
Génie Logiciel Avancé
Cours 8 — Mock Objects

Stefano Zacchiroli
zack@pps.univ-paris-diderot.fr

Laboratoire PPS, Université Paris Diderot

2014–2015

URL http://upsilon.cc/zack/teaching/1415/gla/
Copyright © 2013–2015 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 1 / 56

http://upsilon.cc/zack/teaching/1415/gla/
http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Outline

1 Testing object-oriented systems

2 Object mocking

3 Maintaining TDD — part 2
Test smells
Test readability
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 2 / 56

Outline

1 Testing object-oriented systems

2 Object mocking

3 Maintaining TDD — part 2
Test smells
Test readability
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 3 / 56

OO design and messaging

The big idea is “messaging” [. . .] The key in making great
and growable systems is much more to design how its
modules communicate rather than what their internal
properties and behaviors should be. — Alan Kay

Intuition
invoke method m on object obj ~ send message m to object obj

Upon reception of message m:

obj can react, sending other messages to his neighbors

obj can respond, returning a value or raising an exception

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 4 / 56

A web of objects

the behavior of an OO system is an
emergent property of object
composition

corollary: an OO system should be
organized as:

1 a set of composable objects
2 a declarative description of how to

compose them
« e.g. in the program’s main, or in

a configuration file
« by (only) changing object

composition, you can change the
behavior of the system

GOOS, Figure 2.1

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 5 / 56

Some objects are more equal than others

For design and testing purposes, we distinguish:

values (or “functional objects”) model immutable entities that
do not change over time. Values have no identity,
i.e. for the purposes of the system there is no
significant difference between different objects that
encode the same information

in Java, we usually compare values with .equals()

objects (or “computational objects”) model stateful entity,
whose state change over time, and model
computational processes (e.g. algorithms, local
behavior, etc). Different computational objects with—at
present—the same state have different identities and
cannot be exchanged, because their states can diverge
in the future (e.g. if they receive different messages)

in Java, we usually compare objects with ==

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 6 / 56

Protocols as interfaces

To easily change the global behavior of an OO system. . .
you need to be able to easily replace objects. . .
and to achieve that you need:

explicit object dependencies (see previous lecture)

establish common communication protocols
ñ our “interfaces” are no longer limited to static parameter/return

value typing, but now span dynamic object behavior

Result: all objects that follow the same protocol are mutually
interchangable, once instantiated on the same dependencies.

This is a significant mental shift from the static classification of
objects as instances of classes organized in a single hierarchy.
Usually you can have a single class hierarchy; but you can have many
different protocols, with multi-faceted classifications.

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 7 / 56

Tell, don’t ask — redux

“Train wreck” code: series of getters chained together like the
carriages in a train:

((EditSaveCustomizer) master . getModelisable ()
. getDockablePanel ()

. getCustomizer ())
. getSaveItem () . setEnabled (Boolean . FALSE . booleanValue ()) ;

what it actually means:

master . allowSavingOfCustomisations () ;

“Tell, don’t ask” principle

Don’t ask (recursively) access to objects internals that allow you to
perform a specific operation. Rather, tell the (outermost) object to
do something on your behalf; let it do the same, recursively, as
needed.

This makes your tests (and code in general) more resistant to
changes in object organization.
Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 8 / 56

Tell, don’t ask — redux (cont.)

When you really have to ask, do so explicitly via well-defined query
methods (i.e. queries that have clear names and well-defined
semantics):

public void reserveSeats (ReservationRequest request) {
for (Carriage carriage : carriages) {

i f (carriage . getSeats () . getPercentReserved () < percentReservedBarrier) {
request . reserveSeatsIn (carriage) ;
return ;

} }
request . cannotFindSeats () ; }

⇓
public void reserveSeats (ReservationRequest request) {

for (Carriage carriage : carriages) {
i f (carriage .hasSeatsAvailableWithin(percentReservedBarrier)) {

request . reserveSeatsIn (carriage) ;
return ;

} }
request . cannotFindSeats () ; }

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 9 / 56

Unit-testing collaborating objects

GOOS, Figure 2.4

/o\

We have an OO system and we want to
unit-test an object (the encircled one).

we want the test to be isolated
ñ failures in other objects shouldn’t

affect this object’s unit tests

testing method I/O is not enough

we need to test adherence to the
expected communication protocol

ñ does it send to its neighbor the
expected messages?

ñ in the right order?
ñ does it respond appropriately?

we have to do so without knowledge
about its internal state (“tell, don’t
ask”, remember?)

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 10 / 56

Example — testing observer

Observer design pattern — reminder

The observer pattern is a software design pattern in which
an object, called the subject, maintains a list of its
dependents, called observers, and notifies them
automatically of any state changes, usually by calling one
of their methods. — https://en.wikipedia.org/wiki/Observer_pattern

We want to unit test a Java implementation of the observer design
pattern.

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 11 / 56

https://en.wikipedia.org/wiki/Observer_pattern

Observer — what to test

https://en.wikipedia.org/wiki/File:Observer.svg

what should we test?

(many things, among which) that adding observers “works”, i.e.:
registerObserver does not throw an exception (not enough)
registerObserver returns void (?!?!)
register/unregister round trip (how w/o internal state?)
. . .

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 12 / 56

https://en.wikipedia.org/wiki/File:Observer.svg

Observer — what to test

https://en.wikipedia.org/wiki/File:Observer.svg

what should we test?
(many things, among which) that adding observers “works”

, i.e.:
registerObserver does not throw an exception (not enough)
registerObserver returns void (?!?!)
register/unregister round trip (how w/o internal state?)
. . .

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 12 / 56

https://en.wikipedia.org/wiki/File:Observer.svg

Observer — what to test

https://en.wikipedia.org/wiki/File:Observer.svg

what should we test?
(many things, among which) that adding observers “works”, i.e.:

registerObserver does not throw an exception (not enough)
registerObserver returns void (?!?!)
register/unregister round trip (how w/o internal state?)
. . .

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 12 / 56

https://en.wikipedia.org/wiki/File:Observer.svg

Observer — what to test (cont.)

adding observers “works”, i.e.:

Figure: 1 subject with 2 observers,
sequence diagram

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 13 / 56

Observer — what to test (cont.)

adding observers “works”, i.e.:

upon notification notify is
called on all registered
observers

upon registration notify is
not called

registering twice results in
double notifications

. . .

i.e. that our subject implements
the expected protocol Figure: 1 subject with 2 observers,

sequence diagram

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 13 / 56

Observer — what to test (cont.)

adding observers “works”, i.e.:

upon notification notify is
called on all registered
observers

upon registration notify is
not called

registering twice results in
double notifications

. . .

i.e. that our subject implements
the expected protocol Figure: 1 subject with 2 observers,

sequence diagram

let’s try testing this with JUnit. . .
Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 13 / 56

Example — interfaces

public interface Observer {
void noti fy (Str ing message) ;

}

public interface Observable {
void addObserver (Observer o) ;
void notifyObservers (Str ing msg) ;

}

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 14 / 56

Example — implementation

public class Tr iv ia lSubject implements Observable {
private ArrayList <Observer> observers =

new ArrayList <Observer > () ;

public void addObserver (Observer o) {
observers .add(o) ;

}

public void notifyObservers (Str ing msg) {
for (Observer o : observers) { o . not i fy (msg) ; }

}
}

public class StdoutObserver implements Observer {
public void noti fy (Str ing message) {

System . out . pr int ln (message) ;
}

}

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 15 / 56

Example — JUnit test, single observer

Test: trivial subject notifies single observer once upon notify

public class Tr iv ia lSubjectTest JUni t {
private Tr iv ia lSubject subj = new TrivialSubject() ;

@Test public void
public void notifiesSingleObserverOnceUponNotify () {

Observer obs = new Observer() {
public void noti fy (Str ing msg) {

throw new RuntimeException () ;
}

} ;
subj . addObserver (obs) ;
try {

subj.notifyObservers("triviality");
fail("subject did not call notify");

} catch (RuntimeException e) {
// do nothing , th is i s the expected behavior

}
}

}Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 16 / 56

Example — JUnit test, single observer (cont.)

Slightly more readable syntax for expectations, but the logic is still
convoluted:

public class Tr iv ia lSubjectTest JUni t {
private Tr iv ia lSubject subj = new Tr iv ia lSubject () ;

@Test(expected = RuntimeException.class)
public void notifiesSingleObserverOnceUponNotify () {

Observer obs = new Observer () {
public void noti fy (Str ing msg) {

throw new RuntimeException () ;
}

} ;
subj . addObserver (obs) ;
subj . notifyObservers (" t r i v i a l i t y ") ;

}
}

Trivia: are we actually checking that notify is called once?

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 17 / 56

Example — JUnit test, double observer

Test: trivial subject notifies twice a double observer upon notify

private int not i f i cat ions = 0;

private void bumpNotificationCount () {
not i f i cat ions ++;

}

@Test public void
notifiesDoubleObserverTwiceUponNotify () {

Observer obs = new Observer () {
public void noti fy (Str ing msg) {

bumpNotificationCount () ;
}

} ;
subj . addObserver (obs) ;
subj . addObserver (obs) ;
subj . notifyObservers (" t r i v i a l i t y ") ;
assertEquals (2 , not i f i cat ions) ;

}
Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 18 / 56

Example — JUnit test, double observer (cont.)

Discussion:

quite a bit of gymnastic to track the actual notification count
ñ mostly Java-specific: anonymous classes can’t easily affect the

surrounding context

readability: test is now arguably obscure;
at a glance one might ask:

ñ where does notifications come from?
ñ is it cleaned-up between tests?

the purpose of this test is very similar to the previous one (1 vs
2 notifications), but the test code looks very different

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 19 / 56

Problems with this approach

More generally, there are at least 3
classes of problems with using xUnit to
test object protocols:

to test an object, we instantiate
concrete classes for its neighbors

ñ creating “real” objects might be
difficult; we can only mitigate with
builders

ñ we sacrifice isolation: neighbors’
bugs might induce test failures GOOS, Figure 2.4

we piggyback expectations onto complex mechanisms
ñ e.g. scaffolding to count invocations. . .

we lack an expressive language for protocol expectations, e.g.:
ñ check that notify invocation count belongs to an interval
ñ expectations on arguments/return values
ñ expectations on invocation ordering
ñ . . .

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 20 / 56

Outline

1 Testing object-oriented systems

2 Object mocking

3 Maintaining TDD — part 2
Test smells
Test readability
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 21 / 56

Object mocking

Object mocking is a technique used
to address all these problems.

Idea
To test an object we replace its
neighbors with “fake” objects—called
mock objects—which are easier to
create than concrete objects.

We then define expectations on how
the object under test should behave
w.r.t. mock objects, i.e. which
messages the tested object
exchanges with mock objects.

GOOS, Figure 2.5

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 22 / 56

Mock scaffolding

In analogy with xUnit, mock
frameworks support mocking
offering:

mockery: objects that hold test
context, create mock objects,
and manage expectations

expressive DSL to define
readable expectations

GOOS, Figure 2.6

Mock test structure:
1 create required mock objects

2 create real objects, including the object under test

3 define expectations on how mock objects will be called
4 call the triggering method
5 assert result validity (and fulfillment of expectations)

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 23 / 56

Example — single observer test, with mocks

Test: trivial subject notifies single observer once upon notify 1

private Tr iv ia lSubject subj = new Tr iv ia lSubject () ;
@Rule
public JUnitRuleMockery context = new JUnitRuleMockery();

@Test
public void notifiesSingleObserverOnceUponNotify () {

f inal Observer obs = context.mock(Observer.class);
f inal String msg = " t r i v i a l i t y " ;
subj . addObserver (obs) ;
context . checking (new Expectations () { {

oneOf (obs).notify(msg);
} }) ;
subj . notifyObservers (msg) ;
// no assertions
// expectations imp l i c i t l y ver i f ied by jMock

}

1. using JUnit+jMock, we’ll discuss details later
Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 24 / 56

Example — double observer test, with mocks

Test: trivial subject notifies single observer once upon notify

@Test
public void notifiesDoubleObserverTwiceUponNotify () {

f inal Observer obs = context .mock(Observer . class) ;
f inal String msg = " t r i v i a l i t y " ;
subj . addObserver (obs) ;
subj.addObserver(obs);
context . checking (new Expectations () { {

exactly(2).of (obs).notify(msg);
} }) ;
subj . notifyObservers (msg) ;

}

Differences w.r.t. previous test (highlighted in the code):

extra addObserver call

oneOf → exactly(2).of

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 25 / 56

jMock

As it happens for xUnit, there exist several mock object frameworks,
for different platforms and languages.

In these slides we use jMock (2.x), originally by Steve Freeman and
Nat Pryce, who also popularized object mocking with the book
Growing Object-Oriented Software, Guided by Tests.

jMock is a popular mock framework for Java, which integrates with
JUnit’s test runner and assertion engine (for extra validation on top
of expectations).

homepage: http://www.jmock.org/

jMock is Free Software, BSD-licensed

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 26 / 56

http://www.jmock.org/

jMock — Hello, world!

import static org . jun i t . Assert . * ;
import org . jun i t . Rule ;
import org . jun i t . Test ;

import org . jmock . Expectations ;
import org . jmock . integration . junit4 . JUnitRuleMockery ;

public class TurtleDriverTest {
@Rule
public JUnitRuleMockery context = new JUnitRuleMockery () ;

private final Turtle tu r t l e = context .mock(Turtle . class) ;

// @Test methods here

}

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 27 / 56

jMock — Hello, world! (cont.)

@Test public void
goesAMinimumDistance () {

f inal Turtle turt le2 =
context .mock(Turtle . class , " turt le2 ") ;

f inal TurtleDriver driver =
new TurtleDriver (turtle1 , turt le2) ; // set up

context . checking (new Expectations () { { // expectations
ignoring (turt le2) ;
allowing (tu r t l e) . flashLEDs () ;
oneOf (tu r t l e) . turn (45) ;
oneOf (tu r t l e) . forward (with (greaterThan (2 0))) ;
atLeast (1) . of (tu r t l e) . stop () ;

} }) ;

dr iver . goNext (45) ; // ca l l the code
assertTrue (" driver has moved" ,

driver .hasMoved ()) ; // further assertions
}
Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 28 / 56

jMock — JUnit integration

import static org . jun i t . Assert . * ;
import org . jun i t . Rule ;
import org . jun i t . Test ;

import org . jmock . Expectations ;
import org . jmock . integration . junit4 . JUnitRuleMockery ;

public class TurtleDriverTest {
@Rule
public JUnitRuleMockery context = new JUnitRuleMockery () ;

@Rule is a JUnit annotation that subsumes @Before/@After
annotations, by grouping together context managers for test
methods
JUnitRuleMockery is a JUnit rule for jMock↔JUnit integration
you have to instantiate it to a (single) mockery object. context
is a canonical—and reasonable, for readability—name for the
instance variable

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 29 / 56

jMock — creating mock objects

private final Turtle tu r t l e = context .mock(Turtle . class) ;
[. . .]
f inal Turtle turt le2 = context .mock(Turtle . class , " turt le2 ") ;

we use the mockery to create mock objects

like most mock frameworks, jMock heavily uses reflection to
create mock objects. . .

. . . you have to pass an object representing the class you want
to mock; you do so via the .class attribute

jMock assigns mock object names and uses them in error
messages

ñ the canonical name is assigned to the first mock object of each
type

ñ you have to choose different names for extra objects
« e.g. "turtle2" in the example above

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 30 / 56

jMock — expectation blocks

You group expectations together in expectation blocks:

context . checking (new Expectations () { {
// expectations here , e .g . :
oneOf (tu r t l e) . turn (45) ;

} }) ;

What’s this double brace syntax?

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 31 / 56

jMock — expectation blocks (cont.)

Unraveling jMock’s syntax:

context . checking (
new Expectations () {

{
// expectations here , e .g . :
oneOf (tu r t l e) . turn (45) ;

}
}

) ;

new Expectations new instance of. . .

outer braces: anonymous subclass of org.jmock.Expectations

inner braces: instance initialization block, which will be called
after parent class constructor; within you can access:

ñ Expectation’s instance methods
ñ surrounding scope, with care (e.g. local variables must be final)

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 32 / 56

jMock — expectation blocks, discussion

Expectation blocks use a pretty clever hack on Java scoping rules.

Given that instance methods are visible by default in the
initialization block, we can use them to build a Domain Specific
Language (DSL) to define expectations, where we use method names
as “words” of the language.

GOOS, Figure A.1

Figure: as a result, code-completion in IDE can be very precise
Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 33 / 56

jMock — expectation DSL

Expectations have the following general form:

invocation-count(mock-object).method(argument-constraints);
inSequence(sequence-name);
when(state-machine.is(state-name));
will(action);
then(state-machine.is(new-state-name));

Example

oneOf (tu r t l e) . turn (45) ; // turt le must be told once to turn 45
atLeast (1) . of (tu r t l e) . stop () ; // must be told 1+ to stop
allowing (tu r t l e) . flashLEDs () ; // may be told 0+ times flash LEDs
allowing (tu r t l e) . queryPen () ; w i l l (returnValue (PEN_DOWN)) ;

// d i t to + the turt le w i l l always return PEN_DOWN
ignoring (turt le2) ; // no expectations on mock object turt le2

note the peculiar use of spacing
Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 34 / 56

jMock — invocation count

exactly(n).of exactly n invocations
oneOf = exactly(1).of

atLeast(n).of ≥ n invocations
atMost(n).of ≤ n invocations

between(n,m).of n ≤ invocations ≤m

allowing = atLeast(0).of, i.e. method can be
invoked any number of time

ignoring = allowing
never = atMost(0).of, i.e. method must

never be called, this is the default be-
havior for all mock object methods

allowing/ignoring/never can also be applied to entire objects, and
composed together, e.g.:

allowing (turt le2) ; // allow a l l method invocations . . .
never (turt le2) . stop () ; // . . . except stop ()

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 35 / 56

jMock — method invocation

The expected invocation counts—as well as other constraints,
e.g. on method arguments—apply to method invocations. To specify
the method you just “call” the method on the mock object.

oneOf (tu r t l e).turn (45) ; // matches turn () cal led with 45
oneOf (calculator).add (2 , 2) ; // matches add () cal led with 2 and 2

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 36 / 56

jMock — arguments constraints

Simple argument matching is done by simply providing the expected
arguments, like in the previous example:

oneOf (tu r t l e) . turn (45) ; // matches turn () cal led with 45
oneOf (calculator) . add(2, 2) ; // matches add () cal led with 2 and 2

In this case, arguments are compared for equality, i.e. using
.equals.

For more flexible matching you can use the with() clause and
argument matchers. . .

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 37 / 56

jMock — arguments matchers

equal(o) o.equals arg
same(o) o == arg

any(Class<T> t) arg has 2 type t
aNull(Class<T> t) ditto + arg is null

aNonNull(Class<T> t) ditto + arg is not null

oneOf (calculator) . add(with(equal(15)), with(any(int.class))) ;
// matches add () cal led with 15 and any other number

gotcha: either all arguments use with(), or none does

2. taking sub-typing into account
Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 38 / 56

Hamcrest

Even more flexible matching—for jMock, JUnit, and more general
use—is provided by the Hamcrest collection of matchers, e.g.:

object
ñ hasToString — test Object.toString

numbers
ñ closeTo — test floating point values are close to a given value
ñ greaterThan, greaterThanOrEqualTo, lessThan, lessThanOrEqualTo —

test ordering

collections
ñ array — test an array’s elements against an array of matchers
ñ hasEntry, hasKey, hasValue — test a map contains an entry, key or value
ñ hasItem, hasItems — test a collection contains elements
ñ hasItemInArray — test an array contains an element

text
ñ equalToIgnoringCase — test string equality ignoring case
ñ equalToIgnoringWhiteSpace — test string equality ignoring differences in

runs of whitespace
ñ containsString, endsWith, startsWith — test string matching

http://hamcrest.org/, Free Software, BSD-licensed

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 39 / 56

http://hamcrest.org/

jMock — actions

We are testing objects as peers conversing according to a protocol.

we already have enough expressivity to express expectations on
outgoing (sent) messages

actions allow to express expectations on incoming (received)
messages

You express actions within will() clauses placed after invocation
counts. Some predefined actions are:

returnValue(v) return value v
throwException(e) throw exception e
returnIterator(c) return iterator on collection c

returnIterator(v1, . . . , vn) return iterator on v1, . . . , vn

doAll(a1, . . . ,an) perform all ai actions

allowing (tu r t l e) . queryPen () ; w i l l (returnValue (PEN_DOWN)) ;
// queryPen can be invoked any number of times
// at each invocation , i t w i l l return PEN_DOWN

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 40 / 56

jMock — sequences

Thus far, we can only express stateless protocols, where all
expectations have the form “when you receive foo—no matter your
state—do bar”.

jMock offers two mechanisms to specify stateful protocols. The
simplest are sequences.

you can create multiple, independent sequences

invocation counts can be assigned to sequences

invocations in the same sequence must occur in order
ñ specifically: all invocations must occur before next method

f inal Sequence drawing = context . sequence ("drawing ") ;

allowing (tu r t l e) . queryColor () ; w i l l (returnValue (BLACK)) ;
atLeast (1) . of (tu r t l e) . forward (10) ; inSequence (drawing) ;
oneOf (tu r t l e) . turn (45) ; inSequence (drawing) ;
oneOf (tu r t l e) . forward (10) ; inSequence (drawing) ;

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 41 / 56

jMock — state machines

A more general mechanism to specify stateful protocols are state
machines (think of sequences as strictly linear state machines). You
can create multiple, independent state machines. You set/query the
current state using postfix clauses:

when(stateMachine.is("state")) invocation must occur
within state

when(stateMachine.isNot("state")) ditto, negated
then(stateMachine.is("state")) change to state

f inal States pen = context . states ("pen") . startsAs ("up") ;

allowing (tu r t l e) . queryColor () ; w i l l (returnValue (BLACK)) ;
allowing (tu r t l e) .penDown () ; then (pen . i s ("down")) ;
allowing (tu r t l e) . penUp () ; then (pen . i s ("up")) ;
atLeast (1) . of (tu r t l e) . forward (15) ; when(pen . i s ("down")) ;
one (tu r t l e) . turn (90) ; when(pen . i s ("down")) ;
one (tu r t l e) . forward (10) ; when(pen . i s ("down")) ;

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 42 / 56

Outline

1 Testing object-oriented systems

2 Object mocking

3 Maintaining TDD — part 2
Test smells
Test readability
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 43 / 56

Sommaire

1 Testing object-oriented systems

2 Object mocking

3 Maintaining TDD — part 2
Test smells
Test readability
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 44 / 56

Mocking concrete classes

Mantra: mock interfaces, not concrete classes.
jMock enforces this; to mock concrete classes you should use
the ClassImposteriser extension

Here is an example of concrete class mocking (by hand):

public class MusicCentreTest {
@Test public void
startsCdPlayerAtTimeRequested () {

f inal MutableTime scheduledTime = new MutableTime () ;
CdPlayer player = new CdPlayer() {

@Override
public void scheduleToStartAt (Time startTime) {

scheduledTime . set (startTime) ;
}

}
MusicCentre centre = new MusicCentre (player) ;
centre . startMediaAt (LATER) ;
assertEquals (LATER, scheduledTime . get ()) ;

}
}Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 45 / 56

Mocking concrete classes (cont.)

Problems with mocking concrete classes:
1 the relationship between CdPlayer and MusicCentre remains

implicit
ñ whereas if you have an interface, you re be forced to think about

that relationship and define it
ñ in this example, it is too much for a MusicCentre to depend on

a CdPlayer, as it only needs the start and stop methods
ñ wouldn’t it be better to define a ScheduledDevice interface,

and have MusicCentre depend on it? (yes)

2 being forced to think about interfaces also forces you to name
interfaces. That, in turn, helps in clarifying the domain

In some cases you’re forced to mock concrete classes

e.g. when testing code you can’t change
best practices for those (rare!) cases:

1 only override public methods, not internal features
2 do not make public internal features, otherwise you tie the test

to the current implementation

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 46 / 56

Mocking concrete classes (cont.)

Problems with mocking concrete classes:
1 the relationship between CdPlayer and MusicCentre remains

implicit
ñ whereas if you have an interface, you re be forced to think about

that relationship and define it
ñ in this example, it is too much for a MusicCentre to depend on

a CdPlayer, as it only needs the start and stop methods
ñ wouldn’t it be better to define a ScheduledDevice interface,

and have MusicCentre depend on it? (yes)

2 being forced to think about interfaces also forces you to name
interfaces. That, in turn, helps in clarifying the domain

In some cases you’re forced to mock concrete classes

e.g. when testing code you can’t change
best practices for those (rare!) cases:

1 only override public methods, not internal features
2 do not make public internal features, otherwise you tie the test

to the current implementation

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 46 / 56

Don’t mock values

Mantra: don’t mock values, just create instances and use them.

@Test public void sumsTotalRunningTime () {
Show show = new Show () ;
Video video1 = context.mock(Video.class); // don’t do this
Video video2 = context .mock(Video . class , " video2 ") ;
context . checking (new Expectations () { {

one (video1) . time () ; w i l l (returnValue (40)) ;
one (video2) . time () ; w i l l (returnValue (23)) ; } }) ;

show.add(video1) ;
show.add(video2) ;
assertEqual (63 , show. runningTime ())

}

To identify a value (heuristics):

it’s immutable

you can’t think of a meaningful name for the corresponding
interface (names likes VideoImpl don’t count)

Note: if a value is too hard to build, don’t mock it, write a builder
Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 47 / 56

Too many expectations

Too many expectations will make very difficult to understand what is
under test, as opposed to setup code, e.g.:

@Test public void
decidesCasesWhenFirstPartyIsReady () {

context . checking (new Expectations () { {
oneOf (f i r s t P a r t) . isReady () ; w i l l (returnValue (true)) ;
oneOf (organizer) . getAdjudicator () ;

w i l l (returnValue (adjudicator)) ;
oneOf (adjudicator) . findCase (f i r s tPar ty , issue) ;

w i l l (returnValue (case)) ;
oneOf (thirdParty) . proceedWith (case) ;

} }) ;
claimsProcessor . adjudicateIfReady (thirdParty , issue) ;

}

i.e. everything looks equally important

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 48 / 56

Too many expectations (cont.)

Tips to improve:
spot errors in the specification: do all methods need to be
called exactly once to be correct? (e.g. query methods can be
safely called multiple times)
distinguish between: stubs, simulations of real behavior,
expectations, and assertions

⇓
@Test public void
decidesCasesWhenFirstPartyIsReady () {

context . checking (new Expectations () { {
allowing (f i r s t P a r t) . isReady () ; w i l l (returnValue (true)) ;
allowing (organizer) . getAdjudicator () ;

w i l l (returnValue (adjudicator)) ;
allowing (adjudicator) . findCase (f i r s tPar ty , issue) ;

w i l l (returnValue (case)) ;
oneOf(thirdParty).proceedWith(case);

} }) ;
claimsProcessor . adjudicateIfReady (thirdParty , issue) ;

}
Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 49 / 56

Sommaire

1 Testing object-oriented systems

2 Object mocking

3 Maintaining TDD — part 2
Test smells
Test readability
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 50 / 56

What not how

Mantra: move out of the test everything that doesn’t contribute to
the description of the feature under test.

use helpers methods, queries, builders
write custom matchers to encode predicates for assertions and
expectations

assertThat (instruments ,
hasItem (instrumentWithPrice (greaterThan (8 1)))) ;

private Matcher<? super Instrument>
instrumentWithPrice (Matcher<? super Integer> priceMatcher) {

return new FeatureMatcher<Instrument , Integer >(
priceMatcher , " instrument at price " , " price ") {

@Override
protected Integer featureValueOf (Instrument actual) {

return actual . getStr ikePr ice () ;
}

} ;
}
Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 51 / 56

Assertions and expectations

Mantra: don’t assert/expect too much.
Only assert/expect at a level of detail corresponding to the correct
behavior of the code under test.

E.g.: is it really relevant that a test raise a specific exception or
would any exception do?
It depends. Ask yourself the question!
In the latter case prefer code like:

oneOf (fai lureReporter) . cannotTranslateMessage (
with (SNIPER_ID) , with (badMessage) ,
with (any(RuntimeException.class))) ;

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 52 / 56

Sommaire

1 Testing object-oriented systems

2 Object mocking

3 Maintaining TDD — part 2
Test smells
Test readability
Test diagnostics

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 53 / 56

Highlight detail with matchers

When using custom matchers (Hamcrest or others), you often have
the possibility to customize the mismatch messages. That is a very
powerful tool to have effective diagnostic in case of failure (“listen to
the test,” remember?), e.g.:

Expected : a col lect ion containing instrument at price a value
greater than <81>

but : price was <50>, price was <72>, price was <31>

See API details at, e.g. https://code.google.com/p/hamcrest/
wiki/Tutorial#Writing_custom_matchers

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 54 / 56

https://code.google.com/p/hamcrest/wiki/Tutorial#Writing_custom_matchers
https://code.google.com/p/hamcrest/wiki/Tutorial#Writing_custom_matchers

Enforcing expectations

If your test has both assertions and expectations, the order in which
they are verified matters.

in most mock frameworks, expectations are checked at the end
of the test body

if a message exchange didn’t work properly and returned a
wrong value, it might trigger bogus assertion failures

in jMock, you can anticipate expectation verification using
assertIsSatisfied on the mockery

context.assertIsSatisfied();
assertThat (result , equalTo (expectedResult)) ;

remember: always “watch the test fail” before making it pass, it will
point you at the need of using assertIsSatisfied

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 55 / 56

Tracer object

Some times you just need to follow an object through the protocol.
You can do so by using tracer objects, which have no other purpose,
nor content, than being traced. E.g.:

f inal LineItem item1 = context .mock(LineItem . class , " item1") ;
f inal LineItem item2 = context .mock(LineItem . class , " item2") ;
f inal B i l l i ng b i l l i ng = context .mock(B i l l i ng . class) ;
@Test public void requestsInvoiceForPurchasedItems () {

context . checking (new Expectations () { {
oneOf (b i l l i ng) . add(item1) ;
oneOf (b i l l i ng) . add(item2) ; } }) ;

customer . purchase (item1 , item2) ;
customer . requestInvoice (b i l l i ng) ;

}

Possibly resulting diagnostic:

not all expectations were satisfied. Expectations:
expected once, already invoked 1 time: billing.add(<item1>)
! expected once, never invoked: billing.add(<item2>>)

what happened before this: billing.add(<item1>)

Stefano Zacchiroli (Paris Diderot) Mock Objects 2014–2015 56 / 56

	Testing object-oriented systems
	Object mocking
	Maintaining TDD — part 2
	Test smells
	Test readability
	Test diagnostics

