( ( argv0 = strrchr ( pager , ’ / ’ ) ) != NULL)

argv0++; /* step past rightmost slash */
else

argv0 = pager ; /* no slash in pager */

i f ( execl ( pager , argv0 , ( char * )0 ) < 0)
err_sys ( " execl error " ) ;

}
exit ( EXIT_SUCCESS ) ;

}
/* pager−pipe . c */
/* based on APUE, Figure 15.6 */
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Pipes and filters — example (cont.)

Demo

Notes:

$PAGER is a UNIX convention to allow users to set their preferred
pager, system-wide; we are good citizens and try to respect it

dup2 does nothing if new and old file descriptors are the same.
We are careful to avoid shutting down the pipe

ñ Here it should never be the case: if the shell didn’t setup STDIN,
fd 0 would have been taken by fopen.
We do it nonetheless as a defensive programming measure.
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Implementing shell redirections

How can we implement cmd > file shell redirection?

No pipes needed. File descriptor inheritance through fork and
fork/exec separations are enough. Recipe:

1 fork

2 child: open(file, ...) = fd

3 child: duplicate fd onto STDOUT
4 child: exec cmd

How about cmd < file?
1 fork

2 child: open(file, ...) = fd

3 child: duplicate fd onto STDIN
4 child: exec cmd
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Implementing shell pipelines

How can we implement the cmd1 | cmd2 pipeline construct?

With a generalization of the mechanism we have seen:
1 pipe

2 fork, fork (once per command)

3 1st child: duplicate write end of the pipe to STDOUT
4 2nd child: duplicate read end of the pipe to STDIN
5 1st child: exec cmd1

6 2nd child: exec cmd2

Exercise (minimal shell)

Implement a minimal shell with support for n-ary pipes, file
redirections, and command conditionals (e.g. ||, &&). The shell
should properly handle CTRL-C, CTRL-\ and signals.
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Full-duplex communication with pipes

Once more: pipes are half-duplex

one pipe can be used to transfer data in one direction only,
either from parent to child or from child to parent

full-duplex pipes do exist, but are less portable and seldomly
used (they are an optional feature of SUS)

To do portable full-duplex communication with pipes (i.e. transfer
data in both directions), 2 pipe calls before fork are needed:

Full-duplex pipe recipe
1 pipe(p2c); pipe(c2p)

2 fork()

3 parent: close(p2c[0]); close(c2p[1])

4 child: close(p2c[1]); close(c2p[0])

5 parent → child: write(p2c[1], ...)
child → parent: write(c2p[1], ...)
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Pipe-based synchronization

Can we use pipes as IPC synchronization primitives?
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Pipe-based synchronization

Pipes are data transfer IPC primitives. Nonetheless, we can exploit
the fact that read is blocking by default to perform pipe-based
synchronization between related processes.
To that end, we give a pipe-based implementation of the TELL/WAIT
synchronization primitives.
Reminder:
int main ( void ) {

pid_t pid ;

TELL_WAIT();

i f ( ( pid = fork ( ) ) < 0) err_sys ( " fork error " ) ;
else i f ( pid == 0) {

WAIT_PARENT(); /* parent f i r s t */
charatatime ( " output from child \n" ) ;

} else {
charatatime ( " output from parent\n" ) ;
TELL_CHILD(pid);

}
exit ( EXIT_SUCCESS ) ;

}
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Pipe-based synchronization — idea

before fork, upon initialization, we set up two pipes for
full-duplex communication between parent and child

to wait for the child (resp. parent), we read from the pipe the
control character "c" (resp. "p")

to signal the child (parent), we write the control character "p"
("c") to the pipe

Note: what we actually write is not relevant, the fact we do is.

based on APUE, Figure 15.8
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Pipe-based synchronization — implementation

static int p2c [2 ] , c2p [ 2 ] ;

void TELL_WAIT ( void ) { /* i n i t i a l i za t i on */
i f ( pipe (p2c ) < 0 | | pipe ( c2p ) < 0)

err_sys ( " pipe error " ) ;
}

void TELL_PARENT( pid_t pid ) {
i f ( write ( c2p [1 ] , " c " , 1) != 1)

err_sys ( " write error " ) ;
}

void WAIT_PARENT( void ) {
char c ;
i f ( read (p2c [0 ] , &c , 1) != 1)

err_sys ( " read error " ) ;
i f ( c != ’p ’ )

err_quit ( "WAIT_PARENT: incorrect data " ) ;
}
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Pipe-based synchronization — implementation (cont.)

void TELL_CHILD ( pid_t pid ) {
i f ( write (p2c [1 ] , "p" , 1) != 1)

err_sys ( " write error " ) ;
}

void WAIT_CHILD( void ) {
char c ;

i f ( read ( c2p [0 ] , &c , 1) != 1)
err_sys ( " read error " ) ;

i f ( c != ’ c ’ )
err_quit ( "WAIT_CHILD : incorrect data " ) ;

}
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popen

The following use cases of pipes are recurrent patterns:
1 pipe+fork+dup2+exec to read from stdout of some command

2 pipe+fork+dup2+exec to write to stdin of some command

To reduce boilerplate, the standard C library offers popen:

#include <stdio.h>

FILE *popen(const char *cmdstring, const char *type);
Returns: file pointer if OK, NULL on error

cmdstring is as per system, i.e. a shell command that will be
interpreted by /bin/sh -c

type discriminates among the two use cases: it’s ’r’ for (1)
and ’w’ for (2)

the returned FILE handle is open for reading or writing,
depending on the use case
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popen — process arrangements

fp = popen(cmdstring, "r")

APUE, Figure 15.9

fp = popen(cmdstring, "w")

APUE, Figure 15.10
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pclose

To cleanup after using popen, more behind the scene work is
needed than simply closing the FILE pointer—in particular, child
process should be wait-ed for to avoid leaving zombies around.

The pclose syscall takes care of all the gory details and returns the
termination status of the child process to the caller.

#include <stdio.h>

int pclose(FILE *fp);
Returns: termination status of command if OK, 1 on error
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popen — example

#include <sys/wait .h>
#include " helpers .h"

#define PAGER "${PAGER:−more} " /* environment variable , or default */
#define MAXLINE 1024
int main ( int argc , char *argv [ ] ) {

char l ine [MAXLINE ] ;
FILE * fpin , * fpout ;

i f ( argc != 2) err_quit ( "usage : pager−popen FILE " ) ;
i f ( ( fpin = fopen ( argv [1 ] , " r " ) ) == NULL) err_sys ( " fopen error " ) ;
i f ( ( fpout = popen(PAGER, "w" ) ) == NULL) err_sys ( "popen error " ) ;

/* copy argv [1] to pager */
while ( fgets ( l ine , MAXLINE, fpin ) != NULL) {

i f ( fputs ( l ine , fpout ) == EOF)
err_sys ( " fputs error to pipe " ) ;

}
i f ( ferror ( fpin ) )

err_sys ( " fgets error " ) ;
i f ( pclose ( fpout ) == −1)

err_sys ( " pclose error " ) ;
exit ( EXIT_SUCCESS ) ;

} /* end of pager−popen . c , based on APUE, Figure 15.11 */
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popen — example (cont.)

Demo

Notes:

code is much shorter now!

we use shell special characters on the popen line

Stefano Zacchiroli (Paris Diderot) IPC & Pipes 2012–2013 41 / 49



popen — implementation

Exercise

Provide an implementation of popen/pclose using the system calls
we have seen thus far.

Watch out for the following details:

keep track of all children that are currently executing popen
“jobs” and maintain a mapping from FILE pointers to them

ñ it’s the only way to be able to waitpid for them when client
code will invoke pclose

ensure that signal handling in the popen caller does not
interfere with popen jobs
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popen and filters

We can use popen-like arrangements to interpose external processes
between an application and its standard input/output.

Example

Consider an application that prompts the user and read line-based
commands (AKA read-eval-print loop). We would like to delegate to a
filter the task to normalize case to lowercase.

We can do so with the following process arrangement:

APUE, Figure 15.13

popen("r") affects STDOUT
of the child process, but
leaves untouched its STDIN

STDIN is shared with the
parent (as per fork), but the
parent will (usually) only read
it through popen’s FILE
pointer

Stefano Zacchiroli (Paris Diderot) IPC & Pipes 2012–2013 43 / 49



popen and filters

We can use popen-like arrangements to interpose external processes
between an application and its standard input/output.

Example

Consider an application that prompts the user and read line-based
commands (AKA read-eval-print loop). We would like to delegate to a
filter the task to normalize case to lowercase.

We can do so with the following process arrangement:

APUE, Figure 15.13

popen("r") affects STDOUT
of the child process, but
leaves untouched its STDIN

STDIN is shared with the
parent (as per fork), but the
parent will (usually) only read
it through popen’s FILE
pointer

Stefano Zacchiroli (Paris Diderot) IPC & Pipes 2012–2013 43 / 49



popen and filters — example

#include <ctype .h>
#include <unistd .h>
#include " helpers .h"

int main ( void ) {
int c ;

while ( ( c = getchar ( ) ) != EOF) {
i f ( isupper ( c ) )

c = tolower ( c ) ;
i f ( putchar ( c ) == EOF)

err_sys ( " output error " ) ;
i f ( c == ’ \n ’ )

f f lush ( stdout ) ;
}
exit ( EXIT_SUCCESS ) ;

} /* uc2lc . c , based on APUE Figure 15.14 */
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popen and filters — example (cont.)
#include <sys/wait .h>
#include <unistd .h>
#include " helpers .h"

#define MAXLINE 1024

int main ( void ) {
char l ine [MAXLINE ] ;
FILE * fpin ;
i f ( ( fpin = popen( " . / uc2lc " , " r " ) ) == NULL)

err_sys ( "popen error " ) ;
for ( ; ; ) {

fputs ( "prompt> " , stdout ) ;
f f lush ( stdout ) ;
i f ( fgets ( l ine , MAXLINE, fpin ) == NULL) /* read from pipe */

break ;
i f ( fputs ( l ine , stdout ) == EOF)

err_sys ( " fputs error to pipe " ) ;
}
i f ( pclose ( fpin ) == −1)

err_sys ( " pclose error " ) ;
putchar ( ’ \n ’ ) ;
exit ( EXIT_SUCCESS ) ;

} /* popen−f i l t e r . c , based on APUE, Figure 15.15 */
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popen and filters — example (cont.)

Demo

Notes:

we need fflush after prompt, because STDOUT is line-buffered
by default and the prompt does not end with a newline
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Coprocesses

Filters are usually connected linearly to form a pipeline.

Definition

A filter is used as a coprocess, when the process that drives the filer
both (i) generates its input and (ii) read its output.

Coprocess architectures offer modularity in terms of separate
programs that communicate as filters.
Process arrangement with coprocesses is the usual full-duplex pipe
arrangement. The main difference is that the child process is a filter,
which ignores that is being used as a coprocess.

APUE, Figure 15.16
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Coprocesses — example

#include <str ing .h>
#include <unistd .h>
#include " helpers .h"

#define MAXLINE 1024
int main ( void ) {

int n, int1 , int2 ;
char l ine [MAXLINE ] ;

while ( ( n = read ( STDIN_FILENO , l ine , MAXLINE ) ) > 0) {
l ine [n ] = 0; /* nul l terminate */
i f ( sscanf ( l ine , "%d%d" , &int1 , &int2 ) == 2) {

spr int f ( l ine , "%d\n" , int1 + int2 ) ;
n = str len ( l ine ) ;
i f ( write (STDOUT_FILENO, l ine , n ) != n)

err_sys ( " write error " ) ;
} else {

i f ( write (STDOUT_FILENO, " inva l id args\n" , 13) != 13)
err_sys ( " write error " ) ;

}
}
exit ( EXIT_SUCCESS ) ;

} /* add2. c , based on APUE Figure 15.17 */
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Coprocesses — example (cont.)

#include <signal .h>
#include <stdio .h>
#include <str ing .h>
#include <unistd .h>
#include " helpers .h"

static void sig_pipe ( int signo ) {
pr in t f ( " SIGPIPE caught\n" ) ;
exit ( EXIT_FAILURE ) ;

}

#define MAXLINE 1024
int main ( void ) {

int n, fd1 [2 ] , fd2 [ 2 ] ;
pid_t pid ;
char l ine [MAXLINE ] ;

i f ( signal ( SIGPIPE , sig_pipe ) == SIG_ERR )
err_sys ( " signal error " ) ;

i f ( pipe ( fd1 ) < 0 | | pipe ( fd2 ) < 0)
err_sys ( " pipe error " ) ;

i f ( ( pid = fork ( ) ) < 0)
err_sys ( " fork error " ) ;
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Coprocesses — example (cont.)

else i f ( pid > 0) { /* parent */
close ( fd1 [ 0 ] ) ;
close ( fd2 [ 1 ] ) ;
while ( fgets ( l ine , MAXLINE, stdin ) != NULL) {

n = str len ( l ine ) ;
i f ( write ( fd1 [1 ] , l ine , n ) != n)

err_sys ( " write error to pipe " ) ;
i f ( ( n = read ( fd2 [0 ] , l ine , MAXLINE ) ) < 0)

err_sys ( " read error from pipe " ) ;
i f (n == 0) {

fp r in t f ( stderr , " chi ld closed pipe " ) ;
break ;

}
l ine [n ] = 0; /* nul l terminate */
i f ( fputs ( l ine , stdout ) == EOF)

err_sys ( " fputs error " ) ;
}
i f ( ferror ( stdin ) ) err_sys ( " fgets error on stdin " ) ;
exit ( EXIT_SUCCESS ) ;

}
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Coprocesses — example (cont.)

else { /* chi ld */
close ( fd1 [ 1 ] ) ;
close ( fd2 [ 0 ] ) ;
i f ( fd1 [0] != STDIN_FILENO ) {

i f (dup2( fd1 [0 ] , STDIN_FILENO ) != STDIN_FILENO )
err_sys ( "dup2 error to stdin " ) ;

close ( fd1 [ 0 ] ) ;
}
i f ( fd2 [1] != STDOUT_FILENO) {

i f (dup2( fd2 [1 ] , STDOUT_FILENO) != STDOUT_FILENO)
err_sys ( "dup2 error to stdout " ) ;

close ( fd2 [ 1 ] ) ;
}
i f ( execl ( " . /add2" , "add2" , ( char * )0 ) < 0)

err_sys ( " execl error " ) ;
}
exit ( EXIT_SUCCESS ) ;

} /* coprocess . c */
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Coprocesses — example (cont.)

Demo

Notes:

the coprocess is resilient to failures, e.g. it does not quit upon
(recoverable) error

if we kill add2, parent process won’t die immediately but will
get a SIGPIPE at the next write

ñ he can recover from that spawning the coprocess again!
ñ in some sense, we can replace (e.g. for upgrade reasons)

components of our “application” at runtime
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Buffering issues

What would happen if we rewrite the add2 coprocess to use
standard I/O instead of low-level syscall I/O as follows?
#include <stdio .h>
#include <unistd .h>
#include " helpers .h"

#define MAXLINE 1024
int main ( void ) {

int int1 , int2 ;
char l ine [MAXLINE ] ;
while ( fgets ( l ine , MAXLINE, stdin ) != NULL) {

i f ( sscanf ( l ine , "%d%d" , &int1 , &int2 ) == 2) {
i f ( pr int f ( "%d\n" , int1 + int2 ) == EOF)

err_sys ( " pr int f error " ) ;
} else {

i f ( pr int f ( " inva l id args\n" ) == EOF)
err_sys ( " pr int f error " ) ;

}
}
exit ( EXIT_SUCCESS ) ;

} /* add2−stdio−bad. c , based on APUE Figure 15.19 */

Why?
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Buffering issues (cont.)

Demo

Notes:

our coprocess-based architecture no longer works

the (usual) culprit is standard I/O buffering

standard I/O is line-buffered by default when connected to a
terminal, but since the coprocess is connected to a pipe it
becomes fully buffered

to fix the problem, we have to set line buffering explicitly
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Buffering issues — (cont.)
#include <stdio .h>
#include <unistd .h>
#include " helpers .h"

#define MAXLINE 1024
int main ( void ) {

int int1 , int2 ;
char l ine [MAXLINE ] ;

if (setvbuf(stdin, NULL, _IOLBF, 0) != 0
|| setvbuf(stdout, NULL, _IOLBF, 0) != 0)

err_sys("setvbuf error");

while ( fgets ( l ine , MAXLINE, stdin ) != NULL) {
i f ( sscanf ( l ine , "%d%d" , &int1 , &int2 ) == 2) {

i f ( pr int f ( "%d\n" , int1 + int2 ) == EOF)
err_sys ( " pr int f error " ) ;

} else {
i f ( pr int f ( " inva l id args\n" ) == EOF)

err_sys ( " pr int f error " ) ;
}

}
exit ( EXIT_SUCCESS ) ;

} /* add2−stdio−good . c */
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Preview: on the need of pseudoterminals

But we cheated!

One of the nice property of filters is that they speak a simple “protocol”
(stdin/stout), as such they can be used as coprocess without
modifications. On the other hand, to use the standard I/O implementation
of the add2 filter as a coprocess we had to patch it (the filter).
We can’t patch all existing filters. . . .

Example

We’d like to use the following awk script as coprocess

#!/ usr/bin/awk −f
{ pr int $1 + $2 }

unfortunately, it won’t work as a coprocess due to awk (legitimate!) buffer
behavior. . .

The solution is to make the coprocess believe that it is connected to a
terminal, so that standard I/O becomes line buffered again.
Pseudoterminals will allow us to do precisely that. . .
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