
Programmation Systèmes
Cours 2 — Process Management

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire PPS, Université Paris Diderot

2013–2014

URL http://upsilon.cc/zack/teaching/1314/progsyst/
Copyright © 2011–2013 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-sa/3.0/

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 1 / 119

http://upsilon.cc/zack/teaching/1314/progsyst/
http://creativecommons.org/licenses/by-sa/3.0/

Outline

1 Process startup and termination

2 Memory layout

3 Process control

4 Fork inheritance

5 Program execution

6 Simple UNIX architectures

7 Summary

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 2 / 119

Programs and processes — redux

Definition (programs and processes — 2nd approx.)

A program is an executable file residing on the filesystem.

A process is an abstract entity known by the kernel, to which
system resources are allocated in order to execute a program.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 3 / 119

Programs — details

A program contains all the information
needed to create a process at runtime:

binary format
ñ nowadays: ELF; once upon a time:

a.out, COFF

machine instructions

entry-point: address of the first
instruction

data

symbol-/relocation- tables (for
debugging, dynamic linking, etc.)

shared library information

...
400730: push %rbx
400731: callq 400700
400736: callq 400720
40073b: mov %eax,%ebx
40073d: xor %eax,%eax
40073f: callq 4006f0
400744: mov %ebx,%eax
400746: pop %rbx
400747: retq
400748: xor %ebp,%ebp
40074a: mov %rdx,%r9
40074d: pop %rsi
40074e: mov %rsp,%rdx
400751: and $0xfffffff0,%rsp
400755: push %rax
...

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 4 / 119

Processes — seen by the kernel

A process is an abstract entity known by the kernel, to which
system resources are allocated in order to execute a program.

From the point of view of the kernel, a process consists of:

a portion of user-space memory
ñ program code
ñ variables accessed by the code

kernel data structures to maintain state about the process, e.g.:
ñ table of open file descriptors
ñ virtual memory table
ñ signal accounting and masks
ñ process limits
ñ current working directory
ñ . . .

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 5 / 119

Process IDs

How can the kernel index process-related data structures?

Definition (process ID)

Each process has a process ID (PID): a positive integer that uniquely
identify processes on the system.

typical usages:

internal reference by the kernel (e.g. indexing process-related
data structures)

external reference by other processes or the admin (e.g. kill)

embedding in derived unique names, e.g. process-unique
filenames

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 6 / 119

Process IDs — demo

1 (a view on) internal process reference: /proc

2 external reference: ps(1), kill(1)

3 unique filenames, e.g.

$ ls /tmp | grep aptitude
aptitude−zack.20871:pUkqOd
$

Demo

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 7 / 119

getpid

Each process can retrieve its own PID at runtime using the syscall:

#include <unistd.h>

pid_t getpid(void);
Returns: always return PID of calling process

Accessing PID values:

pid_t is an abstract type

according to POSIX, process IDs shall be signed integer types
ñ but they wrap to 0, according to PID definition
ñ on Linux, see /proc/sys/kernel/pid_max

we can use pid_t values as signed integers

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 8 / 119

getpid — demo

#include <stdio .h>
#include <stdl ib .h>
#include <unistd .h>

int main (int argc , char **argv) {
pr in t f (" hello , world from process %d\n" , getpid ()) ;
exit (EXIT_SUCCESS) ;

}

$ gcc -Wall -o hello-pid hello-pid.c
$./hello-pid
hello, world from process 21195
$./hello-pid
hello, world from process 21196
$./hello-pid
hello, world from process 21199

Note: we print PIDs using %d conversion specifier

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 9 / 119

main

A C program starts with the execution of its main function:

int main (int argc , char *argv []) ;

argc: number of command line arguments

argv: (NULL-terminated) array of pointers to the actual
arguments

It is the kernel who initiates program execution.1

Before main execution, a startup routine—inserted by the link editor
at compile-time and specified in the binary program—is executed.
The startup routine fills in:

argc/argv (copying from exec arguments in kernel space)

environment

1usually in response to an exec* syscall
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 10 / 119

argv — example

#include <stdio .h>
#include <stdl ib .h>
int main (int argc , char *argv []) {

int i ;
for (i =0; i <argc ; i ++)

pr int f (" argv [%d] = %s\n" , i , argv [i]) ;
exit (EXIT_SUCCESS) ;

}

#include <stdio .h>
#include <stdl ib .h>
int main (int argc , char *argv []) {

int i ;
for (i =0; argv [i] != NULL; i ++)

// POSIX.1 and ISO guarantee argv [argc] == NULL
pr int f (" argv [%d] = %s\n" , i , argv [i]) ;

exit (EXIT_SUCCESS) ;
}

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 11 / 119

Process termination

There are different ways for a program to terminate.
Normal termination

1 return from main (“falls off the end”)
2 exit
3 _exit
4 as (1) and (2), but for thread-related purposes

Abnormal termination
5 abort (signal-related)
6 receipt of a signal
7 fulfillment of a thread-cancellation request

Falling off the end implicitly invokes exit.
Intuition: it is as if the startup routine calls main as

exit(main(argc, argv));

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 12 / 119

Normal termination — clean shutdown

#include <stdlib.h>

void exit(int status);
Returns: does not return

Clean shutdown cleans up standard library resources before
terminating the process:

invoke fclose on all open streams

invoke exit handlers

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 13 / 119

Normal termination — abrupt shutdown

#include <unistd.h>

void _exit(int status);
Returns: does not return

(for our purposes, the two are equivalent)

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 14 / 119

Exit status

All exit-like functions expect an integer argument: the exit status.2

The exit status provides a way to communicate to other processes
why the process has (voluntarily) terminated.

UNIX convention
Programs terminating with a 0 exit status have terminated
successfully; programs terminating with a ! = 0 exit status have
failed.
The convention is heavily relied upon by shells.

To avoid magic numbers in your code:

#include <std l ib .h>

exit (EXIT_SUCCESS) ;
// or ex i t (EXIT_FAILURE) ;

2exit status ≠ termination status. The latter accounts for both normal and
abnormal termination; the former only for normal termination
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 15 / 119

Exit status (cont.)

You shall always declare main of type int and explicitly return an
integer value; barring standards evolution uncertainty:

#include <stdio .h>
main () {

pr in t f (" hello , world !\n") ;
}

$ gcc -o fall-off -std=c99 fall-off.c
$./fall-off
hello, world!
$ echo $?
0

$ gcc -o fall-off fall-off.c
$./fall-off
hello, world!
$ echo $?
14

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 16 / 119

Exit handlers

A process can register handlers that will be executed upon clean
shutdown:

#include <stdlib.h>

int atexit(void (*func)(void));
Returns: 0 if OK, nonzero on error

Notes:

handlers will be invoked last-registered-first

ISO C guarantees that the system supports at least a maximum
of 32 handlers

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 17 / 119

Exit handlers — example

#include <stdio .h>
#include <stdl ib .h>
#include " helpers .h"

void my_exit1 (void) { pr int f (" f i r s t exit handler\n") ; }
void my_exit2 (void) { pr int f (" second exit handler\n") ; }

int main (void) {
i f (atexi t (my_exit2) != 0)

err_sys (" can ’ t register my_exit2 ") ;
i f (atexi t (my_exit1) != 0)

err_sys (" can ’ t register my_exit1 ") ;
i f (atexi t (my_exit1) != 0)

err_sys (" can ’ t register my_exit1 ") ;
pr in t f ("main is done\n") ;
return (0) ;

} // APUE, Figure 7.3

$./ atexi t
main is done
f i r s t exit handler
f i r s t exit handler
second exit handler
$
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 18 / 119

Startup and termination — putting it all together

APUE, Figure 7.2

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 19 / 119

Environment list

Each process is also passed, upon startup, an environment list, i.e. a
list of 〈key , value〉 pairs called environment variables.
The environment list can be accessed via the global variable:

extern char **environ ;

APUE, Figure 7.5

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 20 / 119

getenv & putenv

Environment variables can also be accessed via specific functions
from the standard library:

#include <stdlib.h>

char *getenv(const char *name);
Returns: pointer to value if name is found, NULL otherwise

int putenv(char *name);
Returns: 0 if OK, nonzero on error

getenv performs key-based lookup

putenv adds a key/value pair given in "key=value" format,
possibly overwriting previous values

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 21 / 119

The complete getenv family

#include <stdlib.h>

int setenv(const char *name, const char *value, int rewrite);

int unsetenv(const char *name);
Returns: 0 if OK, -1 on error

setenv is similar to putenv, but allows to tune its overwrite
behavior
unsetenv removes existing environment variables

ñ relevant use case: cleaning up the environment before spawning
a new process

only getenv is ISO C and widely supported; support for the
other functions varies

Note: getenv & friends are not expressive enough to browse the
entire environment list; the only way to do that is via environ

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 22 / 119

A typical environment list

#include <stdio .h>
#include <stdl ib .h>

extern char **environ ;

int main () {
int i ;
for (i =0; environ [i] != NULL; i ++)

pr int f ("%s\n" , environ [i]) ;
exit (EXIT_SUCCESS) ;

}
// end of getenv . c

Demo

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 23 / 119

Standard environment variables

UNIX kernels ignore environment variables. Interpretation of the
meaning of environment variables is left to applications.

POSIX.1 and SUS define some standard environment variables and
their meaning. Some of them are:

COLUMNS

HOME

LANG

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MESSAGES

LC_MONETARY

LC_NUMERIC

LC_TIME

LINES

LOGNAME

PATH

PWD

SHELL

TERM

TMPDIR

TZ

See APUE 7.7 and environ(7).

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 24 / 119

Outline

1 Process startup and termination

2 Memory layout

3 Process control

4 Fork inheritance

5 Program execution

6 Simple UNIX architectures

7 Summary

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 25 / 119

Process address space

Each process executes by default in its own address space and
cannot access the address spaces of other processes — barring a
segmentation fault error.

The memory corresponding to a process address space is allocated
to the process by the kernel upon process creation. It can be
extended during execution.

The address space of a program in execution is partitioned into
parts called segments.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 26 / 119

Segments (1/2)

text segment machine instructions that the CPU executes. It is read
from program (usually on disk) upon process creation.
The instruction pointer points within this segment.

stack dynamically growing and shrinking segment made of
stack frames (more on this in a bit).

heap dynamically growing and shrinking segment, for
dynamic memory allocation (see malloc and friends).
The top of the heap is called program break

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 27 / 119

Stack and stack frames

The stack pointer register always points
to the top of the stack.

Each time a function is called a new
frame is allocated; each time a function
returns, one is removed.

Each stack frame contains:

call linkage information: saved
copies of various CPU registers. In
particular: the instruction pointer, to
know where to resume execution of
the previous function in the call
stack

(x86-32 bit Linux)

TLPI, Figure 6-3

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 28 / 119

Stack and stack frames (cont.)

Each stack frame contains (cont.):

automatic variables
ñ function arguments
ñ function return values
ñ function local variables
ñ variables allocated via alloca

Automatic variables disappear shortly
after the function call corresponding to
the containing stack frame returns.

Exercise

Stack frames are per-function-call, not
per-function. Why?

(x86-32 bit Linux)

TLPI, Figure 6-3

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 28 / 119

Segments (2/2)

initialized data segment (AKA “data segment”) global variables
explicitly initialized, e.g.:

int magic = 42; // outside any function

uninitialized data segment (AKA “bss segment”) global variables not
explicitly initialized, e.g.:

char crap [1024]; // outside any function

doesn’t take any space in the on-disk binary
will be initialized by the kernel at 0 / NULL
can be initialized efficiently using copy-on-write

On “static memory”
The imprecise expression “static memory” refers to memory allocated in the data
or bss segments. Such memory is “static” wrt program execution (which is not
the case for stack/heap-allocated memory).

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 29 / 119

Segments (2/2)

initialized data segment (AKA “data segment”) global variables
explicitly initialized, e.g.:

int magic = 42; // outside any function

uninitialized data segment (AKA “bss segment”) global variables not
explicitly initialized, e.g.:

char crap [1024]; // outside any function

doesn’t take any space in the on-disk binary
will be initialized by the kernel at 0 / NULL
can be initialized efficiently using copy-on-write

On “static memory”
The imprecise expression “static memory” refers to memory allocated in the data
or bss segments. Such memory is “static” wrt program execution (which is not
the case for stack/heap-allocated memory).

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 29 / 119

Typical segment arrangement

APUE, Figure 7.6

Exercise
Experimentally
verify that segment
matches this
diagram.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 30 / 119

Typical segment arrangement

APUE, Figure 7.6

Exercise
Experimentally
verify that segment
matches this
diagram.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 30 / 119

Segment arrangement — demo

#include <stdio .h>
#include <stdl ib .h>

int magic = 42;
char crap [1024];

void func (int arg) {
pr in t f (" stack segment near\ t%p\n" , &arg) ;

}
int main (int argc , char **argv) {

char *ptr ;
ptr = malloc (1) ;
func (42) ;
pr in t f ("heap segment near\ t%p\n" , ptr) ;
pr in t f (" bss segment near\ t%p\n" , crap) ;
pr in t f (" text segment near\ t%p\n" , &magic) ;

free (ptr) ;
exit (EXIT_SUCCESS) ;

}

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 31 / 119

Segment arrangement — demo (cont.)

$./segments
stack segment near 0x7ffff53ecccc
heap segment near 0x 1c52010
bss segment near 0x 600b00
text segment near 0x 600ad0
$

(output edited for alignment)

Also, size(1) displays the size of segments stored in program
binaries:

$ size segments
text data bss dec hex filename
1657 596 1056 3309 ced segments

$

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 32 / 119

Virtual memory

Segments are conceptual entities not necessarily corresponding to
the physical memory layout. In particular, segments are about the
layout of virtual memory.

Virtual Memory Management (VMM) is a technique to make efficient
use of physical memory, by exploiting locality of reference that most
programs show:

spatial locality: tendency to reference memory addresses near
recently addressed ones

temporal locality: tendency to reference in the near feature
memory addresses that have been addressed in the recent past

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 33 / 119

Virtual memory management in a nutshell

We partition:

address space of each process in fixed-size units called pages

physical memory in frames of the same size

For each process, we maintain a mapping among the two sets.

At any given time, only some of the pages of a program (the resident
set) need to be present in physical frames. Hence the kernel can:

swap out unused pages to a swap area (usually on disk)

when a page fault—i.e. access to page p 6∈ resident set—occurs
1 suspend process execution
2 swap in the corresponding frame
3 resume process execution

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 34 / 119

Virtual memory on UNIX

The kernel maintains a page table for each process:

TLPI, Figure 6-2

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 35 / 119

Virtual memory on UNIX (cont.)

each entry describes a page of the process virtual address space

each entry either points to a physical frame, or indicates that
the page has been swapped out

usually, many pages are unused and don’t even have page table
entries

ñ e.g.: the huge gap between stack and heap addresses

accessing unused pages terminates a process delivering a
SIGSEGV signal

The range of valid virtual pages can change overtime:

stack grows past previous limits

memory is (de)allocated by moving the program break

shared memory is attached/detached

memory mappings are established/canceled

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 35 / 119

Benefits of virtual memory

As long as swap out chooses pages that fail locality of reference,
physical memory is used (space-)efficiently.
Other effects:

processes are isolated from one another and from the kernel

memory access control is easy: capabilities can be attached to
page table entries and verified at each access

processes can share memory
ñ processes can share read-only frames (e.g. text segment)
ñ processes can share arbitrary frames (see mmap, shmget)

developers (and some toolchain programs—compiler, linker,
etc.) can ignore memory physical layout

lazy loading of programs is possible (and faster)

virtual memory size can exceed RAM capacity

CPU efficiency (thanks to swap out, more processes can stay in
memory, increasing the likelihood that one is runnable)

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 36 / 119

Outline

1 Process startup and termination

2 Memory layout

3 Process control

4 Fork inheritance

5 Program execution

6 Simple UNIX architectures

7 Summary

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 37 / 119

Process families

Processes on UNIX systems are arranged in a tree structure:

each process—other than the root—has exactly one parent
process

each process can have 0 or more child processes

the root process—usually called init and associated to
PID 1—has no parent and it is the first process, created by the
kernel at boot time

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 38 / 119

Process families — example

$ pstree # output trimmed
in i t−+−NetworkManager−+−dhclient

| ‘−2*[{NetworkManager }]
|−acpid
|−atd
|−chromium−+−2*[chromium]
| |−2*[chromium−−−{chromium }]
| ‘−27*[{chromium }]
|−cpufreq−applet−−−{cpufreq−applet }
|−cron
|−2*[dbus−daemon]
|−dconf−service−−−{dconf−service }
|−dhclient−−−dhclient−script−−−ping
|−emacs23−+−aspel l
| ‘−{emacs23}
|−emacsclient
|−gdm3−+−gdm−simple−slav−+−Xorg
| | |−gdm−session−wor−+−gnome−session−+−awesome
| | | | |−evolution−alarm−−−{evolution−alar }
| | | | |−gnome−panel−−−2*[{gnome−panel }]
| | | | |−gnome−power−man−−−{gnome−power−ma}
| | | | |−nautilus−−−{nauti lus }
| | | | |−nm−applet−−−{nm−applet }
| | | | |−not i f icat ion−da−−−{not i f icat ion−d}
| | | | |−polkit−gnome−au−−−{polkit−gnome−a }
| | | | |−ssh−agent
| | | | ‘−2*[{gnome−session }]
| | | ‘−{gdm−session−wo}
| | ‘−{gdm−simple−sla }
| ‘−{gdm3}
|−6*[getty]

$

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 39 / 119

Knowing your family

How can a process know the (PID of) processes in its own family?

Self
getpid (already seen)

Parent

#include <unistd.h>

pid_t getppid(void);
Returns: parent process ID of calling process

Children
The PID of children processes is usually retrieved at creation time. . .

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 40 / 119

fork

An existing process can create a new child process using fork:

#include <unistd.h>

pid_t fork(void);
Returns: 0 in child, process ID of child in parent, -1 on error

This function is called once but returns twice.

— W. Richard Stevens

1 child process starts execution just after fork
2 parent process continues execution just after fork

Notes:

you almost always want to differentiate parent and child
behaviors; the different return values allow to do that

child can retrieve parent pid with getppid

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 41 / 119

fork

An existing process can create a new child process using fork:

#include <unistd.h>

pid_t fork(void);
Returns: 0 in child, process ID of child in parent, -1 on error

This function is called once but returns twice.

— W. Richard Stevens

1 child process starts execution just after fork
2 parent process continues execution just after fork

Notes:

you almost always want to differentiate parent and child
behaviors; the different return values allow to do that

child can retrieve parent pid with getppid

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 41 / 119

fork — example

#include <unistd .h>
#include " helpers .h"

int main (void) {
pid_t pid ;

pr in t f (" before fork (%d)\n" , getpid ()) ;
i f ((pid = fork ()) < 0) {

err_sys (" fork error ") ;
} else i f (pid == 0) { /* chi ld */

pr int f (" hi from child ! (%d −> %d)\n" ,
getpid () , getppid ()) ;

} else { /* parent */
pr int f (" hi from parent ! (%d)\n" , getpid ()) ;

}
pr in t f ("bye (%d)\n" , getpid ()) ;
exit (EXIT_SUCCESS) ;

}

Note: the above if/else-if/else is a common fork pattern.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 42 / 119

fork — example (cont.)

$./ fork
before fork (16804)
hi from parent ! (16804)
bye (16804)
hi from child ! (16805 −> 16804)
bye (16805)
$

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 43 / 119

fork and (virtual) memory

child is a copy of parent
ñ child process gets copies of data, heap, and stack segments
ñ again: they are copies, not shared with the parent

the text segment is shared among parent and child
ñ virtual memory allows to have real sharing (hence reducing

memory usage)
ñ it is enough to map pages of the two processes to the same

frame (which is read-only, in the text segment case)

no upfront copy is needed, copy-on-write (COW) to the rescue!
ñ initially, all pages are shared as above, as if they were read-only
ñ if either process writes to these pages, the kernel copies the

underlying frame and update the VM mapping before returning

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 44 / 119

Copy-on-write — example

Frame
2038

Parent
page table

PT entry 211

Child
page table

PT entry 211

Frame
1998

Physical page
frames

Parent
page table

PT entry 211

Child
page table

PT entry 211

Frame
1998

Physical page
frames

Before modification After modification

Unused
page

frames

TLPI, Figure 24-3

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 45 / 119

Memory after fork — example
#include <unistd .h>
#include " helpers .h"
int glob = 42; /* i n i t i a l i z ed data */

int main (void) {
int var ; /* automatic variable */
pid_t pid ;
var = 88;
i f ((pid = fork ()) < 0) {

err_sys (" fork error ") ;
} else i f (pid == 0) { /* chi ld */

pr int f (" chi ld pid : %d\n" , getpid ()) ;
glob++; /* modify variables */
var++;

} else { /* parent */
pr int f (" parent pid : %d\n" , getpid ()) ;
sleep (1) ;

}
pr in t f (" pid = %d, glob = %d, var = %d\n" , getpid () , glob , var) ;
exit (EXIT_SUCCESS) ;

}
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 46 / 119

Memory after fork — example (cont.)

$./ fork−2
chi ld pid : 19502
pid = 19502, glob = 43, var = 89
parent pid : 19501
pid = 19501, glob = 42, var = 88
$

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 47 / 119

Termination

Upon process termination (no matter if normal/abnormal,
clean/abrupt), the kernel:

closes all open file descriptors (!= I/O streams)

releases the process memory

No matter the kind of termination, we want a mechanism to
communicate how a process terminates to its parent.

for normal termination → we have exit(status) & co.

for abnormal termination → the kernel prepares a termination
status

Either way, the kernel stores the termination status—which might
contain an exit status or not—until the parent collects it.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 48 / 119

Reparenting

We’ve implicitly assumed that there is always a parent process to
collect the termination statuses of its children.

Is it a safe assumption?

Not necessarily.
Parent processes might terminate before their children.

Upon termination of a process, the kernel goes through active
processes to check if the terminated process had children.
If so, init becomes the parent of orphan children.

This way the assumption is made safe.3

3Yes, upon init termination the system crashes
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 49 / 119

Reparenting

We’ve implicitly assumed that there is always a parent process to
collect the termination statuses of its children.

Is it a safe assumption?

Not necessarily.
Parent processes might terminate before their children.

Upon termination of a process, the kernel goes through active
processes to check if the terminated process had children.
If so, init becomes the parent of orphan children.

This way the assumption is made safe.3

3Yes, upon init termination the system crashes
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 49 / 119

wait

The main facility to retrieve termination status of a child process is:

#include <sys/wait.h>

pid_t wait(int *statloc);
Returns: child process ID if OK, -1 on error

upon invocation wait:

if no children has recently terminated, blocks until one
terminates

if a children has terminated and its termination status has not
been collected yet, collect it filling statloc

return an error if the calling process has no children

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 50 / 119

wait — inspecting termination status

The various cases of termination can be inspected applying suitable
<sys/wait.h> macros to the integer filled by wait.

WIFEXITED(status) true for normal termination
ñ WEXITSTATUS(status) can then be used to retrieve the exit status

WIFSIGNALED(status) true for abnormal termination due to
uncatched signal, then:

ñ WTERMSIG(status) gives the signal number

Other macros are available for job control.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 51 / 119

wait — example
#include <stdio .h>
#include <unistd .h>
#include <sys/wait .h>
#include " helpers .h"
int main (void) {

pid_t pid ;
int status ;
i f ((pid = fork ()) < 0)

err_sys (" fork error ") ;
else i f (pid == 0) { /* chi ld */

pr int f (" hi from child \n") ;
exit (7) ;

} else { /* parent */
i f (wait (&status) != pid)

err_sys (" wait error ") ;
pr in t f (" hi from parent\n") ;
i f (WIFEXITED (status))

pr in t f ("normal termination , exit status = %d\n" ,
WEXITSTATUS(status)) ;

else i f (WIFSIGNALED(status))
pr int f ("abnormal termination , signal number = %d\n" ,

WTERMSIG(status)) ;
}
exit (EXIT_SUCCESS) ;

}
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 52 / 119

wait — example (cont.)

$./wait
hi from child
hi from parent
normal termination, exit status = 7
$

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 53 / 119

Helper — pr_exit

void pr_exit (int status) {
i f (WIFEXITED (status))

pr in t f ("normal termination , exit status = %d\n" ,
WEXITSTATUS(status)) ;

else i f (WIFSIGNALED(status))
pr in t f ("abnormal termination , signal number = %d\n" ,

WTERMSIG(status)) ;
}

/* defined from now on in " helpers .h" */

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 54 / 119

wait — example
#include <stdio .h>
#include <unistd .h>
#include <sys/wait .h>
#include " helpers .h"

int main (void)
{

pid_t pid ;
int status ;

i f ((pid = fork ()) < 0)
err_sys (" fork error ") ;

else i f (pid == 0) /* chi ld */
exit (7) ;

i f (wait (&status) != pid) /* wait for chi ld */
err_sys (" wait error ") ;

pr_exit (status) ; /* and print i t s status */
i f ((pid = fork ()) < 0)

err_sys (" fork error ") ;
else i f (pid == 0) /* chi ld */

abort () ; /* generates SIGABRT */
i f (wait (&status) != pid) /* wait for chi ld */

err_sys (" wait error ") ;
pr_exit (status) ; /* and print i t s status */
i f ((pid = fork ()) < 0)

err_sys (" fork error ") ;
else i f (pid == 0) /* chi ld */

status /= 0; /* divide by 0 generates SIGFPE */
i f (wait (&status) != pid) /* wait for chi ld */

err_sys (" wait error ") ;
pr_exit (status) ; /* and print i t s status */
exit (EXIT_SUCCESS) ;

}

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 55 / 119

wait — example (cont.)

$./wait-2
normal termination, exit status = 7
abnormal termination, signal number = 6
abnormal termination, signal number = 8
$

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 56 / 119

Zombie

Observation

(i) process termination and (ii) collection of termination status are
not synchronized actions. They are mediated by the kernel that
stores the termination status until it is collected.

Definition (zombie process)

A process that has terminated but whose termination status has not
yet been collected is called a zombie process.

Large amounts of zombie processes are undesirable, as they
consume resources: the (small) amounts of memory for termination
status + entries in the process table.

if you write a long running program that forks a lot, you should
take care of waiting a lot

ñ if you don’t care about termination status, pass statloc=NULL

init automatically collects termination statuses of its children

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 57 / 119

Zombie

Observation

(i) process termination and (ii) collection of termination status are
not synchronized actions. They are mediated by the kernel that
stores the termination status until it is collected.

Definition (zombie process)

A process that has terminated but whose termination status has not
yet been collected is called a zombie process.

Large amounts of zombie processes are undesirable, as they
consume resources: the (small) amounts of memory for termination
status + entries in the process table.

if you write a long running program that forks a lot, you should
take care of waiting a lot

ñ if you don’t care about termination status, pass statloc=NULL

init automatically collects termination statuses of its children

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 57 / 119

Zombie — example
#include <stdio .h>
#include <unistd .h>
#include " helpers .h"

int main (void) {
pid_t pid ;
int i ;

for (i = 0; i <5; i ++) {
i f ((pid = fork ()) < 0) {

err_sys (" fork error ") ;
} else i f (pid == 0) { /* i−th chi ld */

pr int f ("bye from child %d: %d\n" , i , getpid ()) ;
exit (EXIT_SUCCESS) ;

}
/* parent does nothing */

}
sleep (60) ; /* time window to observe zombies */
pr int f ("bye from parent\n") ;
exit (EXIT_SUCCESS) ;

}
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 58 / 119

Zombie — example (cont.)

Using the previous example, ps, and shell job control we can
observe zombie processes:
$./zombie &
[1] 4867
$ bye from child 0: 4868
bye from child 2: 4870
bye from child 3: 4871
bye from child 4: 4872
bye from child 1: 4869

$ ps
PID TTY TIME CMD

2597 pts/3 00:00:00 bash
4867 pts/3 00:00:00 zombie
4868 pts/3 00:00:00 zombie <defunct>
4869 pts/3 00:00:00 zombie <defunct>
4870 pts/3 00:00:00 zombie <defunct>
4871 pts/3 00:00:00 zombie <defunct>
4872 pts/3 00:00:00 zombie <defunct>
4876 pts/3 00:00:00 ps

$
bye from parent

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 59 / 119

Trivia

#include <unistd .h>

int main () {
while (1)

fork () ;
}

What happens when you run the above program?
Try it out! (or not)

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 60 / 119

Outline

1 Process startup and termination

2 Memory layout

3 Process control

4 Fork inheritance

5 Program execution

6 Simple UNIX architectures

7 Summary

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 61 / 119

forking & flushing

Many system resources associated to processes are duplicated and
inherited by child processes

memory copying (on write) is just an instance of that

Memory copy has an effect on buffers that are stored in memory:

most notably: standard I/O buffers

but also: any other user-space buffer layer you might be using

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 62 / 119

forking & flushing (cont.)

#include <unistd .h>
#include " helpers .h"
#include <str ing .h>

char buf [] = " write to stdout\n" ;
int main (void) {

pid_t pid ;
i f (write (STDOUT_FILENO, buf , str len (buf)) != str len (buf))

err_sys (" write error ") ;
pr in t f (" pr int f by %d: before fork\n" , getpid ()) ;
i f ((pid = fork ()) < 0) {

err_sys (" fork error ") ;
} else i f (pid == 0) { /* chi ld */

pr int f (" pr int f by %d: hi from child !\n" , getpid ()) ;
} else { /* parent */

pr int f (" pr int f by %d: hi from parent !\n" , getpid ()) ;
}
pr in t f (" pr int f by %d: bye\n" , getpid ()) ;
exit (EXIT_SUCCESS) ;

}

What do you expect from the above code? (up to interleaving)

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 63 / 119

forking & flushing (cont.)

$./ fork−f lush
write to stdout
printf by 13495: before fork
pr int f by 13495: hi from parent !
pr in t f by 13495: bye
pr int f by 13496: hi from child !
pr in t f by 13496: bye
$

$./ fork−f lush > log
$ cat log
write to stdout
printf by 10758: before fork
pr int f by 10758: hi from parent !
pr in t f by 10758: bye
printf by 10758: before fork
pr int f by 10759: hi from child !
pr in t f by 10759: bye
$

why output redirection changes the result?

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 64 / 119

forking & flushing (cont.)

$./ fork−f lush
write to stdout
printf by 13495: before fork
pr int f by 13495: hi from parent !
pr in t f by 13495: bye
pr int f by 13496: hi from child !
pr in t f by 13496: bye
$

$./ fork−f lush > log
$ cat log
write to stdout
printf by 10758: before fork
pr int f by 10758: hi from parent !
pr in t f by 10758: bye
printf by 10758: before fork
pr int f by 10759: hi from child !
pr in t f by 10759: bye
$

why output redirection changes the result?

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 64 / 119

forking & flushing (cont.)

The write syscall is not (user-space) buffered, executing it before
forking ensures that data is written exactly once.
The standard I/O library is buffered, if buffers are not flushed before
fork, multiple writes can ensue.

when stdout is connected to a terminal (the case with
no redirection) the STDOUT stream is line-buffered

ñ each newline triggers a flush
ñ hence printf content gets flushed before fork and is delivered

only once

otherwise (the redirection case), stdout is fully-buffered
ñ flushs are delayed past fork, hence printf content might get

duplicated

See: setvbuf(3)

Similar issues might affect any other user-space buffering layer. . .

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 65 / 119

File sharing

Another relevant resource inherited by child processes are file
descriptors.

Upon fork all file descriptors of the parent are duplicated into the
the child.

duplication is performed by the kernel, as if dup had been called
on each of them

as a consequence, parent and child share a file table entry (in
kernel space) for every file descriptor that was open at the time
of fork

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 66 / 119

Reminder — dup

#include <unistd.h>

int dup(int filedes);

int dup2(int filedes, int filedes2);
Returns: new file descriptor if OK, -1 on error

APUE, Figure 3.8

sample situation after dup(STDIN_FILENO);

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 67 / 119

File sharing — before fork

APUE, Figure 3.6

(same for standard error, not shown)

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 68 / 119

File sharing — after fork

APUE, Figure 8.2

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 68 / 119

File sharing — offsets

File offsets are stored in the file table, therefore after fork file
offsets are shared among parent and child

if a process moves the offset, the other will see the
displacement

remember: movements also happen implicitly at each
read/write on a file descriptor

This features helps creating software architectures where related
processes collaborate on the same open files.

Example (fork-based architecture)
1 parent fork a child to do some task and wait for it to complete

2 child uses standard file descriptors as part of his task

3 upon child exit, parent can resume using standard file
descriptors without having to fiddle with offsetsa

ayou just need to be careful with buffering

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 69 / 119

File sharing — interleaving

The previous architecture works because the parent ensures child
goes first, waiting for it. In the general case, parent and child should
not use shared files “at the same time”. Doing so would result in
garbled I/O due to interleaving issues.

There are 3 main approaches to file sharing after fork:
1 the parent waits for child to complete (previous example) and

do nothing with its file descriptors in the meantime

2 parent and child go different ways; to avoid interleaving issues
each process closes the file descriptors it doesn’t use (the set of
shared files should be empty after closes)

3 parent and child maintain a set of shared files and synchronize
access to them; goal: ensure that at any given time only one
process is acting on a shared file

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 70 / 119

Common traits after fork

In addition to memory and file descriptors, many other resources are
inherited by child processes:4

user & group IDs (real, effective)

process group & session IDs

set-(user/group)-IDs flags

controlling terminal

current working & root directory

umask

signal mask

close-on-exec flags

environment variables

shared memory & memory mappings

resource limits
4we’ve discussed only some of them up to now

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 71 / 119

Distinguishing traits after fork

On the other hand, differences remain among parent and child:5

fork return value

process and parent process IDs

time accounting counters are set to 0 in the child

file locks are not inherited

pending alarms (cleared for the child)

pending signals (set to the empty set for the child)

5ditto: we’ve discussed only some of them up to now
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 72 / 119

fork failures

fork can essentially only fail due to resource exhaustion
1 if the maximum number of processes in the system has been

reached, or if there is not enough memory to create a new
process table entry (ENOMEM)

2 if the maximum number of processes allocated to the current
user has been reached

ñ this is when the fork bomb will stop (creating new processes. . .)

#include <unistd .h>

int main () {
while (1)

fork () ;
}

ñ related trivia, what does the following shell code do?
:(){ :|:& };:

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 73 / 119

Outline

1 Process startup and termination

2 Memory layout

3 Process control

4 Fork inheritance

5 Program execution

6 Simple UNIX architectures

7 Summary

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 74 / 119

Fork use cases

There are two main use cases for fork:

1 a process wants to duplicate itself to concurrently execute
(possibly different) parts of the same program

ñ e.g. network/system daemons and other services that want to
serve multiple requests concurrently

ñ the parent idles waiting for requests; it forks a new child to
handle each incoming request

2 a process wants to execute a different program
ñ e.g. shells
ñ e.g. software architectures organized into a set of independent

executables (typical products of the UNIX philosophy)

We’ve seen how fork deals with (1).

UNIX’s recipe for (2) is to first fork and then, in the child process,
use a syscall of the exec family to execute a new program.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 75 / 119

Exec

In the UNIX tradition, creating a new process and executing a
program are separate actions.

Therefore exec does not create a new process. Rather:

it replaces the program run by the invoking process with a new
one, obtained reading a binary from the filesystem

all segments—text, data, bss, heap, and stack—are re-initialized
as if the program were being executed from scratch

ñ in fact it is, that’s why we’ve seen exec in strace logs before

the usual startup routine is executed up to handing control over
to main() of the new program

Note: if you plainly exec something (without fork), you “throw
away” your program.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 76 / 119

The exec family

We often write “exec” for short, but there are 6 different exec
syscalls:

#include <unistd.h>

int execl(const char *pathname, const char *arg0, ...);

int execv(const char *pathname, char *const argv[]);

int execle(const char *pathname, const char *arg0, ..., char *const envp[]);

int execve(const char *pathname, char *const argv[], char *const envp[]);

int execlp(const char *filename, const char *arg0, ...);

int execvp(const char *filename, char *const argv[]);
Returns: all return -1 on error, don’t return on success

All execute an external program replacing the current one.

Note: on success they do not return.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 77 / 119

exec differences

Don’t panic!
Differences among execs can be organized along 3 axes.

1 “Command line” argument specification: argv for the new
program can be given either as lists or arrays (or “vectors”) of
pointers.

ñ list of pointers must be NULL-terminated
« as, no wonder, it happens for argv in main() calling convention

ñ note: the calling convention allows to have
basename(path) ≠ argv[0]

Mnemonic

execs containing the ‘l’ character (3 of them) take list of pointers;
execs containing the ‘v’ character (3 of them) take vectors.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 78 / 119

exec differences (cont.)

Don’t panic!
Differences among execs can be organized along 3 axes.

2 Program specification: the program to be executed can be given
either as a pathname or as a filename argument.

ñ a filename argument that does not contain "/" will be searched
according to the PATH environment variable

e.g.
$ echo $PATH

/home/zack/bin:/usr/local/bin:/usr/bin:/bin:/sbin/:/usr/sbin/

Mnemonic

execs containing the ‘p’ character (2 of them) take filename
arguments (i.e. they search in the path); other execs (4 of them)
take pathname arguments.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 78 / 119

exec differences (cont.)

Don’t panic!
Differences among execs can be organized along 3 axes.

3 Environment list specification: *environ for the new program
can be given either implicitly or explicitly

ñ in the implicit case, the environment list is copied from the
calling process

ñ in the explicit case, a list of pointers to "key=value" strings
shall be given

« as, no wonder, it happens for *environ in main() calling
convention

Mnemonic

execs containing the ‘e’ character (2 of them) take an environment
list argument; other execs don’t.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 78 / 119

exec relationships

Ultimately:

mnemonics and man 3 exec are your friends.

(. . . but why section 3?)

Note: on most UNIX the only syscall is execve (documented in
section 2), whereas other execs are wrapper functions:

APUE, Figure 8.15

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 79 / 119

exec relationships

Ultimately:

mnemonics and man 3 exec are your friends.

Note: on most UNIX the only syscall is execve (documented in
section 2), whereas other execs are wrapper functions:

APUE, Figure 8.15

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 79 / 119

Helper — echoall

#include <stdio .h>
#include <stdl ib .h>

extern char **environ ;

int main (int argc , char *argv [])
{

int i ;
char ** ptr ;

for (i = 0; i < argc ; i ++) /* dump argv */
pr int f (" argv [%d] : %s\n" , i , argv [i]) ;

for (ptr = environ ; *ptr != NULL; ptr++) /* dump env */
pr int f ("%s\n" , *ptr) ;

exit (EXIT_SUCCESS) ;
}
// end of echoall . c

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 80 / 119

exec — example
#include <unistd .h>
#include <sys/wait .h>
#include " helpers .h"
char * env_init [] = { "USER=unknown" , "TERM=xterm" , NULL } ;
int main (void) {

pid_t pid ;
i f ((pid = fork ()) < 0) {

err_sys (" fork error ") ;
} else i f (pid == 0) { /* chi ld */

i f (execle (" /tmp/echoall " , /* path , env */
" echoall " , " foo " , "BAR" , NULL,
env_init) < 0)

err_sys (" execle error ") ;
}
i f (wait (NULL) < 0)

err_sys (" wait error ") ;
i f ((pid = fork ()) < 0) {

err_sys (" fork error ") ;
} else i f (pid == 0) { /* f i l e , no env */

i f (execlp (" echoall " ,
" echoall " , " only 1 arg " , NULL) < 0)

err_sys (" execlp error ") ;
}
exit (EXIT_SUCCESS) ;

} // end of exec . c
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 81 / 119

exec — example (cont.)

Demo

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 82 / 119

exec inheritance

Similarly to the fork case, the exec-uted program inherits some
traits from the former process:

process and parent process ID

real user & group ID

process group and session ID

file descriptors

controlling terminal

pending alarm (not reset)

current working & root directory

umask

file locks

signal mask and pending signals

resource limits

time accounting counters

environment list for non-‘e’ exec

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 83 / 119

exec limits and xargs

Part of the communication “bandwidth” among parent and child
processes is related to the maximum size of the argument and
environment lists.
POSIX.1 guarantees that such a limit is at least 4096
arguments / environment variables.

Even if such a limit is pretty large, one way to hit it is playing with
shell globbing, e.g. grep execve /usr/share/man/*/*, depends
on your system. . . .

As a solution for shell globbing, you might resort to xargs(1).

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 84 / 119

system

As a shorthand to execute a system program from a running
process, the libc offers:

#include <stdlib.h>

int system(const char *cmdstring);

On UNIX systems, system takes care of fork, exec, wait, and return
its termination status.

process management is hidden from the invoking process
ñ the function is both ISO C and POSIX, but in the ISO standard it’s

heavily implementation-dependent

the command is given as a string that will be interpreted by the
system shell

ñ you need a standard shell for this, according to POSIX it’s
/bin/sh

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 85 / 119

system (cont.)

As a shorthand to execute a system program from a running
process, the libc offers:

#include <stdlib.h>

int system(const char *cmdstring);

Return value:

if either fork or wait fail → -1

if the shell cannot be executed (exec failure) → 127

otherwise → shell termination status

special case: passing NULL as an argument should return
non-zero if system is supported—which is always the case on
UNIX—; 0 otherwise

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 85 / 119

system — example

#include <stdl ib .h>
#include <stdio .h>
#include <sys/wait .h>
#include " helpers .h"

char *cmd = "grep zack /etc/passwd | cut −f 5 −d: " ;

int main (void) {
int status ;
i f ((status = system (cmd)) == −1)

err_sys (" system error ") ;
pr_exit (status) ;
/* i f (WIFEXITED (status))

* pr intf (" normal termination , ex i t status = %d\n" ,

* WEXITSTATUS(status)) ;

* else i f (WIFSIGNALED(status))

* pr intf (" abnormal termination , signal number = %d\n" ,

* WTERMSIG(status)) ; */
exit (EXIT_SUCCESS) ;

}

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 86 / 119

system — example (cont.)

$./system
Stefano Zacchiroli,,,
normal termination, exit status = 0
$

Notes:

the command makes use of shell meta characters, pipelines, etc.

fork-based file sharing is implicitly used by system

termination status can be inspected via the usual wait macros

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 87 / 119

Exercise: system implementation

We want to provide an implementation of system.

Given that it is a regular function rather than a syscall, we can
provide such an implementation in user space.

Requirements:
1 the implementation shall match system prototype

2 the implementation shall obey system return convention

3 the implementation shall not interfere with the calling process

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 88 / 119

system — implementation

#include <sys/wait .h>
#include <errno .h>
#include <unistd .h>

int system (const char *cmd) {
pid_t pid ;
int status ;
i f (cmd == NULL)

return (1) ; /* system is available */
i f ((pid = fork ()) < 0) {

status = −1; /* fork error */
} else i f (pid == 0) { /* chi ld */

execl (" /bin/sh" , " sh " , "−c " , cmd, NULL) ;
_exit (127); /* exec error */

} else { /* parent */
wait (&status) ;

}
return (status) ;

}

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 89 / 119

system — implementation

#include <sys/wait .h>
#include <errno .h>
#include <unistd .h>

int system (const char *cmd) {
pid_t pid ;
int status ;
i f (cmd == NULL)

return (1) ; /* system is available */
i f ((pid = fork ()) < 0) {

status = −1; /* fork error */
} else i f (pid == 0) { /* chi ld */

execl (" /bin/sh" , " sh " , "−c " , cmd, NULL) ;
_exit (127); /* exec error */

} else { /* parent */
wait (&status) ;

}
return (status) ;

}

Is this solution correct?

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 89 / 119

system — (buggy) implementation

#include <sys/wait .h>
#include <errno .h>
#include <unistd .h>

int system (const char *cmd) {
pid_t pid ;
int status ;
i f (cmd == NULL)

return (1) ; /* system is available */
i f ((pid = fork ()) < 0) {

status = −1; /* fork error */
} else i f (pid == 0) { /* chi ld */

execl (" /bin/sh" , " sh " , "−c " , cmd, NULL) ;
_exit (127); /* exec error */

} else { /* parent */
wait (&status) ;

}
return (status) ;

}

This solution fails requirement (3): wait can retrieve the termination
status of a process other than the shell executed by system.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 89 / 119

waitpid

To solve the problem we need a new syscall, capable of waiting for
the termination of a specific process. Enter waitpid:

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *statloc, int options);
Returns: process ID if OK, 0 or -1 on error

The child to wait for depends on the pid argument:
pid == 1 waits for any child (wait-like semantics)
pid > 1 waits for a specific child, that has pid as its PID
pid == 0 waits for any child in the same process group of caller
pid < -1 waits for any child in the process group abs(pid)

options provide more control over waitpid semantics; it is a bitwise
OR of flags that include:

WNOHANG do not block if child hasn’t exited yet (and return 0)

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 90 / 119

waitpid

To solve the problem we need a new syscall, capable of waiting for
the termination of a specific process. Enter waitpid:

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *statloc, int options);
Returns: process ID if OK, 0 or -1 on error

The child to wait for depends on the pid argument:
pid == 1 waits for any child (wait-like semantics)
pid > 1 waits for a specific child, that has pid as its PID
pid == 0 waits for any child in the same process group of caller
pid < -1 waits for any child in the process group abs(pid)

options provide more control over waitpid semantics; it is a bitwise
OR of flags that include:

WNOHANG do not block if child hasn’t exited yet (and return 0)

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 90 / 119

system — a rough implementation
#include <sys/wait .h>
#include <errno .h>
#include <unistd .h>

int system (const char *cmd) { /* no signal management */
pid_t pid ;
int status ;
i f (cmd == NULL)

return (1) ; /* system is available */
i f ((pid = fork ()) < 0) {

status = −1; /* fork error */
} else i f (pid == 0) { /* chi ld */

execl (" /bin/sh" , " sh " , "−c " , cmd, NULL) ;
_exit (127); /* exec error */

} else { /* parent */
while (waitpid(pid, &status, 0) < 0) {

i f (errno != EINTR) {
status = −1; /* generic error */
break ;

}
}

}
return (status) ;

} // based on APUE, Figure 8.22

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 91 / 119

waitid

The more recent waitid syscall provides even more flexibility and a
saner interface to wait for specific processes:

#include <sys/wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);
Returns: 0 if OK, -1 on error

id is interpreted according to the value of idtype:
P_PID wait for a process with PID id
P_PGID wait for any child process in process group id
P_ALL wait for any child

options is a bitwise OR of states the caller wants to monitor:
WSTOPPED wait for a stopped process
WCONTINUED wait for a (stopped and then) continued process
WEXITED wait for terminated processes
WNOWAIT leave the process in zombie state
WNOHANG as per waitpid

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 92 / 119

Outline

1 Process startup and termination

2 Memory layout

3 Process control

4 Fork inheritance

5 Program execution

6 Simple UNIX architectures

7 Summary

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 93 / 119

(fork && exec) || spawn ?

Some (non-UNIX) operating systems combine fork and exec in a
single operation called spawn.

UNIX’s separation is convenient for various reasons:
1 there are use cases where fork is useful alone
2 when coupled with inheritance, the separation allows to change

per-process attributes between fork and exec, e.g.:
ñ set up redirections
ñ change user IDs (e.g. to drop privileges)
ñ change signal masks
ñ set up execution “jails”
ñ . . .

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 94 / 119

fork+exec = cheap!

But we need to watch out that the fork+exec does not induce
unacceptable performance penalty wrt the spawn approach.

Qualitative considerations:

an important part of fork/exec cost is writing segments into memory

for fork the cost is minimized by virtual memory and copy-on-write

for exec the cost lower bound is program loading from disk

extra process management bookkeeping should be measured

Quantitative analysis:

(Linux) fork/exec shown to be twice as fast than (Win NT) spawn

Randy Appleton

Improving context switching performance for idle tasks in Linux

CATA 1999
http://math.nmu.edu/~randy/Research/Papers/Scheduler/

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 95 / 119

http://math.nmu.edu/~randy/Research/Papers/Scheduler/

UNIX philosophy in a nutshell

This is the Unix philosophy: Write programs that do one
thing and do it well. Write programs to work together.
Write programs to handle text streams, because that is a
universal interface.

— Doug McIlroy (inventor of UNIX pipes)
in “A Quarter Century of Unix”

Practically, the UNIX style of designing do-one-thing-well
architectures is multiprocessing, i.e. breaking down applications into
small programs that communicate through well-defined interfaces.

Enabling traits for this are:
1 cheap and easy process spawning (i.e. fork/exec)

2 methods that ease inter-process communication

3 usage of simple, transparent, textual data formats

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 96 / 119

UNIX philosophy — some consequences

we aim for a reduction in global application complexity

if not, at least individual programs tend to be more manageable

we focus on stable interfaces and we are encouraged to think
upfront at data formats and protocols

this make it easier to adapt the software to different contexts
(interfaces, other data sources, and sinks); it makes the
software more hackable

it also encourages cooperation with other developers,
especially—but not only—when source code is available

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 97 / 119

UNIX philosophy — references

In-depth discussion of UNIX philosophy is outside the scope of this
course. We will only highlight typical architectures that are enabled
by specific UNIX programming interfaces, as we encounter them.

Eric S. Raymond
The Art of UNIX Programming
Addison-Wesley Professional, 2003.
http://www.faqs.org/docs/artu/

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 98 / 119

http://www.faqs.org/docs/artu/

Shelling out — the simplest fork architecture

Most UNIX architectures are based on IPC mechanisms we haven’t
yet discussed. But the simplest architecture, based on cheap
process spawning, only needs the process management primitives
we’ve already introduced.

Definition (Shelling out)

Shelling out is the practice of delegating tasks to external programs,
handing over terminal to them for the duration of the delegation,
and waiting for them to complete.

It is called shell-ing out as it has been traditionally implemented
using system, which relies on the system shell.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 99 / 119

Shelling out — discussion

communication is minimal, when compared to other IPC
architectures

ñ control information: termination status, argv, environment
ñ protocol design is not an issue

data are passed via the filesystem
ñ data format design is a concern

Typical shell out work-flow
1 parent create a temporary file and write data to it

2 parent shell out a child passing a path to the temporary file

3 child work on the temporary file
4 child exit
5 parent (re-)read temporary file and delete it

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 100 / 119

Case study: the mutt mail user agent

“All mail clients suck. This one just sucks less.”

— Mutt homepage, http://www.mutt.org

mutt is (one of) the most popular console-based Mail User Agent on
UNIX systems. It implements a typical shelling out use case: shelling
out an editor.
When asked to compose a mail, Mutt:

1 examines the EDITOR and VISUAL environment variable to figure out
user preferred editor

2 creates a temporary file
ñ fills it in with a mail template (e.g. headers, signature, quoted

text, etc.)
3 spawn the editor on the temporary file
4 [the user uses the editor to write the mail and then quits]
5 parses the composed email from the temporary file, delete it
6 resume normal operation (e.g. to propose sending the email)

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 101 / 119

http://www.mutt.org

Shelling out — example
#include <stdio .h>
#include <stdl ib .h>
#include <unistd .h>
#include <str ing .h>
#include " helpers .h"

char tp l [] = "From: \nTo: \nCc : \nBcc : \nSubject : \n\n" ;
int main (void) {

char tmp [] = " /tmp/shellout .XXXXXX" ;
char cmd[1024];
int fd , status ;
i f ((fd = mkstemp(tmp)) == −1) err_sys ("mktemp error ") ;
i f (write (fd , tpl , str len (tp l)) != str len (tp l))

err_sys (" write error ") ;
/* Exercise : support insert ion of ~/. signature , i f i t ex is ts */
i f (close (fd) == −1) err_sys (" close error ") ;
i f (snprintf (cmd, sizeof (cmd) , " /usr/bin/vim %s " , tmp) < 0)

err_sys (" snprintf error ") ; /* Exercise : use $EDITOR */
i f ((status = system (cmd)) == −1) /* shoud inspect better . . . */

err_sys (" system error ") ;
snprintf (cmd, sizeof (cmd) , "echo −−−; cat %s ; echo −−−" , tmp) ;
system (cmd) ; /* dummy mail processing */
i f (unlink (tmp) == −1) err_sys (" unlink error ") ;
exit (EXIT_SUCCESS) ;

} // end of shel lout . c
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 102 / 119

Shelling out — example

Demo

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 102 / 119

Race conditions

Shelling out, the risk of unwanted interference among parent and
child processes is almost non-existent.6 Other fork-based
architectures won’t be so lucky.

Definition (Race condition)
A race condition occurs when multiple processes cooperate on
shared storage and the correctness of the overall result depends on
the order in which the processes are run (a factor which is, in
general, outside our control).
Intuition: the processes “race” to access the shared storage.

We want to avoid race conditions to preserve deterministic program
behavior and to avoid corrupting shared data structures. Race
conditions are hard to debug, because—by definition—they are hard
to reproduce.

6except for signals, that the parent should block while executing child
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 103 / 119

fork race conditions

fork is a common source of race conditions: we cannot tell (in a
portable way. . .) which process—parent or child—goes first.

If output correctness depends on that ordering, you have a problem.

The syscall sleep does not solve the problem, at best it mitigates it

e.g. under heavy load it is possible that the non-sleeping
process is delayed so much, that the sleeping process goes first
anyhow

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 104 / 119

Race conditions — example

#include <stdio .h>
#include <unistd .h>
#include " helpers .h"

void charatatime (char * st r) {
char *ptr ;
int c ;
setbuf (stdout , NULL) ; /* set unbuffered */
for (ptr = str ; (c = *ptr++) != 0;)

putc (c , stdout) ;
}
int main (void) {

pid_t pid ;
i f ((pid = fork ()) < 0) err_sys (" fork error ") ;
else i f (pid == 0) {

charatatime (" output from child \n") ;
} else {

charatatime (" output from parent\n") ;
}
exit (EXIT_SUCCESS) ;

} // end of race . c
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 105 / 119

Race conditions — example (cont.)

Desired behaviour

one line of output for the parent, one line of output for the child (in
an arbitrary order)

Note: arbitrariness is not always the problem.

Demo

ain’t always easy to reproduce a race condition. . .
while true ; do ./race ; done

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 105 / 119

Polling

Example

A child process wants to wait until its parent has terminated.
The situation can be detected as getppid() == 1.

One way to solve the race condition problem is by polling,
i.e. periodically checking if the situation has happened:

while (getppid () != 1)
sleep (1)

The problem with polling is that it keeps the CPU busy.

Goal: get rid of race conditions avoiding polling.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 106 / 119

Parent/child synchronization

We need synchronization primitives that processes can use to
synchronize and avoid race conditions.

As a proof of concept we will consider the following primitives:7

WAIT_PARENT child blocks waiting for (a “signal” from) parent

WAIT_CHILD parent blocks waiting for (a “signal” from) children

TELL_PARENT(pid) child “signals” parent

TELL_CHILD(pid) parent “signals” child

Note: they allow synchronization only at the parent/child border.
But that gives all the expressivity we need, given that the only way to
create new processes is fork.

7we’ll also have TELL_WAIT in both processes, for initialization
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 107 / 119

Tell/Wait — intended usage

int main (void) {
pid_t pid ;

TELL_WAIT();

i f ((pid = fork ()) < 0) err_sys (" fork error ") ;
else i f (pid == 0) {

WAIT_PARENT(); /* parent f i r s t */
charatatime (" output from child \n") ;

} else {
charatatime (" output from parent\n") ;
TELL_CHILD(pid);

}
exit (EXIT_SUCCESS) ;

}

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 108 / 119

Tell/Wait — intended usage (cont.)

int main (void) {
pid_t pid ;

TELL_WAIT();

i f ((pid = fork ()) < 0) err_sys (" fork error ") ;
else i f (pid == 0) {

charatatime (" output from child \n") ;
TELL_PARENT(getppid());

} else {
WAIT_CHILD(); /* chi ld f i r s t */
charatatime (" output from parent\n") ;

}
exit (EXIT_SUCCESS) ;

}

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 109 / 119

Tell/Wait — exercise

Exercise

Provide an implementation of the tell/wait primitives.

we’ll see several alternative implementations in the future. . .

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 110 / 119

vfork

Many forks are followed by an exec. In those cases, duplicating the
parent address space is not needed, as it’ll be replaced.

When duplicating address space was expensive—i.e. before the
advent of COW—vfork provided a cheaper alternative.

#include <unistd.h>

pid_t vfork(void);
Returns: 0 in child, process ID of child in parent, -1 on error

It is identical to fork except that:
1 the child executes in the same address space of the parent

2 the parent blocks until child exec or _exit

Thou shalt not use this.a

aalthough no copying is better than some copying. . .

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 111 / 119

vfork subtleties

vfork might lead to deadlocks if the child wait for the parent,
because the parent is also blocked. . .

most actions performed in the child will affect the parent when
it resumes

ñ touching data, heap, stack
ñ changing process properties, etc.

some actions do not affect the parent
ñ actions on file descriptors, as the file table is in kernel space and

it’s duplicated by vfork
ñ yep, it’s tricky. . .

vfork guarantees that child goes first and can be used as a
(very dangerous!) synchronization primitive

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 112 / 119

vfork — example
#include <stdio .h>
#include <unistd .h>
#include " helpers .h"

int glob = 6; /* i n i t i a l i z ed data */
int main (void) {

int var ; /* automatic variable */
pid_t pid ;
var = 88;
pr int f (" before vfork\n") ;
i f ((pid = vfork ()) < 0) {

err_sys (" vfork error ") ;
} else i f (pid == 0) { /* chi ld */

glob++; /* modify parent ’ s variables */
var++;
_exit (0) ; /* chi ld terminates */

} /* parent continues here . . . */
pr int f (" pid = %d, glob = %d, var = %d\n" , getpid () ,

glob , var) ;
exit (EXIT_SUCCESS) ;

} // based on APUE, Figure 8.3
Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 113 / 119

vfork — example (cont.)

$./ vfork
before vfork
pid = 6121, glob = 7, var = 89
$

Notes:

no need for the parent to sleep (child goes first)

variable changes are visible in the parent (same address space)

we use _exit instead of exit
ñ to avoid clean shutdown of Standard I/O, as the parent might

still want to use it

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 114 / 119

Outline

1 Process startup and termination

2 Memory layout

3 Process control

4 Fork inheritance

5 Program execution

6 Simple UNIX architectures

7 Summary

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 115 / 119

The story so far

basics of user- and kernel-space

process management primitives: the fork / wait / exec triad

very primitive IPC: arguments, exit codes, file system

challenges: race conditions

Ahead of us:

communication mechanisms

synchronization mechanisms

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 116 / 119

Trivia — what will second child print?

#include <unistd .h>
#include <sys/wait .h>
#include " helpers .h"

int main (void) {
pid_t pid ;

i f ((pid = fork ()) < 0) {
err_sys (" fork error ") ;

} else i f (pid == 0) { /* 1st chi ld */
i f ((pid = fork ()) < 0)

err_sys (" fork error ") ;
else i f (pid > 0) /* parent from 2nd fork == 1st chi ld */

exit (EXIT_SUCCESS) ;
/* 2nd chi ld */
sleep (2) ;
pr in t f ("2nd child , parent pid = %d\n" , getppid ()) ;
exit (EXIT_SUCCESS) ;

}
i f (waitpid (pid , NULL, 0) != pid) /* wait for 1st chi ld */

err_sys (" waitpid error ") ;
/* parent (or iginal process) */
exit (EXIT_SUCCESS) ;

} // based on APUE, Figure 8.8

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 117 / 119

Double fork

We want to write a program that fork a child and wants to both
avoid waiting for it and avoid zombies.
How to do that?

Using the double fork technique.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 118 / 119

Double fork (cont.)

We want to write a program that fork a child and wants to both
avoid waiting for it and avoid zombies.
How to do that? Using the double fork technique.

Double fork
1 parent forks a 1st child and wait for the children
2 1st child forks again and exit

ñ providing an exit status for the parent

3 as soon as 1st child dies, 2nd child will be re-parented to init

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 118 / 119

Double fork (cont.)

We want to write a program that fork a child and wants to both
avoid waiting for it and avoid zombies.
How to do that? Using the double fork technique.

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 118 / 119

Double fork — example

$./ double−fork
$ 2nd child , parent pid = 1

main parent returns immediately

shell prompt arrives before second child’s output

2 seconds pass before output from second child

second child has been reparented to init

Stefano Zacchiroli (Paris Diderot) Process Management Basics 2013–2014 119 / 119

	Process startup and termination
	Memory layout
	Process control
	Fork inheritance
	Program execution
	Simple UNIX architectures
	Summary

