
Génie Logiciel Avancé
Cours 6 — Introduction to Test-Driven Development

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire PPS, Université Paris Diderot

2014–2015

URL http://upsilon.cc/zack/teaching/1415/gla/
Copyright © 2013–2015 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 1 / 57

http://upsilon.cc/zack/teaching/1415/gla/
http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Outline

1 Development processes and testing

2 Test-Driven Development

3 xUnit & jUnit

4 TDD case study

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 2 / 57

Test-Driven Development (TDD)

Test-Driven Development, or TDD, is an iterative software
development process which uses very short development cycles and
leverages tests to provide constant feedback to software developers.

Goal: “clean code that works”, i.e. develop better software, less
stressfully.

The “Test-Driven Development” expression is often (ab)used to talk
about 2 distinct things:

the TDD development process
the xUnit family of testing frameworks

ñ e.g. JUnit, [Python] unittest, cppUnit, OUnit, NUnit, PHPUnit, . . .

which have been designed to support the TDD development
process, but can also be used when adopting different
development process

We’ll cover both in this lecture.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 3 / 57

Test-Driven Development (TDD)

Test-Driven Development, or TDD, is an iterative software
development process which uses very short development cycles and
leverages tests to provide constant feedback to software developers.

Goal: “clean code that works”, i.e. develop better software, less
stressfully.
The “Test-Driven Development” expression is often (ab)used to talk
about 2 distinct things:

the TDD development process
the xUnit family of testing frameworks

ñ e.g. JUnit, [Python] unittest, cppUnit, OUnit, NUnit, PHPUnit, . . .

which have been designed to support the TDD development
process, but can also be used when adopting different
development process

We’ll cover both in this lecture.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 3 / 57

Test-Driven Development (TDD)

Test-Driven Development, or TDD, is an iterative software
development process which uses very short development cycles and
leverages tests to provide constant feedback to software developers.

Goal: “clean code that works”, i.e. develop better software, less
stressfully.
The “Test-Driven Development” expression is often (ab)used to talk
about 2 distinct things:

the TDD development process
the xUnit family of testing frameworks

ñ e.g. JUnit, [Python] unittest, cppUnit, OUnit, NUnit, PHPUnit, . . .

which have been designed to support the TDD development
process, but can also be used when adopting different
development process

We’ll cover both in this lecture.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 3 / 57

Outline

1 Development processes and testing

2 Test-Driven Development

3 xUnit & jUnit

4 TDD case study

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 4 / 57

Reminder — Development process

Definition (Software development process)

A software development process is a structured set of activities
which lead to the production of some software.

Some software development activities:
1 requirement specification

2 design

3 implementation
4 verification
5 maintenance

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 5 / 57

Reminder — Waterfall model

Requirements

Design

Implementation

Verification

Maintenance

https://en.wikipedia.org/wiki/File:

Waterfall_model_(1).svg

that’s the theory

in practice:
ñ feedback loops
ñ increasingly more costly
ñ that need to be prevented

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 6 / 57

https://en.wikipedia.org/wiki/File:Waterfall_model_(1).svg
https://en.wikipedia.org/wiki/File:Waterfall_model_(1).svg

Reminder — Waterfall model

Requirements

Design

Implementation

Verification

Maintenance

https://en.wikipedia.org/wiki/File:

Waterfall_model_(1).svg

that’s the theory

in practice:
ñ feedback loops
ñ increasingly more costly
ñ that need to be prevented

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 6 / 57

https://en.wikipedia.org/wiki/File:Waterfall_model_(1).svg
https://en.wikipedia.org/wiki/File:Waterfall_model_(1).svg

Reminder — Iterative development

A family of models where development happens incrementally,
through repeated iterations of development activities.

https://en.wikipedia.org/wiki/File:Iterative_development_model_V2.jpg

Key benefit: feedback loop.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 7 / 57

https://en.wikipedia.org/wiki/File:Iterative_development_model_V2.jpg

Reminder — Rational Unified Process (RUP)

IBM’s Rationale Unified Process is a well-established example of an
iterative development model, tailored for OOP.

https://en.wikipedia.org/wiki/File:Development-iterative

phases vs work-flow
notable work-flows: deployment, testing

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 8 / 57

https://en.wikipedia.org/wiki/File:Development-iterative

V-Model

Not really a software development model.

Verification
and

Validation
Project

Definition

Concept of
Operations

Requirements
and

Architecture

Detailed
Design

Integration,
Test, and

Verification

System
Verification

and Validation

Operation
and

Maintenance

Project
Test and

Integration

ImplementationImplementation

Time

https://en.wikipedia.org/wiki/File:Systems_Engineering_Process_II.svg

Rather a (simplistic) view on the waterfall model that correlates the
initial “definition” phases with the final “delivery” ones.

The V-model helps to think about test purposes.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 9 / 57

https://en.wikipedia.org/wiki/File:Systems_Engineering_Process_II.svg

A hierarchy of tests

Disclaimers:

there are other hierarchies/taxonomies, on different angles

terminology is not clear cut (as it often happens in SWE)

the granularity trend—from small to big—however matters and
is agreed upon

Test hierarchy

acceptance Does the whole system work?

integration Does our code work against (other) code (we
can’t change)?

unit Do our code units a do the right thing and are
convenient to work with?

a. in a broad sense: might be classes, objects, modules, etc. depending
on the available abstraction mechanisms

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 10 / 57

Acceptance test

Does the whole system work?

Acceptance tests represent features that the system should have.
Both their lack and their misbehaviour imply that the system is not
working as it should. Intuition:

1 feature → 1+ acceptance test(s)

1 user story → 1+ acceptance test(s) (when using user stories)

Exercise (name 2+ acceptance tests for this “user login” story)

After creating a user, the system will know that you are that user when
you login with that user’s id and password; if you are not authenticated,
or if you supply a bad id/password pair, or other error cases, the login
page is displayed. If a CMS folder is marked as requiring authentication,
access to any page under that folder will result in an authentication
check. http://c2.com/cgi/wiki?AcceptanceTestExamples

Preview: we will use acceptance tests to guide feature development
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 11 / 57

http://c2.com/cgi/wiki?AcceptanceTestExamples

Integration test

Does our code work against (other) code (we can’t change)?

“Code we can’t change” =
3rd party libraries/framework

ñ be them proprietary or Free/Open Source Software
code developed by other teams that we don’t “own”

ñ (strict code ownership is bad, though)
code that we do not want/cannot modify in the current phase of
development, for whatever reason

Example

our BankClient should not call the getBalance method on
BankingService before calling login and having verified that it
didn’t throw an exception

xmlInitParser should be called before any other parsing function
of libxml2

the DocBook markup returned by CMSEditor.save should be
parsable by PDFPublisher’s constructor

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 12 / 57

Unit test

Do our code units do the right thing and are convenient to
work with?

Before implementing any unit of our software, we have (to have) an
idea of what the code should do. Unit tests show convincing
evidence that—in a limited number of cases—it is actually the case. 1

Example (some unit tests for a List module)

calling List.length on an empty list returns 0

calling List.length on a singleton list returns 1

calling List.last after List.append returns the added element

calling List.head on an empty list throws an exception

calling List.length on the concatenation of two lists returns the
sum of the respective List.lengths

. . .

1. remember: tests reveal bugs, but don’t prove their absence!
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 13 / 57

Unit test

Do our code units do the right thing and are convenient to
work with?

Before implementing any unit of our software, we have (to have) an
idea of what the code should do. Unit tests show convincing
evidence that—in a limited number of cases—it is actually the case. 1

Example (some unit tests for a List module)
calling List.length on an empty list returns 0

calling List.length on a singleton list returns 1

calling List.last after List.append returns the added element

calling List.head on an empty list throws an exception

calling List.length on the concatenation of two lists returns the
sum of the respective List.lengths

. . .

1. remember: tests reveal bugs, but don’t prove their absence!
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 13 / 57

Tests in the V-Model

https://en.wikipedia.org/wiki/File:V-model.JPG

For TDD we will “hack” unit, integration, acceptance tests, and use
them in an arguably more clever way. . .

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 14 / 57

https://en.wikipedia.org/wiki/File:V-model.JPG

Tests in the V-Model

https://en.wikipedia.org/wiki/File:V-model.JPG

For TDD we will “hack” unit, integration, acceptance tests, and use
them in an arguably more clever way. . .
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 14 / 57

https://en.wikipedia.org/wiki/File:V-model.JPG

Outline

1 Development processes and testing

2 Test-Driven Development

3 xUnit & jUnit

4 TDD case study

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 15 / 57

Development as learning

every software development project tries something that has
never been tried before

ñ otherwise you wouldn’t be doing it. . .

due to constraints, developers often use technologies they don’t
completely master

ñ new technologies, old technologies used in new contexts, etc

all stakeholders (developers, managers, customers) learn as the
project progresses

Problem: as we don’t know everything at the beginning, there will be
unexpected changes during the project.

How do we cope with them?

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 16 / 57

Nested feedback loops

Idea
1 we use empirical feedback to learn about the system

2 we store what we learn in the system itself, for future use

To do so, we organize development as nested feedback loops with
increasing time periods and scopes in the organization (file, unit,
product, team, etc.), e.g.:

pair programming period: seconds

unit tests seconds–1 minute

acceptance tests minutes

daily meeting 1 day

iterations 1 day–1 week

releases 1 week–months

We want feedback as quickly as possible. If something slips through
an inner loop, it will (hopefully) be catched by an outer one.
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 17 / 57

Expecting the unexpected

Practices that (empirically) help coping with unexpected changes:

constant testing
ñ when we change something we might introduce regressions
ñ to avoid that we need to constantly test our system
ñ doing it manually doesn’t scale ⇒ automated testing

simple design
keep the code as simple as possible
optimize for simplicity

ñ as we will have to change it, we want code that is easy to
understand and modify

ñ empirical studies show that developers spend more time reading
code than writing it

ñ clean design doesn’t come for free, to achieve it we must
constantly refactor

ñ test suites give you courage to refactor, and apply other
changes, thanks to their tight feedback loop

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 18 / 57

TDD principle

So we have test suites. Why do we need TDD?

Because:

developers don’t like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e. a judo move on the above problem)

write tests before code

don’t write tests only to verify code after it’s done
leverage testing as a design activity

write tests to clarify our ideas about what the code should do
I was finally able to separate logical from physical
design. I’d always been told to do that but no one ever
explained how. — Kent Beck

write tests to get rapid feedback about design ideas
ñ if a test is difficult to write, design is often wrong

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 19 / 57

TDD principle

So we have test suites. Why do we need TDD? Because:

developers don’t like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e. a judo move on the above problem)

write tests before code

don’t write tests only to verify code after it’s done
leverage testing as a design activity

write tests to clarify our ideas about what the code should do
I was finally able to separate logical from physical
design. I’d always been told to do that but no one ever
explained how. — Kent Beck

write tests to get rapid feedback about design ideas
ñ if a test is difficult to write, design is often wrong

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 19 / 57

TDD principle

So we have test suites. Why do we need TDD? Because:

developers don’t like writing tests

testing is often seen as a 2nd class development activity

TDD idea (i.e. a judo move on the above problem)

write tests before code

don’t write tests only to verify code after it’s done
leverage testing as a design activity

write tests to clarify our ideas about what the code should do
I was finally able to separate logical from physical
design. I’d always been told to do that but no one ever
explained how. — Kent Beck

write tests to get rapid feedback about design ideas
ñ if a test is difficult to write, design is often wrong

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 19 / 57

TDD in a nutshell

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 20 / 57

The TDD development cycle

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 21 / 57

The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

By writing the test we:

clarify acceptance criteria

are pushed to design loosely
coupled components

ñ otherwise they are difficult to test

document the code, via an
executable description of it

incrementally build a regression
suite

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 21 / 57

The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

By running the test we:

detect errors when the context is
fresh in our mind

have a measure of progress, know
when to stop (i.e. when we are “done
enough”)

ñ avoid over-coding, “gold plating”

GOOS, Figure 1.1

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 21 / 57

The TDD development cycle (cont.)

1 red: write a failing test

2 green: write code that makes it pass

3 refactor the code to be as simple as
possible

GOOS, Figure 1.1

TDD golden rule

Never write a new functionality without a failing test.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 21 / 57

Step 1 — write a failing unit test

This looks easy. But requires some care:
write the test you’d want to read, ideally in 3 steps

1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (ideally: 3), write helper
methods. Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you’re not sure about
your assumptions

ñ if the test fails in unexpected
ways, fix it (= the test)

ñ if the diagnostic isn’t clear, fix it

unit test behavior, not methods
ñ for TDD test coverage is less

important than readable tests

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 22 / 57

Step 1 — write a failing unit test

This looks easy. But requires some care:
write the test you’d want to read, ideally in 3 steps

1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (ideally: 3), write helper
methods. Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you’re not sure about
your assumptions

ñ if the test fails in unexpected
ways, fix it (= the test)

ñ if the diagnostic isn’t clear, fix it

unit test behavior, not methods
ñ for TDD test coverage is less

important than readable tests

GOOS, Figure 5.2

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 22 / 57

Step 1 — write a failing unit test

This looks easy. But requires some care:
write the test you’d want to read, ideally in 3 steps

1 prepare test environment (input data and/or context)
2 invoke the logic under testing
3 verify that the results are correct

If it cannot be done in a few lines (ideally: 3), write helper
methods. Remember: tests are documentation too.

watch the test fail before making it
pass

ñ otherwise you’re not sure about
your assumptions

ñ if the test fails in unexpected
ways, fix it (= the test)

ñ if the diagnostic isn’t clear, fix it

unit test behavior, not methods
ñ for TDD test coverage is less

important than readable tests
GOOS, Figure 5.2

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 22 / 57

Step 2 — make the test pass (you won’t like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it — all sorts of dirty tricks
ñ e.g. return the constant value the test expects

obvious implementation — just type in the “obviously right”
implementation

ñ it takes experience to tune your confidence
ñ too confident: you will have bad surprises
ñ too prudent: you’ll fake it too often
ñ tip: use confidence increasingly, fall back when you get an

unexpected “red bar” (i.e. test failure)

triangulation — when you have more than 2–3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several
applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 23 / 57

Step 2 — make the test pass (you won’t like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it — all sorts of dirty tricks
ñ e.g. return the constant value the test expects

obvious implementation — just type in the “obviously right”
implementation

ñ it takes experience to tune your confidence
ñ too confident: you will have bad surprises
ñ too prudent: you’ll fake it too often
ñ tip: use confidence increasingly, fall back when you get an

unexpected “red bar” (i.e. test failure)

triangulation — when you have more than 2–3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several
applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 23 / 57

Step 2 — make the test pass (you won’t like this)

To make the test pass we allow ourselves to take shortcuts.

Common strategies to make the test pass:

fake it — all sorts of dirty tricks
ñ e.g. return the constant value the test expects

obvious implementation — just type in the “obviously right”
implementation

ñ it takes experience to tune your confidence
ñ too confident: you will have bad surprises
ñ too prudent: you’ll fake it too often
ñ tip: use confidence increasingly, fall back when you get an

unexpected “red bar” (i.e. test failure)

triangulation — when you have more than 2–3 tests that use the
same implementation, factor out a common one

ñ corollary: triangulation is commonly applied after several
applications of the previous techniques

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 23 / 57

Step 3 — refactor

At this point: we have a test, some new code, and we are reasonably
convinced that it is that code that makes the test pass.
We can now improve the code design, using tests as a safety net.

The goal of refactoring is to improve the design of existing code,
without altering its external behavior (see Fowler 1999, and the
dedicated lecture). We only give some of its intuitions here:

Code smells

duplicate code

long methods / large class

too many parameters

inappropriate intimacy

Liskov principle violation

complex conditionals

. . .

Techniques

encapsulate field

generalize type

conditionals → polymorphism

extract class / method

rename method / field

pull up / push down

. . .

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 24 / 57

TDD cycle — example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)
1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList’s return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ e.g. with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one still succeeds

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 25 / 57

TDD cycle — example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)
1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList’s return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ e.g. with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one still succeeds

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 25 / 57

TDD cycle — example

Goal: get a list of the elements contained in a binary tree

1 write a unit test that (pseudo-code)
1 creates a binary tree containing the elements 2, 3, 1
2 invokes a toList method on it
3 asserts that toList’s return value = [2; 3; 1]

Run all tests and ensures the new one fails as we expect
ñ e.g. with a compilation error due to the lack of toList

2 implement toList
ñ either by faking it: return([2; 3; 1])
ñ or by writing the implementation you consider obvious

Run all tests and ensures the new one succeeds

3 refactor, e.g.:
ñ write a proper implementation if you faked it
ñ clean up, clean up, clean up

Run all tests and ensures the new one still succeeds

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 25 / 57

TDD cycle — exercise

Exercise (bug fixing work-flow)

You have adopted TDD as the development process for your project.
Describe the work-flow you would use to fix a bug.

?

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 26 / 57

TDD cycle — exercise

Exercise (bug fixing work-flow)

You have adopted TDD as the development process for your project.
Describe the work-flow you would use to fix a bug.

Possible work-flow:

0 receive bug report
1 run all tests to ensure clean slate
2 create a new test that

ñ recreates the context of the (alleged) bug
ñ would succeed if the bug didn’t exist

3 run all tests
ñ new test fails → reproducible bug
ñ new test passes → unreproducible bug → investigate with

submitter

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 26 / 57

TDD cycle — exercise (cont.)

Exercise (bug fixing work-flow)

You have adopted TDD as the development process for your project.
Describe the work-flow you would use to fix a bug.

Possible work-flow:
5 fix the bug

ñ even with dirty workarounds, to ensure you’ve cornered it
6 run all tests

ñ all test passes → bingo!
ñ new test fails → try again (= go back to 5)
ñ old tests fail → regression, try again

7 refactor as needed
ñ from workaround, to proper fix

8 release fix (including the new test!)

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 26 / 57

Outline

1 Development processes and testing

2 Test-Driven Development

3 xUnit & jUnit

4 TDD case study

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 27 / 57

xUnit

xUnit collectively refers to a set of frameworks for automated unit
testing which share a common test coding style.
Each xUnit framework includes:

test case abstraction used to define tests

test suite abstraction used to organize test in test suites

test fixture mechanisms to factorize test initialization and clean up
code

test runner end-user program to discover and run test suites,
summarizing their results

xUnit frameworks exist for most languages and platforms, e.g.: 2

SUnit (Smalltalk)

JUnit (Java)

CppUnit (C++)

OUnit (OCaml)

Test::Unit (Ruby)

HUnit (Haskell)

NUnit (.NET)

unittest (Python)

Check (C)

2. https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 28 / 57

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

xUnit

xUnit collectively refers to a set of frameworks for automated unit
testing which share a common test coding style.
Each xUnit framework includes:

test case abstraction used to define tests

test suite abstraction used to organize test in test suites

test fixture mechanisms to factorize test initialization and clean up
code

test runner end-user program to discover and run test suites,
summarizing their results

xUnit frameworks exist for most languages and platforms, e.g.: 2

SUnit (Smalltalk)

JUnit (Java)

CppUnit (C++)

OUnit (OCaml)

Test::Unit (Ruby)

HUnit (Haskell)

NUnit (.NET)

unittest (Python)

Check (C)

2. https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 28 / 57

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

JUnit

JUnit is the original Java port of SUnit by Kent Beck and Erich Gamma.
It’s still the most established xUnit Java test framework.

We will use JUnit, and in particular JUnit 4, for this lecture examples.
The notions we will see are portable to other xUnit frameworks.

JUnit is Free Software, released under the Eclipse Public License; it is
available at http://junit.org/ and in most FOSS distributions
(package junit4 in distros of the Debian family).

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 29 / 57

http://junit.org/

JUnit — test discovery

import org.junit.Test ;
import static org.junit.Assert.* ;

public class TreeTest { // no inheritance needed

@Test
public void emptyTreeCreation () {

// 1. prepare
// 2. execute
// 3. assert

}

@Test
public void treeAddition () {

// 1. prepare
// 2. execute
// 3. assert

}
}
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 30 / 57

JUnit — assertions

The junit.framework.Assert (whose content you should import)
provides a plethora of assertion methods, e.g.:

assertTrue(String msg, Boolean test)
assertFalse(String msg, Boolean test)
assertNull(String msg, Boolean test)
assertEquals(String msg, Object expected, Object actual)
assertSame(String msg, Object expected, Object actual)

// note: order does matter
assertNot*(...)
fail (String msg) // fail unconditionally

Assertion methods also come in msg-less variants.

@Test
public void emptyTreeSize () {

Tree t = new BinaryTree () ; // 1. prepare
int s = t . size () ; // 2. execute
assertEquals (0 , s) ; // 3. assert

}
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 31 / 57

JUnit — asserting exceptions

Asserting that a test throws an exception is ugly:

wrap the whole test in try ... catch

do nothing in the catch branch

fail() at the end of the try branch

JUnit offers a nicer declarative alternative:

@Test (expected = IndexOutOfBoundsException.class) // 3. assert
public void arrayListBoundaries () {

L ist <String > l = new ArrayList <String > () ; // 1. prepare
l . get (1) ; // 2. execute

} // test w i l l f a i l i f i t reaches this point

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 32 / 57

Test isolation

The running of a test should not influence that of another.

I.e. test should be isolated.
Consequences:

test execution is order independent

to achieve isolation you need to split your system accordingly
ñ separation of concern, low coupling & high cohesion
ñ once again: tests help good design

each test should initialize its context (set up) before execution
and clean it up completely (tear down) afterwards

But we don’t want duplications in setup/teardown code!
Test fixtures to the rescue!

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 33 / 57

JUnit — fixtures
import org . jun i t . Before ;
import org . jun i t . After ;
public class ArrayTest {

private List <String > l ;

@Before // i . e . ca l l th is before each @Test method
public void setUp () {

l = new ArrayList <String > () ;
l . add(" foo ") ; l . add(" bar ") ; l . add("baz") ; }

@After // i . e . ca l l th is after each @Test method
public void tearDown () { l = null ; }

@Test
public void removeFirst () {

assertEquals (" foo " , l . remove (0)) ; }

@Test
public void removeSecond () {

assertEquals (" bar " , l . remove (1)) ; }
}
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 34 / 57

JUnit — test suites

You can (and should) organize your tests in test suites.

import org . jun i t . runners . Suite ;
import org . jun i t . runner . RunWith ;

@RunWith (Suite . class)
@Suite . SuiteClasses ({ // l i s t classes containing @Test

Behavior1Test . class ,
Behavior2Test . class ,
. . . ,
BehaviorNTest . class ,

})
public class BehaviorTestSuite { }

Unfortunately, there is no nice way to run all available tests (in a
package, for example). External test runners (Eclipse, Ant, etc.) use
reflection to address this problem.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 35 / 57

JUnit — running tests

Test outcome
Each @Test method has a 3-state outcome:

success the test criteria have been met (i.e. all assertions were
correct)

failure the test criteria have not been met (i.e. one or more
assertion were incorrect)

error test execution didn’t complete properly (e.g. an
exception not under test interrupted test execution)

Running tests will collect outcomes and provide a summary.
on the command line:

java -cp /usr/share/java/junit4.jar \
org.junit.runner.JUnitCore \
ClassName

in Eclipse: Run → Run as → JUnit Test Shift+Alt+X T
JUnit integration available for build tools, e.g. Ant, Maven, etc.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 36 / 57

Outline

1 Development processes and testing

2 Test-Driven Development

3 xUnit & jUnit

4 TDD case study

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 37 / 57

The money example

There are a several “great classics” among case studies to learn TDD
and in particular its “rhythm.” Some of the most famous are:

The money example — included in Kent Beck’s milestone book
on TDD

The bowling game — http://www.objectmentor.com/
resources/articles/xpepisode.htm

In the remainder we are going to discuss (some parts of) the money
example. Disclaimers:

the rhythm might seem slow at first, you will be tempted to use
obvious implementation more often than in the example (which
uses fake it very often)

that’s fine, you will find your own rhythm; in the meantime
starting slow will help understand the philosophy

we will take shortcuts, check out the full example in the book

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 38 / 57

http://www.objectmentor.com/resources/articles/xpepisode.htm
http://www.objectmentor.com/resources/articles/xpepisode.htm

Goal: multi-currency money

Instrument Shares Price Total
IBM 1000 25 25000
GE 400 100 40000

Total 65000

⇓

Instrument Shares Price Total
IBM 1000 25 USD 25000 USD
Novartis 400 150 CHF 60000 CHF

Total 65000 USD

From To Rate
CHF USD 1.5

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 39 / 57

Notation — To-do list

When applying TDD you will often stumble upon items you want to
work on (e.g. design improvements) which you have to postpone to
the appropriate phase (e.g. refactoring). To keep track of them we
will use to-do lists like this one:

ToDo

oh yes, we should really do this
but we are currently working on this
this is done
this too

Initial to-do list for the money example:
ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
5 USD * 2 = 10 USD

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 40 / 57

Multiplication

Write a failing unit test:

@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
f i ve . times (2) ;
assertEquals (10 , f i ve .amount) ;

}

Which doesn’t compile!

no class Dollar

no constructor

no method times(int)

no field amount

That’s fine! We progressed: we now have a more immediate goal to
achieve (make the test compile).

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 41 / 57

Multiplication

Write a failing unit test:

@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
f i ve . times (2) ;
assertEquals (10 , f i ve .amount) ;

}

Which doesn’t compile!

no class Dollar

no constructor

no method times(int)

no field amount

That’s fine! We progressed: we now have a more immediate goal to
achieve (make the test compile).

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 41 / 57

Multiplication

Write a failing unit test:

@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
f i ve . times (2) ;
assertEquals (10 , f i ve .amount) ;

}

Which doesn’t compile!

no class Dollar

no constructor

no method times(int)

no field amount

That’s fine! We progressed: we now have a more immediate goal to
achieve (make the test compile).

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 41 / 57

Multiplication (cont.)

Let’s address one compilation error at a time. . .

1 public class Dollar { };

2 public Dollar(int amount) { /*empty */};

3 public void times(int multiplier) { /*empty */};
4 public int amount;

YAY! Now the test compiles. . . and fails with a red bar.

Progress: we now have a measure of how far we are from
success—1 test is failing, we are just 1 test away from success.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 42 / 57

Multiplication (cont.)

Let’s address one compilation error at a time. . .
1 public class Dollar { };

2 public Dollar(int amount) { /*empty */};

3 public void times(int multiplier) { /*empty */};
4 public int amount;

YAY! Now the test compiles. . . and fails with a red bar.

Progress: we now have a measure of how far we are from
success—1 test is failing, we are just 1 test away from success.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 42 / 57

Multiplication (cont.)

Let’s address one compilation error at a time. . .
1 public class Dollar { };

2 public Dollar(int amount) { /*empty */};

3 public void times(int multiplier) { /*empty */};
4 public int amount;

YAY! Now the test compiles. . . and fails with a red bar.

Progress: we now have a measure of how far we are from
success—1 test is failing, we are just 1 test away from success.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 42 / 57

Multiplication (cont.)

Let’s make the bar green (you won’t like this)

public int amount = 10; //fake it

The test now passes!
But that obviously not the right solution so. . . refactor.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 43 / 57

Multiplication (cont.)

We currently have duplication in our code, even if it’s hidden:

the test contains a 5∗ 2 multiplication

the code contains 10(= 5∗ 2)
we want to factor out the duplication.

public Dollar (int amount) {
this .amount = amount ;

}
public void times (int mult ip l ier) {

this .amount *= mult ip l ier ;
}

ToDo
5 USD + 10 CHF = 10 USD if rate is 2:1
5 USD * 2 = 10 USD
make amount private
avoid Dollar side effects
allow to have cents

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 44 / 57

Multiplication (cont.)

We currently have duplication in our code, even if it’s hidden:

the test contains a 5∗ 2 multiplication

the code contains 10(= 5∗ 2)
we want to factor out the duplication.

public Dollar (int amount) {
this .amount = amount ;

}
public void times (int mult ip l ier) {

this .amount *= mult ip l ier ;
}

ToDo
5 USD + 10 CHF = 10 USD if rate is 2:1
5 USD * 2 = 10 USD
make amount private
avoid Dollar side effects
allow to have cents

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 44 / 57

Functional objects

@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
f i ve . times (2) ;
assertEquals (10 , f i ve .amount) ;
f i ve . times (3) ;
assertEquals (15 , f i ve .amount) ; // mmmmmhhhh. . .

}

⇓
@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
Dollar product = f i ve . times (2) ;
assertEquals (10 , product .amount) ;
product = f i ve . times (3) ;
assertEquals (15 , product .amount) ; // better design !

}

Red bar again!

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 45 / 57

Functional objects

@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
f i ve . times (2) ;
assertEquals (10 , f i ve .amount) ;
f i ve . times (3) ;
assertEquals (15 , f i ve .amount) ; // mmmmmhhhh. . .

} ⇓
@Test
public void dol larMult ip l icat ion () {

Dollar f i ve= new Dollar (5) ;
Dollar product = f i ve . times (2) ;
assertEquals (10 , product .amount) ;
product = f i ve . times (3) ;
assertEquals (15 , product .amount) ; // better design !

}

Red bar again!

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 45 / 57

Functional objects (cont.)

Let’s make it compile:

Dollar times (int mult ip l ier) {
amount *= mult ip l ier ;
return null ; // fake i t

}

test now compiles but doesn’t pass

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 46 / 57

Functional objects (cont.)

Let’s make it pass:

Dollar times (int mult ip l ier) {
return new Dollar (amount * mult ip l ier) ;

}

Green bar: YAY!

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
5 USD * 2 = 10 USD
make amount private
avoid Dollar side effects
allow to have cents
equality

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 47 / 57

Functional objects (cont.)

Let’s make it pass:

Dollar times (int mult ip l ier) {
return new Dollar (amount * mult ip l ier) ;

}

Green bar: YAY!

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
5 USD * 2 = 10 USD
make amount private
avoid Dollar side effects
allow to have cents
equality

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 47 / 57

Equality

@Test
public void dol larsEqual i ty () {

assertEquals (new Dollar (5) , new Dollar (5)) ;

// same as , but clearer than
// assertTrue (new Dollar (5) . equals (new Dollar (5))) ;

}

the test compiles (why?)

but fails (why?)

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 48 / 57

Equality (cont.)

public boolean equals (Object object) {
return true ;

}

Test passes!

But we want a proper implementation, so let’s prove we have a bug
in the current implementation. . . with a test!

@Test
public void dol lars Inequal i ty () {

assertNotEquals (new Dollar (5) , new Dollar (6)) ;
}

(indeed we have a bug)

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 49 / 57

Equality (cont.)

public boolean equals (Object object) {
return true ;

}

Test passes!

But we want a proper implementation, so let’s prove we have a bug
in the current implementation. . . with a test!

@Test
public void dol lars Inequal i ty () {

assertNotEquals (new Dollar (5) , new Dollar (6)) ;
}

(indeed we have a bug)

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 49 / 57

Equality (cont.)

We can now triangulate to a more general (and correct) solution:

public boolean equals (Object object) {
Dollar dol lar = (Dollar) object ;
return this .amount == dol lar .amount ;

}

Green bar!!

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
make amount private
allow to have cents
equality
equality against null
equality against Object
5 CHF * 2 = 10 CHF

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 50 / 57

CHF

@Test
public void f rancMult ipl icat ion () {

Franc f i ve = new Franc (5) ;
assertEquals (new Franc (10) , f i ve . times (2)) ;
assertEquals (new Franc (15) , f i ve . times (3)) ;

}

What’s the shortest step which will bring us to green bar?

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 51 / 57

CHF (cont.)

Copy/paste/adapt from Dollar!

class Franc {
private int amount ;
public Franc (int amount) { this .amount = amount ; }
public Franc times (int mult ip l ier) {

return new Franc (amount * mult ip l ier) ;
}
public boolean equals (Object object) {

Franc franc = (Franc) object ;
return this .amount = franc .amount ;

}
}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
Dollar/Franc duplication
common equals
common times

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 52 / 57

CHF (cont.)

Refactoring to eliminate duplication:

class Money { protected int amount ; }
class Dollar extends Money { /* . . . */ }
class Franc extends Money { /* . . . */ }

public boolean equals (Object object) { // how about equals?
Money dol lar = (Dollar) object ; // ???
return this .amount = dol lar .amount ;

}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
Dollar/Franc duplication
common equals
common times

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 53 / 57

CHF (cont.)

Refactoring to eliminate duplication:

class Money { protected int amount ; }
class Dollar extends Money { /* . . . */ }
class Franc extends Money { /* . . . */ }

public boolean equals (Object object) { // how about equals?
Money dol lar = (Dollar) object ; // ???
return this .amount = dol lar .amount ;

}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
Dollar/Franc duplication
common equals
common times

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 53 / 57

Equality redux

Bug!

@Test
public void equalityFrancDollar () { // th is passes

assertEquals (new Dollar (5) , new Dollar (5)) ;
assertEquals (new Franc (7) , new Franc (7)) ;

}

@Test
public void inequalityFrancDollar () { // exception !

assertNotEquals (new Dollar (5) , new Franc (6)) ;
assertNotEquals (new Franc (7) , new Dollar (8)) ;

}

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 54 / 57

Equality redux (cont.)

// pull−up in class Money
public boolean equals (Object object) {

Money money = (Money) object ;
return amount == money.amount

&& getClass () . equals (money. getClass ()) ;
}

ToDo

5 USD + 10 CHF = 10 USD if rate is 2:1
Dollar/Franc duplication
common equals
common times

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 55 / 57

Etc.

.

Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 56 / 57

Bibliography

Steve Freeman and Nat Pryce
Growing Object-Oriented Software, Guided by Tests 3

Addison-Wesley, 2009.

Kent Beck
Test Driven Development: By Example
Addison-Wesley, 2002.

Martin Fowler
Refactoring: Improving the Design of Existing Code
Addison-Wesley Professional, 1999.

Kent Beck
Simple smalltalk testing: With patterns
The Smalltalk Report 4.2 (1994): 16-18.
available at http://www.xprogramming.com/testfram.htm

3. referred to as the “GOOS” book in this lecture slides
Stefano Zacchiroli (Paris Diderot) Introduction to TDD 2014–2015 57 / 57

http://www.xprogramming.com/testfram.htm

	Development processes and testing
	Test-Driven Development
	xUnit & jUnit
	TDD case study

