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ABSTRACT
Context. Software evolution has been an active field of re-
search in recent years, but studies on macro-level software
evolution—i.e., on the evolution of large software collections
over many years—are scarce, despite the increasing popu-
larity of intermediate vendors as a way to deliver software
to final users.

Goal. We want to ease the study of both day-by-day and
long-term Free and Open Source Software (FOSS) evolution
trends at the macro-level, focusing on the Debian distribu-
tion as a proxy of relevant FOSS projects.

Method. We have built Debsources, a software platform
to gather, search, and publish on the Web all the source
code of Debian and measures about it. We have set up
a public Debsources instance at http://sources.debian.

net, integrated it into the Debian infrastructure to receive
live updates of new package releases, and written plugins to
compute popular source code metrics. We have injected all
current and historical Debian releases into it.

Results. The obtained dataset and Web portal provide
both long term-views over the past 20 years of FOSS evolu-
tion and live insights on what is happening at sub-day granu-
larity. By writing simple plugins (∼100 lines of Python each)
and adding them to our Debsources instance we have been
able to easily replicate and extend past empirical analyses
on metrics as diverse as lines of code, number of packages,
and rate of change—and make them perennial. We have
obtained slightly different results than our reference study,
but confirmed the general trends and updated them in light
of 7 extra years of evolution history.

Conclusions. Debsources is a flexible platform to mon-
itor large FOSS collections over long periods of time. Its
main instance and dataset are valuable resources for schol-
ars interested in macro-level software evolution.
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1. INTRODUCTION
For several decades now [21, 18] software evolution has

been an active field of research. Given its natural availability
and openness, numerous empirical studies on software evolu-
tion have targeted Free and Open Source Software (FOSS),
with more than 100 noteworthy papers cited in recent sys-
tematic literature reviews [27, 3]. Despite the abundant
research efforts, few studies have investigated macro-level
software evolution (or “evolution in the large”), i.e., have
considered large software collections as coherent wholes and
observed their evolution, as collections, rather than the evo-
lution of individual software products contained therein.

This lack of studies is not due to a lack of interest in
studying software collections. To begin with, their rele-
vance w.r.t. current practices is hard to dispute: with the
massive popularization of “app stores” and the steady mar-
ket share of package-based software distributions, software
is increasingly delivered to users as part of curated collec-
tions maintained by intermediate software vendors. Addi-
tionally, software collections are also useful to study evolu-
tion at the granularity of individual software products: they
contribute to eliminate (researcher) selection bias, which
is often cited as the main threat to validity in evolution
studies [27]. Finally, well-established software collections
are enjoying remarkably long lives—now spanning several
decades—outliving many of the software products they ship;
software collections therefore offer remarkable opportunities
for gathering long-term historical insights on the practice of
software.

The study of software collections, however, poses specific
challenges for scholars, due to an apparent tendency at grow-
ing ad hoc software ecosystems, made of homegrown tools,
technical conventions, and social norms that might be hard
to take into account when conducting empirical studies. We
believe that the relative scarcity of macro-level evolution
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Figure 1: Life-cycle of Debian packages and releases

studies is at least in part due to the lack of suitable min-
ing tools, storage infrastructures, and ready-to-use datasets
about noteworthy software collections. With the present
work we aim at contributing to fill these gaps.

Contributions. We focus on Debian,1 one of the most re-
puted and oldest (founded in 1993) FOSS distributions, of-
ten credited as the largest organized collection of FOSS,
and a popular data source for empirical software engineering
studies (e.g., [28, 10, 1, 9]). Our aim is to ease the study
of macro-level FOSS evolution patterns, using the assump-
tion that Debian is a representative sample of relevant FOSS
projects. More specifically, we want to support both long-
term evolution studies—looking back as far as possible—as
well as studies of present, day-by-day evolution patterns of
software currently shipped by Debian.

To that end we have built Debsources, a software platform
to gather, search, and publish on the Web the source code
of Debian and measures about it. We have set up a Deb-
sources instance at http://sources.debian.net, integrated
it into the Debian infrastructure to receive live updates of
new packages, and injected all current and historical Debian
releases into it. To assess the usefulness of the platform we
have used the obtained dataset to replicate the major stud-
ies on macro-level software evolution [24, 10] which, as it
happens, targeted Debian too.

Debsources has made the data gathering process very easy.
Thanks to its extensible design we just had to write a few
short Python plugins to compute classical software metrics,
trigger an update, and wait a few days to obtain the dataset.
As a consequence of us doing so, the dataset needed to repli-
cate the original studies is now live and perennial. Each
Debian package release gets immediately processed by our
plugins and the obtained results augment the dataset pub-
licly available at our Debsources instance, which has quickly
gained popularity in the Debian community.

Debsources is Free Software2 released under the AGPL3
license. It can be deployed elsewhere to serve similar needs.

To conduct the replication study we have queried the ob-
tained dataset and charted the most interesting facts. Over-
all, we have been able to: (1) confirm the general trends
observed in [24, 10], (2) extend them to take into account
the subsequent 7 years of Debian evolution history, and (3)
shed some light into some of the hypotheses made at the
time, thanks to the more fine-grained knowledge of source
files (and in particular of their checksums) that Debsources

1http://www.debian.org
2http://anonscm.debian.org/gitweb/?p=qa/
debsources.git

allows. We have also found some discrepancies; for the
most part they seem due to the original study considering a
smaller subset of the Debian archive than we did.

Paper structure. Section 2 gives an overview of the life cy-
cle of Debian packages and releases. Section 3 details the ar-
chitecture of Debsources, while Section 4 presents our data
gathering process and the resulting dataset. Section 5 dis-
cusses the results of the replication study. Before conclud-
ing, Section 6 compares Debsources with related work.

Data availability. The software, dataset, and results dis-
cussed in this paper are available, in greater detail, at
http://data.mancoosi.org/papers/esem2014/.

2. DEBIAN MINING FUNDAMENTALS
Debian [14] is a large and complex project. In this section

we present the main notions needed for mining Debian as a
collection of FOSS projects, in source code format.

The life-cycles of Debian packages and releases are de-
picted in Figure 1. As a distribution, Debian is essentially an
intermediary between upstream authors—who release soft-
ware as source code tarballs or equivalent—and final users
that install the corresponding binary packages using package
management tools like apt-get [5].

Debian package maintainers are in charge of the integra-
tion work that transforms upstream tarballs into packages.
They usually work on source packages, which are bundles
made of upstream tarballs (e.g., proj_x.y.z.orig.tar.gz),
Debian-specific patches (*.diff.gz), and machine readable
metadata (*.dsc). The metadata of all source packages cor-
responding to a Debian release are aggregated into metadata
index files called Sources. A sample source package entry

Package: emacs19
Priority: standard
Section: editors
Version: 19.34 -19.1
Binary: emacs19 , emacs19 -el
Maintainer: Mark W. Eichin <eichin@[...]>
Architecture: any
[...]
Directory: dists/hamm/main/source/editors
Files :
75c1[...]1db5 649 emacs19_19 .34 -19.1. dsc
f715[...]84d0 10875510 emacs19_19 .34. orig.tar.gz
647d[...]1ad8 15233 emacs19_19 .34 -19.1. diff.gz

Figure 2: sample Debian source package metadata
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Table 1: Debian release information; * denotes, here
and in the remainder, unreleased suites.

cur. release cycle
ver. name alias date (days) archived
1.1 buzz 17/06/1996 n/a yes
1.2 rex 12/12/1996 178 yes
1.3 bo 05/06/1997 175 yes
2.0 hamm 24/07/1998 414 yes
2.1 slink 09/03/1999 228 yes
2.2 potato 15/08/2000 525 yes
3.0 woody 19/07/2002 703 yes
3.1 sarge 06/06/2005 1053 yes
4.0 etch 08/04/2007 671 yes
5.0 lenny 15/02/2009 679 yes
6.0 squeeze oldstable 06/02/2011 721 no
7 wheezy stable 04/05/2013 818 no
8 jessie* testing tbd tbd no
n/a sid* unstable n/a n/a no

from an ancient Sources file is shown in Figure 2. Similar
indexes, called Packages, exist for binary packages.

Several metadata fields are worth noting. Source pack-
ages are versioned by concatenating the upstream version,
a “-” sign, and a Debian-specific version. Source packages
are also organized in two-level sections: packages only con-
taining software considered free by Debian belong to the
top-level (and implicit) section main; other packages are ei-
ther in the contrib or non-free top-level sections, resulting
in complete sections like Section: non-free/games. Each
source package gets compiled to one or several binary pack-
ages, defining the granularity at which users can install soft-
ware. In Figure 2, Emacs 19 corresponds to two distinct
binary packages, one for the editor itself and another one
for its Elisp modules.

When ready, the maintainer uploads both source and bi-
nary packages to the development release (or “suite”) called
unstable (a.k.a. sid). Since Debian supports many hardware
architectures, a network of build daemons (buildd) fetch in-
coming source packages from unstable, build them for all
supported architectures, and upload the resulting binary
packages back to unstable.

After a semi-automatic software qualification process
called migration [28], which might take several days or weeks,
packages flow to the testing suite. At the end of each de-
velopment cycle migrations are stopped, testing is polished,
and eventually released as the new Debian stable release.

Packages are distributed to users via an ad-hoc content
delivery network made of hundreds of mirrors around the
world. Each mirror contains all “live” suites, i.e., the suites
discussed thus far plus the former stable release (oldstable).
When a new stable is released, oldstable gets stashed away to
a different archive—http://archive.debian.org—which is
separately mirrored and contains all historical releases.

For reference, Table 1 summarizes information about De-
bian suites to date, their codenames, and which suites are
currently archived. We note in passing that the average de-
velopment cycle of Debian stable releases is 560 days (resp.
774 over the past 12 years, since woody) with a standard
deviation of 270 days (resp. 133 days).

3. ARCHITECTURE
In this paper we focus on two distinct aspects of Deb-

sources. On the one hand Debsources is a software platform

Figure 3: Debsources architecture

that can be deployed to gather data about the evolution
of Debian and all Debian-like distributions—we present this
aspect in this section. On the other hand we have set up
a specific Debsources instance and used it to gather a large
dataset about Debian evolution history—we discuss this as-
pect in the next section.

The architecture of Debsources and its data flow are de-
picted in Figure 3. On the back end, Debsources inputs are
the mirror network (for live suites) and archive.debian.org

(for archived ones). Live suites can be mirrored running pe-
riodically (e.g., via cron) the dedicated debmirror tool,3

which understands the Debian archive structure. Note that
the archive format supported by debmirror is shared across
all Debian-based distributions (or derivatives), e.g. Ubuntu,
allowing to use Debsources on them. Archived suites require
a more low-level mirroring approach (e.g., using rsync) due
to the fact that the Debian archive structure has changed in
incompatible ways over time.

For Debian live suites it is possible to receive “push” noti-
fications of mirror updates—which usually happen 4 times
a day—and use them to trigger debmirror runs, minimizing
the update lag. To that end one needs to get in touch with
a Debian mirror operator and ask for specific arrangements.
Archived suite can only be mirrored in “pull” style, but they
only change at each stable release, on average every 2 years.
If needed, Debsources can be told to mirror only specific
suites, for both live and archived suites.

After each mirror update, the Debsources updater is run.
Its update logic is a simple sequence of 3 phases:

1. extraction and indexing of new packages;

2. garbage collection of disappeared packages, provided
that a customizable grace period has also elapsed;

3. update of overall statistics about known packages.

Debsources storage is composed of 3 parts: the local mir-
ror, the source packages—extracted to individual directories
using the standard Debian tool dpkg-source—and a Post-
gres DB, whose schema is given in Figure 4. Note that
throughout the paper, unless otherwise specified, we use
“package” to mean “source package”. The DB contains in-
formation about package metadata, suites, and individual
source files.
3http://packages.debian.org/sid/debmirror

http://archive.debian.org
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  suites_info 
 name  varchar  PK   
 version  varchar     
 release_date  date     
 sticky  boolean     

  package_names 
 id  serial  PK   
 name  varchar     

  packages 
 id  serial  PK   
 version  varchar     
 name_id  int    FK 
 area  varchar     
 sticky  boolean     

  checksums* 
 id  serial  PK   
 package_id  int     
 file_id  int    FK 
 sha256  varchar       files 

 id  serial  PK   
 package_id  int    FK 
 path  bytea       ctags* 

 id  serial  PK   
 package_id  int    FK 
 tag  varchar     
 file_id  int    FK 
 line  int     
 kind  varchar     
 language  lang_ctags     

  metrics 
 id  serial  PK   
 package_id  int    FK 
 metric  metric_type     
 value_  int     

  sloccounts* 
 id  serial  PK   
 package_id  int    FK 
 language  lang_sloc     
 count  int     

  suites 
 id  serial  PK   
 package_id  int    FK 
 suite  varchar     

Figure 4: Debsources DB schema (excerpt); * de-
notes tables pertaining to plugins

A plugin system is available and accounts for Debsources
flexibility. Each time the updater touches a package in the
data storage (e.g., by adding or removing it), it sends a no-
tification to all enabled plugins. Plugins can further process
packages, including their metadata and all of their source
code, and update the DB accordingly. Plugins can declare
and use their own tables (see the starred tables in Figure 4)
or use general purpose plugin tables such as metrics. In
essence Debsources does the heavy lifting of maintaining a
general purpose storage for Debian source code, enabling
plugin authors to focus on data extraction.

To assess the usefulness of this design we have developed
plugins to compute popular source code metrics: disk usage
(mostly as a plugin example for developers), physical source
lines of code (SLOC) using sloccount [29], user-defined
“symbols” (functions, classes, types, etc.) using Exuberant
Ctags,4 and SHA256 checksums of all source files—arguably
not a metric per se, but useful to detect duplicates and re-
fine other metrics on that basis. Note that simpler metrics
like the number of source files do not need specific plugins,
because Debsources already tracks individual files.

We are quite pleased with the little effort needed to imple-
ment the plugins: if we exclude boilerplate code, the most
complex plugin (ctags) is ∼100 lines of Python code, most
of which needed to parse ctags files. All plugins described
above are part of the standard Debsources distribution.

On the front end, Debsources offers several interfaces. For
final users, the Debsources web app implements a HTML
+ JavaScript interface with features like browsing, syntax
highlighting, code annotations (via URL parameters), DB
searches on metadata, and regular expression searches on
the code via Debian Code Search [26]. The same features
are exposed to developers via a JSON API. Additionally,
scholars interested in aggregate queries can directly access
the low-level Debsources DB using (Postgres) SQL.

4. DATASET
Debsources is not meant to be a centralized single-instance

platform: multiple instances of it can be deployed and tuned
to serve different distributions or data gathering needs. On

4http://ctags.sourceforge.net/

Table 2: table sizes in the sources.d.n dataset
table rows

suites info 16
package names 28,454
packages 81,582
suites 119,078
metrics* (i.e., disk usage) 81,582
sloccounts* 290,961
checksums* 33,495,057
ctags* 317,853,685

the other hand there is also value in having notable Deb-
sources instances and using them to maintain large datasets
about the evolution of Debian. In this section we present one
such instance—http://sources.debian.net or, for short,
sources.d.n—and its dataset.
sources.d.n is publicly accessible and meant to track all

Debian suites, both live and archived. It can be queried via
the web UI and JSON API. For security reasons no public
access to the underlying DB is possible, but DB dumps are
available on demand. Anyone can recreate an equivalent
Debsources instance by following the very same process we
have used to build sources.d.n, namely:

1. deploy Debsources

2. configure it to mirror a nearby Debian mirror; optional:
get in touch with mirror admins to receive push update
notifications—we have obtained this for sources.d.n

3. trigger an initial update run using update-debsources

4. mirror archive.debian.org with rsync

5. inject all archived suites using suite-archive add

The process is I/O-bound and the time needed to complete
it depends mostly on I/O write speed. For reference, it took
us ∼5 days to inject archived suites + 8 days for the live
ones = ∼2 weeks—using 7.2 kRPM disks in RAID5, which is
arguably a quite slow setup by today standards and certainly
not one optimized for write speed. The resulting disk usage
is as follows: 150 GB for the local mirror (100 GB used by
live suites) + 610 GB for extracted packages + 75 GB for
the DB (45 GB used by indexes on large tables) = ∼840 GB,
which is quite tolerable for server-grade deployments.
sources.d.n is configured with all the plugins discussed

in Section 3: disk usage, sloccount, ctags, and checksums.
We haven’t thoroughly benchmarked the injection process,
but a significant part of the processing time (∼40–50%) is
used to compute and insert ctags in the DB.

Some figures about the major tables in sources.d.n DB
are reported in Table 2. The 16 injected suites include all
live suites (including small suites not discussed here like
-backports and -updates) and all archived suites, with the
exception of Debian 1.1 buzz and 1.2 rex. The exception
is because those releases did not have Sources indexes, nor
.dsc files for all packages. Supporting their absence is not
difficult, but requires an additional abstraction layer that is
not implemented in Debsources yet. Previous studies [10,
24] have ignored the same releases, presumably for the same
reasons.

The dataset contains ∼30,000 differently named packages,
occurring in ∼80,000 distinct 〈name,version〉 pairs, for an

http://ctags.sourceforge.net/
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Table 3: Debian release sizes

suite pkgs
files
(k)

du
(GB)

sloc
(M)

ctags

(M)

sloc/

pkg

(k)
hamm 1,373 348.4 4.1 35.1 3.9 25.6
slink 1,880 484.6 6.0 52.2 5.9 27.7
potato 2,962 686.0 8.6 69.1 7.1 23.3
woody 5,583 1394.5 18.2 143.3 16.6 25.7
sarge 9,050 2394.0 34.1 216.3 22.9 23.9
etch 10,550 2879.7 45.0 281.9 29.0 26.7
lenny 12,517 3713.9 61.8 351.0 36.5 28.0
squeeze 14,965 4913.2 89.2 462.5 30.8 30.9
wheezy 17,570 6588.1 125.8 609.2 45.2 34.7
jessie* 19,983 8017.1 157.8 786.7 83.0 39.4
sid* 21,232 9872.2 188.5 972.6 106.5 45.8

average of 2.86 versions per package. The number of map-
pings between (versioned) packages and suites, ∼120,000,
is significantly higher than the number of packages due to
packages occurring in multiple releases.

We index and checksum ∼30 M source files, a whopping
∼320 M ctags, and ∼300,000 〈language,package〉 pairs for
an average of 3.56 different programming languages occur-
ring in each (versioned) package. These are just preliminary
observations that can be made on the basis of simple row
counts; we will refine them in the next section.

5. MACRO-LEVEL EVOLUTION
Using the sources.d.n dataset we can replicate the find-

ings of the former major study on macro-level software evo-
lution [10] (reference study, or ref. study in the following).
We present in this section our experiences in doing so. In
addition to the general usefulness of conducting replication
studies—independent claim verification, method compari-
son, etc.—replicating today (2014) that study (2009) is par-
ticularly useful, because we now have data about 7 extra
years (+77%, up to a total of 16 years) of evolution history
since the last release considered at the time (Debian etch,
2007), allowing to re-assess claims valid back then.

5.1 Total size
The total sizes of all considered suites are given in Table 3

and plotted over time in Figure 5. Using the sources.d.n

dataset it has been easy to compute extra metrics (n. of
source code files, disk usage, and ctags) in addition to those
already computed in ref. study (n. of packages and SLOC).

When comparing with ref. study it is clear that we have
considered more packages in each release: 300 more for
hamm, up to 400 more for etch. A first potential reason5

is that they might have restricted their analysis to the main
section of the Debian archive, whereas we have considered all
sections. Strictly speaking contrib and non-free are not part
of Debian, but they are maintained by Debian people us-
ing Debian resources; given that several claims in software
evolution pertain to maintenance sustainability, we think
it’s more appropriate to include all sections. To verify this
hypothesis we have recomputed sizes using main only ob-
taining package counts closer to, but still higher than, those

5the URL at which the complete dataset of ref. study was
available is currently broken (HTTP 404) and not available
from the Internet Archive. Therefore where discrepancies
exist between our findings and theirs, we have only been
able to speculate about the possible causes.

Figure 5: Debian release sizes over time

of ref. study: our dataset seems to be marginally larger—by
17 packages in hamm, 27 in slink, up to 107 in etch.

Long-term evolution trends do not seem to be affected by
these differences though. Before etch (last release considered
in ref. study) both SLOC and package counts grow linearly
with time and super-linearly with releases. Interestingly,
post-etch the growth rate has increased and is now super-
linear w.r.t. time for SLOC, disk usage, and number of files;
it is still linear in the number of packages though.

SLOC, disk usage, and file count metrics follow very sim-
ilar patterns, confirming previous studies on metric corre-
lation [13, 12]. Package count and ctags exhibit different
patterns. The former metric, not considered in [12], might
be interpreted as distribution-level refactoring, used to tame
the growing complexity in the underlying upstream software,
as postulated by Lehman [18]. The latter metric (ctags) ex-
hibits a weird decrease in squeeze and a seemingly low value
still in wheezy. As of now we have no good explanation for
this fact; further investigation is needed.

5.2 Package size
We have studied the frequency distribution of package

sizes (in SLOC) for all suites in the dataset. In Figure 6
we show the distributions for the two releases considered in
our reference study (hamm and woody) plus the last two
stable releases. Recent history confirms the observations of
the ref. study: larger packages are getting larger and larger,
with now 2 packages (the Linux kernel and the Chromium
browser) past the 10 millions SLOC mark in the last stable
release. At the same time more and more small packages
enter the distribution over time, with about 50% of wheezy
packages below 3,900 SLOC.

What has changed since ref. study is the relative stabil-
ity, back then, of the average package size—see Table 3.
Post-etch the average package size has gone up gradually
but considerably, from 26 kSLOC (etch) up to 34.7 kSLOC
(+33%) in wheezy. It appears that the increase in the num-
ber of small packages added to the distribution is no longer
enough to compensate the growth in size of large packages.
A possible explanation is the emergence of more strict cri-
teria in accepting new packages in Debian, with the effect
of filtering out “non mature”, and usually small, software.
A more far-fetched explanation, if we take Debian as a rep-



(a) hamm (b) woody (c) squeeze (d) wheezy

Figure 6: frequency (y-axis) distribution of package sizes (in SLOC, x-axis)

resentative sample of mature FOSS projects, is an increase
in code contributions to large, well-established projects, at
the detriment of scattered contributions over many smaller
projects.

Note that data for jessie and sid, in general, should be
taken with a pinch of salt, because they are under active de-
velopment. In the specific case of average package sizes, we
observe that those suites might temporarily contain multiple
versions of very large packages such as Linux and Chromium.
That might skew the averages considerably w.r.t. stable re-
leases, where only one release per software is allowed.

Also in the case of package sizes we have obtained slightly
different numbers than the reference study—in particular we
observe slightly higher fluctuations in the averages—but the
general picture is confirmed.

5.3 Package maintenance
Using the sources.d.n dataset we can study package

changes across releases (“package maintenance”, in the word-
ing of ref. study) by considering in turn pairs of suites, us-
ing one of them as reference, and classifying packages in the
other as: common (appearing in both suites no matter the
version), removed (present in the reference but not in the
other), or new (vice versa). We can furthermore identify
unchanged packages (⊆ common) as those appearing with
the same version in the two suites. We have done this clas-
sification for all pairs of subsequent suites. A significant
excerpt of the results is given in the upper part of Table 4.

Once again we obtain similar, but not identical results
w.r.t. the reference study, which only gives common and
unchanged measurements for hamm and etch. Restricting
to main closes the gap almost entirely. The small number
of packages that persisted unchanged from hamm to etch
(148) shrank even further in jessie but is still non-zero—
16 years later!—and seems to be stabilizing at around 80.
Looking into those packages we find legacy, but still perfectly
functional tools like netcat.

It is important to note that—even though this point is not
immediately clear in ref. study—unchanged packages are not
packages that have not been touched at all across releases,
but only packages whose upstream version (e.g., 1.2.3) has
not changed. Their Debian version might have changed,
and in fact redoing the analysis using the complete pack-
age versions (e.g., 1.2.3-4) we find that unchanged packages
w.r.t. hamm drop to 0 already at woody, “only” 3 releases
later. This suggests that long lasting unchanged packages
might have been abandoned upstream, but are still main-
tained in Debian via package patches, without going through

the burden of replacing upstream maintainers.
To put things in perspective we have also computed the

average package life, defined as the period of time between
the release of the first suite in which a package appears as
new (w.r.t. the previous release) and that of the first suite
in which it is removed (ditto). The result is 944 days, only
20% higher than the average release duration since woody.
In spite of a few long lasting unchanged entries, software in
Debian seem to have a fairly high turnover.

We have also briefly looked into the percentage of common
and unchanged packages w.r.t. the previous release: both
values increase slightly post-etch, but now show a remark-
able stability around 87% (common) and 43% (unchanged)—
the ratio of change appears to be stable across releases.

An acknowledged limitation of our reference study is that,
using only version information, one cannot assess the size
of upstream changes: they can find out that a package in
different suites went through (at least) one new upstream
release, but not if that means that a single file has been
changed, or rather if a large number of files have been. With
file and checksum information from the sources.d.n data
set we can be more precise.

In the lower part of Table 4 we compare each stable re-
lease with the preceding one (all pairs comparisons have
been omitted due to space constraints). For each com-
parison we give the total amount of modified packages (⊆
common \ unchanged), and the average percentage of files
affected by the change w.r.t. the previous release. The lat-
ter ratio has been computed by comparing the sets of file
checksums in the two versions: if a checksum from the pre-
vious release disappears in the new one we count that as one
“file” change; the same goes for newly appearing checksums.
One can certainly be more precise than this, for instance by
computing the size of actual package diff-s, but that re-
quires a dataset that includes the actual content of source
files. Checksum comparison, like other fingerprinting tech-
niques, is an interesting trade-off which arguably remains in
the realm of pure metadata analyses.

The absolute number of modified packages appears to
grow with the release size over time. Sarge is an exception
to that rule, showing an anomalous high number of modified
packages, but sarge is peculiar also in its very long develop-
ment cycle, almost twice the average release duration. This
suggests that the number of modified packages is also corre-
lated with release duration. On the other hand, the average
amount of modified files shows a remarkable stability post-
etch, at around 60%, with larger fluctuations around that
value in early releases. The percentage might seem high,



Table 4: changes between Debian releases: ‘c’ for common, ‘u’ for unchanged, and ’m’ for modified packages
to

from slink potato woody sarge etch lenny squeeze wheezy jessie* sid*
hamm 1324c

842u
1198c
463u

1079c
270u

958c
175u

864c
148u

782c
124u

719c
100u

670c
81u

648c
75u

663c
75u

slink 1657c
742u

1455c
384u

1281c
252u

1155c
210u

1037c
172u

941c
136u

881c
113u

852c
105u

872c
105u

potato 2456c
935u

2118c
551u

1881c
436u

1683c
352u

1497c
271u

1399c
220u

1359c
210u

1387c
211u

woody 4588c
1688u

3953c
1156u

3497c
908u

3021c
633u

2787c
520u

2680c
486u

2752c
494u

sarge 7671c
3832u

6828c
2597u

5903c
1717u

5353c
1369u

5102c
1240u

5259c
1272u

etch 9230c
4578u

8041c
2906u

7216c
2205u

6881c
1948u

7088c
2000u

lenny 10836c
5272u

9631c
3676u

9181c
3153u

9457c
3249u

squeeze 13117c
6812u

12464c
5425u

12902c
5622u

wheezy 16543c
10132u

17042c
10519u

jessie* 19795c
19593u

from previous suite to
slink potato woody sarge etch lenny squeeze wheezy

modified pkgs 556m 1305m 3127m 4462m 2879m 3287m 4129m 4453m
changed files per pkg 54.6% 64.4% 65.3% 67.5% 58.9% 59.8% 60.4% 57.2%

but note that unchanged packages (i.e., 0% changes) are
excluded from the count and that Debian release cycles are
quite long for active upstream projects. Further by-hand in-
vestigation on selected projects have confirmed that active
projects do indeed change that much over similar periods.
These results seem to hint at a polarization in the evolution
of individual FOSS projects, between active projects that
evolve steadily and dormant, possibly feature-complete ones
that cease evolving while still remaining useful.

5.4 Programming languages
The evolution of programming languages over time is also

easy to study using sources.d.n. We show the most popular
(in terms of SLOC) languages per release in Table 5 and their
evolution over time, in both absolute and relative terms, in
Figure 7. (Complete data for all suites and languages is
available at http://sources.debian.net/stats/.)

This time we got significantly different numbers w.r.t. the
reference study, while still confirming most of their conclu-
sions. We wonder if an additional reason for discrepancies
here might be the exclusion of Makefile, SQL, and XML
from their analysis, given that sloccount excludes them by
default, unless --addlangall is used. For reference, there
are 5.4 MSLOC of makefile and 2.7 MSLOC of SQL in
wheezy, cumulatively ∼1% of the total, unlikely to affect
general trends. XML is a more significant omission though,
as it is the 4th most popular language in wheezy. It is de-
batable whether XML should be considered a programming
language, but its popularity hints at its usage for expressing
program logic in declarative ways. For this reason we do not
think it should be disregarded.

C is invariably the most popular language and its growth,
in absolute terms, is steady; in relative terms its growth is
not as fast as other languages, and most notably C++. Post-
squeeze however the ratio at which C was losing ground to
C++ slows down and almost entirely stops. (The increase

Figure 7: most popular (top-5) programming lan-
guages in Debian over time

http://sources.debian.net/stats/


Table 5: most popular (top-10) programming languages in Debian releases (Msloc)
release ansic cpp java xml sh python perl lisp asm fortran
hamm 26.2 (74.7%) 2.3 (6.5%) 0.1 (0.2%) 0.0 (0.0%) 0.8 (2.2%) 0.1 (0.3%) 0.5 (1.4%) 2.3 (6.6%) 0.4 (1.1%) 0.7 (2.0%)
slink 39.8 (76.3%) 3.5 (6.7%) 0.1 (0.3%) 0.0 (0.0%) 1.3 (2.5%) 0.2 (0.4%) 0.8 (1.5%) 2.5 (4.7%) 0.6 (1.2%) 1.0 (2.0%)
potato 47.8 (69.2%) 6.3 (9.2%) 0.3 (0.4%) 0.1 (0.2%) 2.9 (4.2%) 0.4 (0.5%) 1.3 (1.9%) 3.4 (4.9%) 0.6 (0.8%) 1.4 (2.1%)
woody 92.8 (64.8%) 16.1 (11.2%) 1.4 (1.0%) 2.0 (1.4%) 8.9 (6.2%) 1.5 (1.1%) 3.0 (2.1%) 5.1 (3.6%) 2.6 (1.8%) 2.3 (1.6%)
sarge 114.6 (53.0%) 34.3 (15.8%) 4.0 (1.8%) 5.6 (2.6%) 20.6 (9.5%) 4.4 (2.0%) 6.1 (2.8%) 6.9 (3.2%) 2.8 (1.3%) 2.9 (1.3%)
etch 140.8 (49.9%) 47.2 (16.7%) 6.1 (2.2%) 9.9 (3.5%) 30.6 (10.9%) 6.5 (2.3%) 8.0 (2.8%) 7.2 (2.5%) 4.4 (1.6%) 2.0 (0.7%)
lenny 158.9 (45.3%) 66.3 (18.9%) 18.1 (5.2%) 17.4 (5.0%) 32.4 (9.2%) 10.1 (2.9%) 9.2 (2.6%) 8.1 (2.3%) 4.1 (1.2%) 2.2 (0.6%)
squeeze 194.2 (42.0%) 96.0 (20.8%) 26.8 (5.8%) 27.4 (5.9%) 36.5 (7.9%) 15.3 (3.3%) 12.2 (2.6%) 9.5 (2.1%) 4.7 (1.0%) 2.5 (0.5%)
wheezy 253.1 (41.5%) 130.9 (21.5%) 42.8 (7.0%) 34.0 (5.6%) 39.3 (6.5%) 22.9 (3.8%) 16.1 (2.6%) 8.6 (1.4%) 7.8 (1.3%) 8.1 (1.3%)
jessie* 353.2 (44.9%) 158.6 (20.2%) 50.5 (6.4%) 45.5 (5.8%) 44.3 (5.6%) 30.1 (3.8%) 18.9 (2.4%) 11.2 (1.4%) 10.7 (1.4%) 9.1 (1.2%)

in C’s popularity in jessie should probably be disregarded,
due to the multiple version issue already discussed.)

Another interesting post-etch phenomenon is the decrease
of shell script popularity, together with the consolidation of
Perl decline. During the same period Python increases its
popularity and is now the 5th most popular language. This
suggests that Python is replacing Perl and shell script as a
more maintainable glue code language.

Two other post-etch trends are worth noting: Lisp has
almost halved its popularity and the under-representation of
Java, hypothesized in ref. study, is now gone. Even though
far behind C++, Java is the 3rd most popular language in
recent releases, with a significant margin over the 4th, and
has more than tripled its popularity since etch.

5.5 File size
Finally, we have computed the average file size (in SLOC)

per language, and analyzed its evolution across releases. In
this case the sources.d.n dataset is at loss w.r.t. our ref-
erence study, because the SLOC plugin currently does not
compute the number of files per language (which needs pass-
ing --filecount to sloccount), but only SLOC counts. To
compute average file sizes we have therefore divided per-
language totals by the number of per-language files, com-
puting the latter by only looking at file extensions. To do so
we have adopted the same conventions used by sloccount

for preliminary language classification, but we haven’t been
able to further re-classify files as sloccount does, for in-
stance on the basis of shebang lines like #!/bin/sh. This
can be seen as a drawback of a metadata-only dataset, but
is in fact a simple limitation of the current SLOC plugin im-
plementation: instead of using a single table to collect per-
language totals, the plugin should declare two, and use the
extra one to map individual files entries to their languages
as detected by sloccount. Fixing this is on our roadmap.

On the bright side, this difference opens the opportunity
to methodological comparisons. Our results are shown in Ta-
ble 6. Ref. study only lists average files sizes for 5 languages.
Limited to those languages we note that the absolute num-
bers for C and Lisp are remarkably similar, suggesting that
file extension detection is very accurate for those languages.
Significant differences are visible for C++, where we found
higher averages, probably due to the fact that the amount
of C++ files is being underestimated by only looking at file
extensions, likely due to extensions shared with C. Finally,
we found much higher averages for shell (up to 4x), but that
is more easily explained. Most shell scripts tend not to have
file extensions, and have therefore been excluded from our
count. Scripts that do have an extension are required by

the Debian Policy to reside outside the execution $PATH. As
a consequence, shipped .sh files tend to be shell libraries,
used by relatively uncommon large applications written in
shell script.

Despite the differences in absolute numbers we can con-
firm the continued stability of C, Lisp, Perl, and Java av-
erage sizes, basically unchanged over almost 20 years. The
stability of C, considering its continued growth in absolute
terms, is remarkable. The growth of shell script averages,
already observed in ref. study, has inverted its trend and is
now decreasing since etch, likely due to the already observed
increase of Python popularity—whose average file size is in-
creasing as well. A plausible general pattern for average file
size growth is to increase while the corresponding language
is still growing in popularity, to eventually stabilize and re-
main so for a long while.

5.6 Threats to validity
We haven’t replicated the (binary) package dependency

analysis part of ref. study. We cannot replicate it exactly
because currently Debsources does not retrieve Packages in-
dexes and we consider out of scope for it to do so. On the
other hand we can easily add a plugin to parse debian/con-

trol files, and extract dependencies from there. That will
have the advantage of separating maintainer-defined depen-
dencies from automatically generated ones, which arguably
have a smaller impact on package maintainability.

The sources.d.n data set, due to the reasons discussed
in Section 4, does not include the first 2 years of Debian
release history. This has no impact on the replication study,
given that our reference study didn’t consider them either.
But it would still be interesting to add those years to our
dataset, in order to peek into the early years of organized
FOSS collections. Additionally, due to a regression in dpkg-

source,6 we have not extracted all packages from archived
suite. We have patched dpkg-source to overcome the limita-
tion, but we are still missing a total of 12 (small) packages
from archive.debian.org. We do not expect such a tiny
amount to significantly impact our results.

Both sloccount and Exuberant Ctags are starting to show
their age and suffer from a lack of active maintenance. Dur-
ing the development of Debsources we have reported var-
ious bugs against them, all related to the lack of support
for “recent” languages; for instance, Scala and JavaScript
are currently completely ignored by sloccount. This does
not threaten the validity of the replication study, because
ref. study relies on sloccount too, but it is starting to be-
come problematic for dataset accuracy. The specific case of

6http://bugs.debian.org/740883

http://bugs.debian.org/740883


Table 6: average file size (in SLOC) per language (top-12, from left to right), based on file extension
suite ansic cpp java xml sh python perl lisp asm fortran cs php
hamm 239 239 100 - 499 102 232 435 92 133 56 57
slink 251 198 99 747 572 119 254 403 124 121 125 44
potato 252 226 81 363 859 136 261 414 131 144 83 136
woody 255 303 89 230 1411 137 255 434 245 154 163 121
sarge 237 305 103 171 1729 148 278 423 195 166 93 138
etch 237 315 112 194 1875 151 269 383 229 167 119 179
lenny 232 297 109 201 1539 154 262 415 199 171 127 168
squeeze 219 302 112 225 1236 152 238 433 194 182 123 164
wheezy 222 321 115 220 1074 153 228 419 217 224 132 161
jessie 230 302 117 233 1064 165 258 439 182 218 136 146

JavaScript is particularly worrisome, due to its increasing
popularity for server-side Node.js applications.

6. RELATED WORK
The scarcity of macro-level software evolution studies is

one of the main motivations for this work. To the best of
our knowledge, Barahona et al. [10] and its preliminary ver-
sion [24] are the main studies in the field. We have replicated
their findings and compared them with ours in Section 5.

Other works have studied the size and composition of spe-
cific releases of large FOSS distributions such as Red Hat
7.1 [29], Debian Potato [9], and Debian Sarge [2]. Our
work improves over those by adding the time axis, which
is fundamental in software evolution. An inconvenient of
our approach is the reliance on a Debian-like archive struc-
ture. This is undoubtedly a limiting factor, but we believe
it should be put in perspective considering that Debsources
supports all Debian-based distributions, which account for
about 40% of all active GNU/Linux distributions and in-
clude the most popular ones (e.g., Ubuntu) [6].

The Ultimate Debian Database (UDD) [20] has assembled
a large dataset about Debian and some of its derivatives, and
is a popular target for mining studies [30]. UDD too lacks
the time axis—with the sole exception of a history table
used to store time series which, contrary to what happens
in Debsources, cannot be recreated from local storage.

Numerous studies [27, 3] have investigated the evolution
of individual high-profile FOSS projects (e.g., [8, 17]) and ad
hoc sets of them (e.g., [23, 16]). Their scope is different than
ours but there are synergies to be found: when investigating
individual projects over long periods of time, Debsources
provides a uniform interface to retrieve upstream releases
as shipped by Debian; when investigating sets of projects,
relying on collections like Debian can contribute to reduce
project selection bias. In this respect, Debsources main limi-
tation is granularity: it offers coherent snapshots of software
releases, but not version control system (VCS) snapshots as
suggested by Mockus [19]. Many studies in the literature,
however, do not use VCSs [27].

Various studies have mined FOSS projects to detect code
clones, either to enforce good engineering practices or to
detect license violations, e.g., [25, 11]. When the checksum
plugin is enabled, Debsources is capable of file-level clone
detection and points web app users to clones. Ctags-based
search can also be exploited to identify “similar” files on
the basis of the symbols they define. Other fingerprinting
techniques can be added by developing suitable plugins.

Boa [7] is a DSL and an infrastructure to mine large-scale
collections of FOSS projects like SourceForge and GitHub.
Boa’s dataset is larger than Debsources (it contains Source-

Forge) and also more fine grained, reaching down to the
VCS level, but does not correspond to curated software col-
lections like FOSS distributions. That has both pros (it
allows to peek into unsuccessful or abandoned projects) and
cons: contained projects are less likely to be representative
of what was popular at the time and the time horizon is
more limited than with distributions as old as Debian.

FLOSSmole [15] is a collaborative collection of datasets
collected by mining FOSS projects. Many datasets in there
are about Debian but no one is, by far, as extensive as
sources.d.n. We are considering submitting periodic snap-
shots to FLOSSmole, but the DB size makes it non-trivial.

7. CONCLUSION
We have introduced Debsources, an extensible software

platform to gather data about the evolution of large FOSS
collections, focusing on the source code of Debian and De-
bian like distributions. Scholars can use Debsources to ob-
serve decades-long evolution patterns (by injecting historical
releases), as well as monitor day-by-day changes (following
the evolution of live suites). To validate Debsources flexi-
bility, we have used it to gather the largest dataset to date
about Debian evolution, made it publicly available, and used
it to replicate former major studies on macro-level software
evolution [24, 10]. In spite of differences in absolute results,
we have been able to confirm the general evolution trends
observed back then, extend them to take into account the
subsequent 7 years of history, and shed light into hypotheses
made back then thanks to the fine-grained, file-level knowl-
edge that Debsources allows.

Even though the bottom lines are the same, it is disturb-
ing that we have not been able to either obtain identical re-
sults, or definitely ascertain the origin of the discrepancies.
Empirical software engineering should be reproducible [22]
and to that end we need more publicly accessible datasets
that researchers can start from. When consistently used in
conjunction with FOSS platforms, that should be enough to
improve over the status quo.

More generally, the reproducibility issue and some of the
difficulties we have encountered (e.g., the non backward
compatible changes in Debian archive format and the dpkg-

source regression) are instances of the more general“bit rot”
problem described by Cerf [4]—who is worried about the
long-term preservation of digital information, and rightfully
so. We think that datasets like sources.d.n can help on
both the reproducibility and information preservation front.

Several Debsources extensions are in the working. On the
one hand we want to refine our ability to compute differ-
ences across releases and investigate how far we can go with
fingerprinting techniques before having to compute all pairs



diff-s. On the other hand we want to attack the ambitious
goal of injecting into sources.d.n releases of as much De-
bian derivatives as possible, scaling up considerably the size
of the ecosystem we are able to study at present. We think it
is feasible to do so without switching to a version control sys-
tem as data storage (which would bring its own non-trivial
decisions about the adopted branching structure), but im-
plementing instead file-level deduplication using checksums.
Deduplication will also dramatically reduce the amount of
resources needed to study the history of Debian develop-
ment, for instance by injecting Debian sid snapshots at the
desired granularity from http://snapshot.debian.org.

The largest Debsources instance to date (http://sources.
debian.net) has already filled a niche in the Debian infras-
tructure and quickly gathered popularity due to its code
browsing and search functionalities. What is more interest-
ing from a scientific point of view is Debsources ability to
turn one-shot evolution studies into live, perennial monitors
of evolution traits that scholars have identified as worth of
attention. We look forward to others joining us in develop-
ing Debsources plugins that allow to make more and more
evolution studies perennial.

8. REFERENCES
[1] P. Abate, J. Boender, R. Di Cosmo, and S. Zacchiroli.

Strong dependencies between software components. In
ESEM, pages 89–99, 2009.

[2] J.-J. Amor-Iglesias, J. M. González-Barahona,
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Measuring libre software using debian 3.1 (sarge) as a
case study: preliminary results. Upgrade Magazine,
Aug 2005.

[3] H. P. Breivold, M. A. Chauhan, and M. A. Babar. A
systematic review of studies of open source software
evolution. In APSEC, pages 356–365, 2010.

[4] V. G. Cerf. Avoiding “bit rot”: Long-term preservation
of digital information. Proceedings of the IEEE,
99(6):915–916, 2011.

[5] R. Di Cosmo, P. Trezentos, and S. Zacchiroli. Package
upgrades in FOSS distributions: Details and
challenges. In HotSWUp. ACM, 2008.

[6] DistroWatch distribution search.
http://distrowatch.com/search.php?ostype=

Linux&basedon=Debian&status=Active.

[7] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen.
Boa: a language and infrastructure for analyzing
ultra-large-scale software repositories. In ICSE, pages
422–431. IEEE / ACM, 2013.

[8] M. W. Godfrey and Q. Tu. Evolution in open source
software: A case study. In ICSM, pages 131–142, 2000.
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