
Conduite de Projet
Cours 5 — The C build process

Stefano Zacchiroli
zack@irif.fr

Laboratoire IRIF, Université de Paris

2019–2020

URL https://upsilon.cc/zack/teaching/1920/cproj/
Copyright © 2012–2019 Stefano Zacchiroli
License Creative Commons Attribution-ShareAlike 4.0 International License

https://creativecommons.org/licenses/by-sa/4.0/

Stefano Zacchiroli (Université de Paris) Build 2019–2020 1 / 37

https://upsilon.cc/zack/teaching/1920/cproj/
https://creativecommons.org/licenses/by-sa/4.0/

Outline

1 The build process

2 The C preprocessor

3 The GNU Compiler Collection (GCC)

Stefano Zacchiroli (Université de Paris) Build 2019–2020 2 / 37

Outline

1 The build process

2 The C preprocessor

3 The GNU Compiler Collection (GCC)

Stefano Zacchiroli (Université de Paris) Build 2019–2020 3 / 37

Compiler

Definition (compiler)

A compiler is a computer program that transforms source code
(written in some source language) into another computer language
called target language.

usually, but not always, the source language is a programming
language that humans (programmers) are able to understand

ñ e.g., C, Java, OCaml, Scala, Python, Ruby, F#, Matlab, . . .

usually, but not always, the target language is object code that
can be executed by a hardware platform

ñ e.g., x86-32, x86-64, ARM7, powerpc, etc. (native compilers)
ñ e.g., JVM bytecode, Python bytecode, etc. (bytecode compilers)

Intuition

A compiler is a translator from one language to another.

Stefano Zacchiroli (Université de Paris) Build 2019–2020 4 / 37

Interpreter (digression)

Question

What is an interpreter then?

An interpreter is an all-in-one computer program that compiles and
execute source code on-the-fly.

Pro/con:

3 higher portability

7 higher startup time

source-code distribution

Stefano Zacchiroli (Université de Paris) Build 2019–2020 5 / 37

Interpreter (digression)

Question

What is an interpreter then?

An interpreter is an all-in-one computer program that compiles and
execute source code on-the-fly.

Pro/con:

3 higher portability

7 higher startup time

source-code distribution

Stefano Zacchiroli (Université de Paris) Build 2019–2020 5 / 37

Compiler construction

A compiler is not a magic object. It is a program like others:
written in some programming language (the implementation
language)
by programmers, like you

At least 3 languages are always involved in compiler construction:
source, target, and implementation.

How do we write a compiler without a compiler?

This is the compiler bootstraping problem (see modules
introduction à la compilation L3 and compilation avancée M2)

luckily, we’ve plenty of readily available compilers these days. . .
Stefano Zacchiroli (Université de Paris) Build 2019–2020 6 / 37

Essential anatomy of a compiler

The architecture of a compiler consists of a few common
macro-parts:

1 front end: check for program correctness w.r.t. source
language semantics and output an intermediate representation
(IR) of the input program

ñ e.g., lexical checking, syntax checking, type checking, etc.

2 middle end: program optimization by rewriting the IR
ñ e.g., dead code removal, constant propagation, loop unrolling,

etc.

3 back end: translate IR to the target language, doing further
(platform-specific) optimization

ñ e.g., assembly language for the target platform

Stefano Zacchiroli (Université de Paris) Build 2019–2020 7 / 37

Before and after compilation

In spite of being already complex enough, we often need two more
steps to get from a source to a target program.

Before compilation we might have to run the source program
through a preprocessor that prepares the program for
compilation

ñ e.g., the C preprocessor cpp takes care of all #directives
ñ e.g., the camlp4 preprocessor can perform arbitrary syntactic

transformation on OCaml programs
ñ e.g., Lisp preprocessors, Domain Specific Languages (DSL), etc.

After compilation we need to
1 combine several compiled objects (i.e., the result of compiling

different source files) with the needed libraries into a single
compiled program

2 “assemble” assembly language code to the actual sequence of
bytes that the operating system will be able to execute

A linker (or link editor) is the program that takes care of these
steps

Stefano Zacchiroli (Université de Paris) Build 2019–2020 8 / 37

Before and after compilation

In spite of being already complex enough, we often need two more
steps to get from a source to a target program.

Before compilation we might have to run the source program
through a preprocessor that prepares the program for
compilation

ñ e.g., the C preprocessor cpp takes care of all #directives
ñ e.g., the camlp4 preprocessor can perform arbitrary syntactic

transformation on OCaml programs
ñ e.g., Lisp preprocessors, Domain Specific Languages (DSL), etc.

After compilation we need to
1 combine several compiled objects (i.e., the result of compiling

different source files) with the needed libraries into a single
compiled program

2 “assemble” assembly language code to the actual sequence of
bytes that the operating system will be able to execute

A linker (or link editor) is the program that takes care of these
steps

Stefano Zacchiroli (Université de Paris) Build 2019–2020 8 / 37

The build process

Putting it all together, the build process looks like this:

general idea: each step embodies a translation from one
language to another
. . . but the number of phases varies; there might be more!

ñ e.g., DSL -→ “source” code -→ object code -→ . . .

Stefano Zacchiroli (Université de Paris) Build 2019–2020 9 / 37

Terminology and slang — “compilation”

Strictly speaking, “compilation” is only the part of the build process
in between preprocessing and linking, extremes excluded.

However we (as in “programmers”) often use the term “compilation”
to refer to the build process as a whole, including preprocessing and
linking.

this slightly imprecise terminology is supported by the practice
of using a single tool to drive the entire build process

the tool is also usually distributed as part of compiler suites
ñ cc — C “compiler”
ñ ocamlc — OCaml “compiler”
ñ javac — Java “compiler”
ñ scalac — Scala “compiler”
ñ etc.

Stefano Zacchiroli (Université de Paris) Build 2019–2020 10 / 37

Build stages

When do the various phases happen?

usually, preprocessing and compilation happens together, on a
file per file basis

compilation and linking might happen together (in trivial
projects) or be separate phases (in medium to complex projects)

Stefano Zacchiroli (Université de Paris) Build 2019–2020 11 / 37

Build dependencies

preprocessing might act on several source files at a time
ñ e.g., inclusion of a header/interface file in an implementation file
ñ e.g., syntactic transformations implemented as compiled

programs

to compile sourcei we might need objectj, with i ≠ j

Those are just common examples of build dependencies.

Stefano Zacchiroli (Université de Paris) Build 2019–2020 12 / 37

Build dependencies (cont.)

Typical effects of dependencies on the build process are:

forcing a (partial) order on compilation steps
ñ e.g., the linking step must be performed after the compilation

steps of all involved objects

guiding the (re-)build process to (re-)build only what is needed
after only some files get changed

ñ e.g., recompiling a C source file is needed only when either itself
or its #include-s have been changed after the last compilation

Stefano Zacchiroli (Université de Paris) Build 2019–2020 12 / 37

The C build process

We are going to focus on the build process for the C language.
Its architecture maps 1-1 to the one we have presented.

the C preprocessor (sometimes called cpp) transforms C
programs with #directives to C programs where those
directives have been executed (+ line no. annotations)

the C linker is the ordinary system-level linker, usually provided
by the operating system

the C compiler (traditionally called cc) transforms C programs
(w/o #directives) to object files supported by the system-level
linker

ñ can also be used to drive the preprocessing and linking phase
ñ we can use the C compiler as driver of the whole C build process

Stefano Zacchiroli (Université de Paris) Build 2019–2020 13 / 37

Outline

1 The build process

2 The C preprocessor

3 The GNU Compiler Collection (GCC)

Stefano Zacchiroli (Université de Paris) Build 2019–2020 14 / 37

The C preprocessor — generalities

The C language is defined by an international standard, whose most
recent incarnation is ISO/IEC 9899:2011 (AKA “C11”)

the standard supports a number of meta-language directives
whose syntax is #directive

the standard does not mandate the preprocessor be a separate
program; it just defines the 4th phase of the C translation as
“macro expansion and directive handling”

ñ many C compilers use a separate cpp program to implement that
phase

ñ as the semantics of directives is language independent, that
allows to use the C preprocessor in other contexts

The main C language features implemented as directives are:
1 file inclusion — #include

2 macros — #define

3 conditional compilation — #if, #ifdef, #ifndef, . . .

Stefano Zacchiroli (Université de Paris) Build 2019–2020 15 / 37

File inclusion

File inclusion is a common feature of many text processing
languages:

an include directive references an external file by name

the directive gets expanded to the content of the file as if it were
included verbatim where, and in place of, the directive is located

The main advantage of file inclusion is factorization:

we can reuse the content of a file in different locations. . .

. . . while we have to maintain only one copy of it
ñ help with adhering to the DRY (“don’t repeat yourself”) principle

Stefano Zacchiroli (Université de Paris) Build 2019–2020 16 / 37

#include

#include <stdio .h>

int main (void) {
pr in t f (" Hello , world !\n") ;

}

⇓
typedef unsigned char __u_char ;
typedef unsigned short int __u_short ;
. . .
extern int pr int f (__const char * __ res t r i c t __format , . . .) ;
. . .
extern int scanf (__const char * __ res t r i c t __format , . . .) ;
. . .

int main (void) {
pr in t f (" Hello , world !\n") ;

}

Stefano Zacchiroli (Université de Paris) Build 2019–2020 17 / 37

#include

#include <stdio .h>

int main (void) {
pr in t f (" Hello , world !\n") ;

}

⇓
typedef unsigned char __u_char ;
typedef unsigned short int __u_short ;
. . .
extern int pr int f (__const char * __ res t r i c t __format , . . .) ;
. . .
extern int scanf (__const char * __ res t r i c t __format , . . .) ;
. . .

int main (void) {
pr in t f (" Hello , world !\n") ;

}

Stefano Zacchiroli (Université de Paris) Build 2019–2020 17 / 37

#include

Where are referenced files looked for?
It depends on the used #include syntax:

#include <file.ext> ⇒

file.ext will be looked for in the
standard compiler include path

ñ i.e., a list of pre-defined directories where to look for header files
ñ can be modified using compiler switches

#include "file.ext" ⇒

as above, but the compiler include
path will be extended with the current source directory

ñ i.e., file.ext can be in the same directory of files that want to
include it

Either way, #include induces a build dependency from the
including file to file.ext:

if file.ext changes, you shall recompile all files that include it

Stefano Zacchiroli (Université de Paris) Build 2019–2020 18 / 37

#include

Where are referenced files looked for?
It depends on the used #include syntax:

#include <file.ext> ⇒ file.ext will be looked for in the
standard compiler include path

ñ i.e., a list of pre-defined directories where to look for header files
ñ can be modified using compiler switches

#include "file.ext" ⇒

as above, but the compiler include
path will be extended with the current source directory

ñ i.e., file.ext can be in the same directory of files that want to
include it

Either way, #include induces a build dependency from the
including file to file.ext:

if file.ext changes, you shall recompile all files that include it

Stefano Zacchiroli (Université de Paris) Build 2019–2020 18 / 37

#include

Where are referenced files looked for?
It depends on the used #include syntax:

#include <file.ext> ⇒ file.ext will be looked for in the
standard compiler include path

ñ i.e., a list of pre-defined directories where to look for header files
ñ can be modified using compiler switches

#include "file.ext" ⇒ as above, but the compiler include
path will be extended with the current source directory

ñ i.e., file.ext can be in the same directory of files that want to
include it

Either way, #include induces a build dependency from the
including file to file.ext:

if file.ext changes, you shall recompile all files that include it

Stefano Zacchiroli (Université de Paris) Build 2019–2020 18 / 37

#include

Where are referenced files looked for?
It depends on the used #include syntax:

#include <file.ext> ⇒ file.ext will be looked for in the
standard compiler include path

ñ i.e., a list of pre-defined directories where to look for header files
ñ can be modified using compiler switches

#include "file.ext" ⇒ as above, but the compiler include
path will be extended with the current source directory

ñ i.e., file.ext can be in the same directory of files that want to
include it

Either way, #include induces a build dependency from the
including file to file.ext:

if file.ext changes, you shall recompile all files that include it

Stefano Zacchiroli (Université de Paris) Build 2019–2020 18 / 37

#include troubles

Consider the following utils.h:

#include <stdio .h>
void hello (char *msg) {

pr in t f (" Hello %s !\n" , msg) ;
}

and hello.c: 1

#include " u t i l s .h"
#include " u t i l s .h"
int main (void) {

hel lo (" world ") ;
}

What will happen when you compile hello.c?

?
1. multiple #include only looks stupid; they easily (and often) happen due to

transitive inclusion
Stefano Zacchiroli (Université de Paris) Build 2019–2020 19 / 37

#include troubles

Consider the following utils.h:

#include <stdio .h>
void hello (char *msg) {

pr in t f (" Hello %s !\n" , msg) ;
}

and hello.c:

#include " u t i l s .h"
#include " u t i l s .h"
int main (void) {

hel lo (" world ") ;
}

Error!

In file included from hello.c:2:0:
utils.h:3:6: error: redefinition of ‘hello’
utils.h:3:6: note: previous definition of ‘hello’ was here

Stefano Zacchiroli (Université de Paris) Build 2019–2020 19 / 37

Macros — #define

The general idea of macros is to define identifiers↔content
associations (or bindings): wherever the identifier is used, it will get
replaced by the associated content by the preprocessor.

object-like macros: act “like constants”
ñ take no parameters; replacement content does not depend on

the invocation

Example (object-like macros)

#define PI 3.14159 definition
circ = 2 * PI * d; usage
circ = 2 * 3.14159 * d; expansion

Stefano Zacchiroli (Université de Paris) Build 2019–2020 20 / 37

Macros — #define (cont.)

function-like macros: act “like functions”
ñ take parameters; replacement content depends on them

Example (function-like macros)

#define RADTODEG(x) ((x) * 57.29578) definition
deg = RADTODEG(17 + 1.2); usage
deg = ((17 + 1.2) * 57.29578); expansion

Exercise (macros v. functions)

What is the difference between the above and the following?

float rad_to_deg (float rad) {
return (rad * 57.29578);

}
deg = rad_to_deg(17 + 1.2) ;

Stefano Zacchiroli (Université de Paris) Build 2019–2020 21 / 37

Macros — #define (cont.)

function-like macros: act “like functions”
ñ take parameters; replacement content depends on them

Example (function-like macros)

#define RADTODEG(x) ((x) * 57.29578) definition
deg = RADTODEG(17 + 1.2); usage
deg = ((17 + 1.2) * 57.29578); expansion

Exercise (macros v. functions)

What is the difference between the above and the following?

float rad_to_deg (float rad) {
return (rad * 57.29578);

}
deg = rad_to_deg(17 + 1.2) ;

Stefano Zacchiroli (Université de Paris) Build 2019–2020 21 / 37

Macros — #undef

An existing macro can be undefined using #undef. The macro will
not be expanded any longer in the remainder of the file.

#define PI 3.1415
circ1 = 2 * PI * d1;
#undef PI
circ2 = 2 * PI * d2;

⇓

circ1 = 2 * 3.1415 * d1;
circ2 = 2 * PI * d2;

Stefano Zacchiroli (Université de Paris) Build 2019–2020 22 / 37

Macros — #undef

An existing macro can be undefined using #undef. The macro will
not be expanded any longer in the remainder of the file.

#define PI 3.1415
circ1 = 2 * PI * d1;
#undef PI
circ2 = 2 * PI * d2;

⇓
circ1 = 2 * 3.1415 * d1;
circ2 = 2 * PI * d2;

Stefano Zacchiroli (Université de Paris) Build 2019–2020 22 / 37

Function-like macros — pitfalls

Function-like macros are powerful, but very tricky to use!

for a macro definition to be interpreted as function-like, no
space should be present before the formal parameter list

ñ 3 #define RADTODEG(x) ((x) * 57.29578)
ñ 7 #define RADTODEG (x) ((x) * 57.29578)

a function-like macro usage will be expanded only if it’s passed
actual parameters

ñ deg = RADTODEG; will remain unchanged (and hence likely fail)

Stefano Zacchiroli (Université de Paris) Build 2019–2020 23 / 37

Function-like macros — pitfalls (cont.)

macro expansion is language agnostic
ñ pro: can be used with other syntaxes
ñ cons: you can cause syntax errors!

#define strange (f i l e) fp r in t f (f i l e , "%s %d" ,
strange (stderr) p, 35)

expands to: fp r in t f (stderr , "%s %d" , p, 35)

#define ce i l _d iv (x , y) (x + y − 1) / y
a = ce i l _d iv (b & c , sizeof (int)) ;

expands to: a = (b & c + sizeof (int) − 1) / sizeof (int) ;

see http://tigcc.ticalc.org/doc/cpp.html#SEC22 for more

Best practices:

always balance parentheses in macro definitions

always put parentheses around argument usage in macro
definitions

Stefano Zacchiroli (Université de Paris) Build 2019–2020 24 / 37

http://tigcc.ticalc.org/doc/cpp.html#SEC22

Function-like macros — pitfalls (cont.)

macro expansion is language agnostic
ñ pro: can be used with other syntaxes
ñ cons: you can cause syntax errors!

#define strange (f i l e) fp r in t f (f i l e , "%s %d" ,
strange (stderr) p, 35)

expands to: fp r in t f (stderr , "%s %d" , p, 35)

#define ce i l _d iv (x , y) (x + y − 1) / y
a = ce i l _d iv (b & c , sizeof (int)) ;

expands to: a = (b & c + sizeof (int) − 1) / sizeof (int) ;

see http://tigcc.ticalc.org/doc/cpp.html#SEC22 for more

Best practices:

always balance parentheses in macro definitions

always put parentheses around argument usage in macro
definitions

Stefano Zacchiroli (Université de Paris) Build 2019–2020 24 / 37

http://tigcc.ticalc.org/doc/cpp.html#SEC22

Function-like macros — pitfalls (cont.)

macro expansion is language agnostic
ñ pro: can be used with other syntaxes
ñ cons: you can cause syntax errors!

#define strange (f i l e) fp r in t f (f i l e , "%s %d" ,
strange (stderr) p, 35)

expands to: fp r in t f (stderr , "%s %d" , p, 35)

#define ce i l _d iv (x , y) (x + y − 1) / y
a = ce i l _d iv (b & c , sizeof (int)) ;

expands to: a = (b & c + sizeof (int) − 1) / sizeof (int) ;

see http://tigcc.ticalc.org/doc/cpp.html#SEC22 for more

Best practices:

always balance parentheses in macro definitions

always put parentheses around argument usage in macro
definitions

Stefano Zacchiroli (Université de Paris) Build 2019–2020 24 / 37

http://tigcc.ticalc.org/doc/cpp.html#SEC22

Conditional compilation

Conditional compilation is the ability to selectively compile or avoid
to compile parts of the code.

alternative code paths might exist in the code depending on the
target platform (that is selected at build-time); some of them
might simply fail to compile on the wrong platform

optional code paths might exist depending on the desired
build-time configuration

ñ development build: with extensive debugging code, assertions,
and logging

ñ production build: without any of it

avoiding to compile unneeded optional code paths is beneficial
ñ reduce compile time
ñ reduce object/executable size → reduce memory usage
ñ improve performances (assert-s, if-s, . . .)

Stefano Zacchiroli (Université de Paris) Build 2019–2020 25 / 37

Conditional compilation — #ifdef & co.

Various C preprocessor directives are used to support conditional
compilation.

#ifdef, #ifndef, #if start a conditional block
ñ #ifdef and #ifndef evaluates to true, enabling the

corresponding conditional block, depending on whether a macro
is defined or not

ñ #if can be used to test (a very restricted form) of boolean
arithmetic expressions based on literal numbers and other
macros

#endif ends a conditional block (mandatory)

#else, #elif start alternative branches of a conditional block

#error can be used to fail at preprocessing time
ñ useful when no suitable alternative compilation branch exists

Stefano Zacchiroli (Université de Paris) Build 2019–2020 26 / 37

Conditional compilation — examples

#ifdef __unix__ /* pre−defined by compilers targeting Unix */
include <unistd .h>
#e l i f defined _WIN32 /* pre−def . by compilers targeting Win */
include <windows .h>
#endif

#ifdef DEBUG
pr int f (" entering magic_fun\n") ;
i f VERBOSE >= 2
pr int f (" trace message\n") ;
endif /* VERBOSE >= 2 */
#endif /* DEBUG */

#i f RUBY_VERSION == 190
error 1.9.0 not supported
#endif

Stefano Zacchiroli (Université de Paris) Build 2019–2020 27 / 37

Avoiding multiple inclusion

Best practice to avoid double inclusion issues.
Sample header file hello.h:

#ifndef __HELLO_H__
#define __HELLO_H__

void hello (char *msg) ;

#endif /* __HELLO_H__ */

What would be the expansion of the following:

#include " hel lo .h"
#include " hel lo .h"
#include " hel lo .h"

?
Stefano Zacchiroli (Université de Paris) Build 2019–2020 28 / 37

The actual preprocessor output

#include <stdio .h>
int main (void) {

pr in t f (" Hello , world !\n") ;
}

⇓

29 " /usr/ include/x86_64−linux−gnu/ bits /types .h" 2 3 4
typedef unsigned char __u_char ;
typedef unsigned short int __u_short ;
. . .
490 " /usr/ include/ l i b io .h" 3 4
extern int pr int f (__const char * __ res t r i c t __format , . . .) ;
. . .
414 " /usr/ include/stdio .h" 3 4
extern int scanf (__const char * __ res t r i c t __format , . . .) ;
. . .

2 " hello . c " 2
int main (void) {

pr in t f (" Hello , world !\n") ;
}

Stefano Zacchiroli (Université de Paris) Build 2019–2020 29 / 37

The actual preprocessor output

#include <stdio .h>
int main (void) {

pr in t f (" Hello , world !\n") ;
}

⇓
29 " /usr/ include/x86_64−linux−gnu/ bits /types .h" 2 3 4
typedef unsigned char __u_char ;
typedef unsigned short int __u_short ;
. . .
490 " /usr/ include/ l i b io .h" 3 4
extern int pr int f (__const char * __ res t r i c t __format , . . .) ;
. . .
414 " /usr/ include/stdio .h" 3 4
extern int scanf (__const char * __ res t r i c t __format , . . .) ;
. . .

2 " hello . c " 2
int main (void) {

pr in t f (" Hello , world !\n") ;
}

Stefano Zacchiroli (Université de Paris) Build 2019–2020 29 / 37

The actual preprocessor output (cont.)

The output of the preprocessor is intermixed with line number
annotations — of the form # nnn "file" ... — that tells the
compiler where a specific line of code really come from.

Why is this needed?

Stefano Zacchiroli (Université de Paris) Build 2019–2020 30 / 37

The actual preprocessor output (cont.)

The output of the preprocessor is intermixed with line number
annotations — of the form # nnn "file" ... — that tells the
compiler where a specific line of code really come from.

the compiler check for errors w.r.t. language semantics

errors (& warnings) are reported to the user who should fix them

to be meaningful to the user, error locations should match the
files that the user is editing ≠ preprocessor output

ñ line and column numbers are affected by macro expansion

Stefano Zacchiroli (Université de Paris) Build 2019–2020 30 / 37

Outline

1 The build process

2 The C preprocessor

3 The GNU Compiler Collection (GCC)

Stefano Zacchiroli (Université de Paris) Build 2019–2020 31 / 37

GCC

GNU Compiler Collection — formerly “GNU C Compiler”

one of the most popular C compilers

Free Software, released under the GNU General Public License
(GPL), version 3 or above

actually, a large collection of compilers
ñ front-ends: C, C++, Java, Fortran, Objective-C, Ada, Go
ñ back-ends: 60+, ever growing list

support: preprocessing, compilation, linking

releases: 1987: 1.0 (by Richard Stallman et al.); 1992: 2.0;
2001: 3.0; 2005: 4.0; 2019: 8.3.

man gcc

Stefano Zacchiroli (Université de Paris) Build 2019–2020 32 / 37

Building with gcc

All in one build:

$ gcc main.c

preprocessing

building

linking
ñ deliver executable a.out (default, historical name)

Stefano Zacchiroli (Université de Paris) Build 2019–2020 33 / 37

Preprocessing with gcc

Preprocessing can be executed as a stand-alone phase using cpp:

$ cpp main.c

$ # same, asking gcc to stop after preprocessing
$ gcc -E main.c

will dump preprocessor output to standard output

The -o option can be used on all gcc (& friends) invocations to set
output destination (overriding default names):

$ cpp -o main.i main.c
$ gcc -E -o main.i main.c

will save preprocessor output to main.i

Stefano Zacchiroli (Université de Paris) Build 2019–2020 34 / 37

Compiling with gcc

The -c option asks gcc to stop after compilation

i.e., preprocessing + compilation, but no linking

It is needed in all non trivial build processes, to compile objects
separately and postpone linking.

Stefano Zacchiroli (Université de Paris) Build 2019–2020 35 / 37

Compiling with gcc (cont.)

The default destination for the object corresponding to a source file
source.c is source.o. It can be overridden with -o, as usual.

It is recommended to always compile with -Wall that requires the
compiler to enable all warnings about code correctness:

uninitialized variables

unused variables

implicit function declaration

missing parentheses

etc.

Stefano Zacchiroli (Université de Paris) Build 2019–2020 35 / 37

Compiling with gcc — examples

$ gcc -Wall -c foo.c
$ gcc -Wall -c bar.c
$ gcc -Wall -c main.c

build objects foo.o, bar.o, and main.o, ready to be linked

Stefano Zacchiroli (Université de Paris) Build 2019–2020 36 / 37

Linking with gcc

Once all objects are available, we can use gcc to link them together
by simply passing them as arguments—as if they were source files.

$ gcc -o my-program foo.o bar.o main.o

will build the executable my-program linking together 3 objects

default linking destination is a.out (if -o is omitted)

To link a program that uses external libraries, you will need to
reference them using -l at link-time.

passing -lfoo will tell the linker to look for the libfoo library
in the default library search path

$ gcc -o my-program foo.o bar.o main.o -lm

link with libm (math library)

Stefano Zacchiroli (Université de Paris) Build 2019–2020 37 / 37

Linking with gcc

Once all objects are available, we can use gcc to link them together
by simply passing them as arguments—as if they were source files.

$ gcc -o my-program foo.o bar.o main.o

will build the executable my-program linking together 3 objects

default linking destination is a.out (if -o is omitted)

To link a program that uses external libraries, you will need to
reference them using -l at link-time.

passing -lfoo will tell the linker to look for the libfoo library
in the default library search path

$ gcc -o my-program foo.o bar.o main.o -lm

link with libm (math library)

Stefano Zacchiroli (Université de Paris) Build 2019–2020 37 / 37

	The build process
	The C preprocessor
	The GNU Compiler Collection (GCC)

