
Conduite de Projet
Cours 2 — Version Control

Stefano Zacchiroli
zack@irif.fr

Laboratoire IRIF, Université Paris Diderot

2019–2020

URL https://upsilon.cc/zack/teaching/1920/cproj/
Copyright © 2012–2019 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-sa/4.0/

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 1 / 43

https://upsilon.cc/zack/teaching/1920/cproj/
https://creativecommons.org/licenses/by-sa/4.0/

Sommaire

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 2 / 43

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 3 / 43

Change

During the life time of a software project, everything changes:

bugs are discovered and have to be fixed (code)

system requirements change and need to be implemented

external dependencies change
ñ e.g. new version of hardware and software you depend upon

competitors might catch up

Most software systems can be thought of as a set of evolving
versions

potentially, each of them has to be maintained concurrently with
the others

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 4 / 43

Configuration management

Definition (Configuration Management)

Configuration Management (CM) is concerned with the policies,
processes, and tools for managing changing software systems.

(Sommerville)

Why?

it is easy to lose track of which changes have been incorporated
in each version

ñ things get even messier with versions which have to be
maintained in parallel

minimize risks of working on the wrong version

useful for solo projects ⇒ backup on steroids + it’s easy to
forgot which change has been made and why

useful for team project ⇒ help in praising(, blaming), know who
to ask

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 5 / 43

Configuration management activities

Change management keep track of request for changes (from both
customers and developers), evaluate
costs/risks/benefits, making committment to change

Version management (or version control, revision control, etc.)
keeping track of multiple version of (software)
components and ensure unrelated changes do not
interfere

System building assembling program components, data, and
libraries into executable systems

Release management preparing software for external release and
keep track of which version is in use at which customer
site

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 6 / 43

Configuration management activities

Change management keep track of request for changes (from both
customers and developers), evaluate
costs/risks/benefits, making committment to change

Version management (or version control, revision control, etc.)
keeping track of multiple version of (software)
components and ensure unrelated changes do not
interfere

System building assembling program components, data, and
libraries into executable systems

Release management preparing software for external release and
keep track of which version is in use at which customer
site

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 6 / 43

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 7 / 43

Before version control: diff & patch

The Swiss army knife of change management: diff & patch

diff compute the difference D among a file A and a file B

can be applied recursively to directories

patch apply a difference D (usually computed using diff) to a
file A (possibly producing a new file B)

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 8 / 43

diff & patch

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 9 / 43

diff & patch — discussion

patches are (were) usually conveyed via email messages to the
main software maintainer

best practices
ñ add to emails clear and concise explanations of the purpose of

the attached patch
ñ do the same in the source code added by the patch

« nothing new: usual good coding practice; it becomes more
important only because the number of software authors grows. . .)

ñ http://tldp.org/HOWTO/
Software-Release-Practice-HOWTO/patching.html

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 10 / 43

http://tldp.org/HOWTO/Software-Release-Practice-HOWTO/patching.html
http://tldp.org/HOWTO/Software-Release-Practice-HOWTO/patching.html

Poor man’s version control

Projects by a license student often look like this:

lucien > ls
a . out
projet .ml
projet−save .ml
projet−hier .ml
projet−marche−vraiement .ml
projet−dernier .ml

what are the differences among the 5 source files?

what are the relationships among them?

hard to answer without specific utilities

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 11 / 43

Poor men’s version control (plural)

Project by a group of license students:

lucien > ls ~joe l /projet lucien > ls ~ju l ien /projet
a . out a . out
module .ml module .ml
module−de−ju l ien−qui−marche .ml projet .ml
projet .ml projet−recu−de−joe l .ml
projet−save .ml module−envoye−a−joe l .ml
projet−hier .ml
projet−marche−vraiement .ml
projet−dernier .ml

What is the right combination of projet.ml and module.ml to obtain
a good grade at the exam?

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 12 / 43

diff & patch to the rescue

To exchange projet.ml and module.ml a group of students can rely
on emails, diff, and patch (a huge improvement!)
Julien

lucien > d i f f −Nurp projet−hier .ml projet .ml > mescorrections
lucien > mail −s " Voici mes modifs " joel@lucien < mescorrections

Joel

lucien > mail
Mail version 8.1.2 01/15/2001. Type ? for help .
> 1 julien@home Fr i Sep 13 20:06 96/4309 voic i mes modifs
& s 1 /tmp/changes
& x
lucien > patch < /tmp/changes

Julien’s changes between projet-hier.ml and projet.ml are now
integrated in Joel’s copy of projet.ml (hoping no conflicting changes
have been made by Joel. . .)

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 13 / 43

diff & patch: except that. . .

Nonetheless, on exam day nothing works, although it worked just
the day before. Panicking, you’ll try to understand:

what has changed

who did the change
ñ probably you don’t care about why, but still. . .

when it has been done

which state, not including that change, works properly

how to get back to that state

⇒ you (badly) need a real Version Control System

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 14 / 43

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 15 / 43

Version Control System (VCS)

A version control system

manage specific artifacts which form your source code
ñ files, directories, their attributes, etc.

is able to store changes to those artifacts (a VCS implements the
notion of version for source code)

ñ who has done a change
ñ wrt which state
ñ why
ñ when

can show the differences among different (stored) states

can go back in time and restore a previous state

can manage concurrent work among developers, distributing
the changes among them

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 16 / 43

Basic VCS concepts

A few basic concepts are shared across VCSs: 1

revision (or version) a specific state, or point in time, of the
content tracked by the VCS

granularity and scope vary

history a set of revisions, (partially) ordered

1. although the actual naming changes from system to system; we’ll stick to the
naming presented here
Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 17 / 43

Basic VCS concepts (cont.)

A few basic concepts are shared across VCSs: 1

repository (or depot) where the tracked content and all its history,
as known to the VCS, is stored

might be local or remote

working copy a local copy of a revision, which might be acted upon

where the “real” work happens

checkout (or clone) the action of creating a working copy from a
repository

1. although the actual naming changes from system to system; we’ll stick to the
naming presented here
Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 17 / 43

Basic VCS concepts (cont.)

A few basic concepts are shared across VCSs: 1

change (or delta) a specific modification to (or with respect to)
the content tracked by the VCS

granularity vary

commit (as a verb) the act of writing a change performed in the
working copy back to the repository

= adding a new revision to the history

commit (as a substantive) same as change, for changes that
have been committed

diff the act of (or the result of) inspecting the differences
among two revisions, or among a revision and the
working copy

inspection format is usually diff

1. although the actual naming changes from system to system; we’ll stick to the
naming presented here
Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 17 / 43

Branching and merging

branch (verb) the act of duplicating (or
“forking”) a specific revision in
history, to open up a new line of
development

branches are usually named

branch (substantive) subset of history
rooted at a fork point and
extending until the next merge
point

merge (verb) the act of joining together
multiple lines of development,
reconciling all their changes
together

merge (substantive) the point in history
where the merge happens

http://en.wikipedia.org/wiki/File:

Revision_controlled_project_visualization-2010-24-02.svg

1

2

3

4

5

6

7

8

10

9

T1

T2

Trunks

Branches

Merges

Tags

Discontinued
development

branch
Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 18 / 43

http://en.wikipedia.org/wiki/File:Revision_controlled_project_visualization-2010-24-02.svg
http://en.wikipedia.org/wiki/File:Revision_controlled_project_visualization-2010-24-02.svg

Branching and merging (cont.)

assuming an idealized purely functional
model, content history can then be
depicted as a direct acyclic graph

parallel changes may or may not be
compatible. . .

conflict the situation occurring when, upon
a merge attempt, changes from
involved branches cannot be
reconciled

solving a conflict means applying extra
changes to combine non
(automatically) reconcilable
changes or choose a subset of
them

1

2

3

4

5

6

7

8

10

9

T1

T2

Trunks

Branches

Merges

Tags

Discontinued
development

branch

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 18 / 43

Branching and merging (cont.)

tag (or label) a symbolic name attached
to a particular revision in history

head (or tip) the (moving) tag always
associated to the most recent
commit; might be limited to a
specific “special” branch, such as:

trunk (or master) the unique line of
development which is not a branch

peculiar: treating a specific
branch as special is not
necessary for the idealized
model to work

1

2

3

4

5

6

7

8

10

9

T1

T2

Trunks

Branches

Merges

Tags

Discontinued
development

branch

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 18 / 43

Brief history of VCSs

1972 SCCS (Source Code Control System), commercial (AT&T)
UNIX-es, part of the Single UNIX Specification; scope:
file; modern clone (for compatibility only): cssc

1982 RCS (Revision Control System) GNU-based UNIX-es;
scope: file; Free-er and generally considered more
evolved than SCCS, currently maintained by the GNU
Project

1990 CVS (Concurrent Version System), client-server
paradigm; scope: set of files

late 1990’s TeamWare, BitKeeper; early attempt at distributed
version control system; proprietary

2000 Subversion (SVN); client-server, addressing many
defects of CVS

2001– Distributed VCS (DVCS) golden age: GNU arch (2001),
Darcs (2002), SVK (2003), Monotone (2003), Git (2005),
Mercurial (2005), Bazaar (2005) more on this later. . .

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 19 / 43

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 20 / 43

Revision Control System (RCS)

one of the oldest system (1982)

typical of the commercial UNIX era

scope: single file
ñ although the repositories for several files can be stored in the

same “shared” place

repository
ñ file,v where file is the original name of the checked in file
ñ changes are stored as incremental reverse diffs
ñ minimization of secondary storage: delta compression is

triggered by deletion of intermediate revisions

concurrency model:
ñ pessimistic approach: one have to acquire explicit locks before

making modification; by default working copies are read-only
ñ as the working copy is shared among users, this enforced a

rather heavy mutual exclusion discipline

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 21 / 43

RCS — basic operations

commit ci FILE (without lock)
ci -l FILE (with lock)

checkout co FILE (without lock)
co -l FILE (with lock)

diff rcsdiff -rVERSION1 -rVERSION2 FILE

history rlog FILE

acquire lock rcs -l FILE

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 22 / 43

RCS — basic operations

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 22 / 43

RCS — branching and merging

Versions in RCS are trees, where branches are reflected in the syntax
of versions. “Minor” version numbers are increased automatically by
RCS upon commit; “major” numbers can be specified explicitly by
the user upon commit.

history with single branch

(1.1) -> (1.2) -> (1.3) -> (1.4) -> (2.1) -> (2.2)

history with multiple branches

(1.1) -> (1.2) -> (1.3) -> (1.4) -> (2.1) -> (2.2)
\
----> (1.3.1.1)

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 23 / 43

RCS — branching and merging operations

branch ci -rVERSION FILE
example: ci -r2 foo.ml

branch checkout co -rVERSION FILE

merge rcsmerge -p -rVERSION1 -rVERSION2 FILE > RESULT

preforms a 3-way diff (a-la diff3) among old
(common) VERSION1, and the two new versions:
VERSION2 and the current state of FILE

Example

rcsmerge -p -r1 -r3 foo.ml > foo.ml.new

merges the differences among branch 1 and 3 of foo.ml, with
differences among branch 1 and the current version of foo.ml; save
the result to foo.ml.new

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 24 / 43

RCS — branching and merging operations

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 24 / 43

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 25 / 43

Concurrent Versions System (CVS)

a significant (r)evolution in the history of VCS

designed to address the (too) constraining mutual exclusion
discipline enforced by RCS (hence the emphasis on concurrent)

client-server model
ñ enforce decoupling of repository and working copy
ñ several working copies exist—generally one for each

developer—and can be acted upon independently
ñ commands and processes to:

« “push” local changes from working copies to the repository
« “pull” changes (made by others) from the repository and merge it

with the local (uncommitted) changes
« deal with conflicts and try to avoid they hit the repository

ñ note: the repository is used as the orchestrator and as the sole
data storage

« “local commits” are not possible
« disconnected operations are heavily limited

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 26 / 43

CVS — some details

scope: a project (i.e., a tree of file and directories)
built as a set of scripts on top of RCS

ñ each file has its own ,v file stored in the repository
ñ each file has its own set of RCS versions (1.1, 2.3, 1.1.2.4, etc.)
ñ a very cool hack, but still a hack

the repository can be either local (i.e., on the same machine of
the working copy) or remote (accessible through the network;
common scenario)
concurrency model:

ñ optimistic approach: working copies can be acted upon by
default; given that working copies are independent from each
other, work is concurrent by default

ñ conflicts are noticed upon commit and must be solved locally
(i.e., commits prior to merges are forbidden)

ñ explicit locks are permitted via dedicated actions

curiosity: one of the first popular UNIX commands relying on
sub-commands

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 27 / 43

CVS — basic operations

repository setup export CVSROOT=SOME/DIR
cvs init

create a project cd PROJECT-DIR
cvs import -d NAME VENDOR-NAME RELEASE-NAME
example: cvs import -d coolhack zack initial

checkout cvs checkout NAME

status get information about the status of the working copy
with respect to (the last contact with) the repository

commit cvs commit [FILE...]
example: cvs commit -m ’fix segmentation fault’ foo.c

update (merge changes from the repository in the local copy)
cvs update -d

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 28 / 43

CVS — basic operations (cont.)

history cvs log

diff cvs diff [FILE...] (among working copy and last update)

diff cvs diff -rVERSION1 -rVERSION2 [FILE...]

remove file cvs rm FILE (schedule removal; needs commit)

add file cvs add FILE (schedule addition; needs commit)

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 28 / 43

CVS — basic operations

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 28 / 43

CVS — branching and merging operations

tag cvs tag TAG-NAME

branch cvs tag −b BRANCH−NAME
work on trunk continues
cvs update −r BRANCH−NAME
work on branch . . .
cvs update −A
go back working on trunk

merge cvs update −j BRANCH−NAME # merge changes (wc)
cvs commit

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 29 / 43

CVS — branching and merging operations

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 30 / 43

CVS — discussion

revolutionary for its time
affected by severe limitations nonetheless:

revisions are per file, i.e., there is no knowledge of
repository-wide revisions (they can be emulated by tags, but. . .)

no knowledge of several common file-system features (e.g.,
attributes, symlink, file move)

files are considered textual by default; ad-hoc and limited
support for binary content

branch operations are expensive (underlying assumption: most
of the work happens in trunk)

commits are not atomic operations

very little support for disconnected operations (e.g., painful
when you’re hacking on a plane)

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 31 / 43

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 32 / 43

Subversion (SVN) — context

Started in 2000 to overcome CVS limitations.

Historical context:
In the world of open source software, the Concurrent Ver-

sion System (CVS) has long been the tool of choice for ver-
sion control. And rightly so. CVS itself is free software,
and its non-restrictive modus operandi and support for net-
worked operation—which allow dozens of geographically dis-
persed programmers to share their work—fits the collabora-
tive nature of the open-source world very well. CVS and its
semi-chaotic development model have become cornerstones
of open-source.

— Collins-Sussman

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 33 / 43

Subversion (SVN)

same paradigm of CVS: client-server + independent working
copies

features (i.e., “bug fixes” w.r.t. CVS):
ñ atomic commits
ñ tracking (in the history!) of file-system level operations (copy,

move, remove, etc.)
ñ global versioning (rather than per-file versioning)
ñ support for symlinks and (some) file-system level metadata
ñ cheap (server-side) branches
ñ some (but not much) support for disconnected operations (most

notably: diff among working copy and HEAD)

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 34 / 43

SVN — basic operations

To increase adoption chances within CVS circles, SVN command line
interface has been designed to be as compatible as possible to CVS
interface. The strategy has worked very well! Most commands work
as in CVS.

basic operations svn checkout, svn status, svn add, svn remove,
svn commit, svn diff, svn log, svn update, . . .

repository setup svnadmin create REPO-PATH

create a project (actually: create a directory in a repository)
svn checkout REPO-PATH
svn mkdir DIR

svn commit

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 35 / 43

SVN — basic operations

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 35 / 43

SVN — branching and merging

branches in SVN are part of the versioned tree

to create a branch, one makes a copy of an existing directory to
a new path

ñ development can then proceed independently in the original and
new directory

ñ branches are cheap (“shallow copies”) on the repository side (but
not on the client side)

ñ partial checkouts are possible, to avoid forcing clients to keep all
branches at once

tags work in the same way; the only difference is that a tag
doesn’t (i.e., shouldn’t) be committed to

specific path conventions are suggested. . .

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 36 / 43

SVN — path conventions
project /

trunk/
main .ml
module−foo .ml
quux/
. . .

branches/
feature1/

main .ml
module−foo .ml
quux/
. . .

feature2/
main .ml
module−foo .ml
quux/
. . .

tags/
1.0−rc1/

main .ml
module−foo .ml
quux/
. . .

1.0/
main .ml
module−foo .ml
quux/
. . .

1.1/
main .ml
module−foo .ml
quux/
. . .

Recommended path conventions.

No strict requirement (but still
recommended for uniformity
across projects).

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 37 / 43

SVN — branching and merging example

branching off trunk

$ svn cp −m " Creating branch for feature A" \
/trunk/component1 /branches/zack−component1−featureA

$ svn log −v /branches/zack−component1−featureA
prints revision number, say 123

updating the branch

$ svn merge −r 123:HEAD /trunk/component1 .
test new code from master
$ svn commit −m’sync with master ’
Revision 256.

merging into trunk

$ cd /trunk/component1
$ svn merge −r 123:HEAD /branches/zack−component1−featureA
$ svn commit −m’ integrate feature A by Zack ’
$

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 38 / 43

SVN — branching and merging example (better)

$ cd /trunk/component1
$ svn merge −−reintegrate REPO−PATH/branches/zack−component1−featureA
$ svn commit −m’ integrate feature A by Zack ’
$

keep track of merged revisions via svn:mergeinfo property

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 39 / 43

SVN — branching and merging

Demo

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 40 / 43

Outline

1 Configuration management

2 diff & patch

3 Version control concepts

4 Revision Control System (RCS)

5 Concurrent Versions System (CVS)

6 Subversion

7 Git

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 41 / 43

A Git tutorial

We will follow the excellent tutorial:

Git 101
Scott Chacon

GitHub
https://www.slideshare.net/chacon/git-101-presentation

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 42 / 43

https://www.slideshare.net/chacon/git-101-presentation

References

Aiello, Sachs
Configuration Management Best Practices: Practical Methods that
Work in the Real World
Addison-Wesley, 1st edition, 2010

Chacon
Pro Git
Apress, 2005. http://progit.org/book/

Stefano Zacchiroli (Paris Diderot) Version Control 2019–2020 43 / 43

http://progit.org/book/

	Configuration management
	diff & patch
	Version control concepts
	Revision Control System (RCS)
	Concurrent Versions System (CVS)
	Subversion
	Git

